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Abstract. For (very) sparse nominal data, common goodness-of-fit tests usually fail. Alternative
goodness-of-fit tests based on extended empirical Bayes approach and grouping are proposed and
their consistency is proved. The performance of the tests is illustrated and compared with classical
criteria by Monte Carlo simulations.
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1 Introduction

Currently the amount of accessible information is very extensive, therefore problems re-
lated to a high dimensionality of data arise rather frequently. For quantitative (continuous)
variables, (generalized) linear models are usually applied. They describe relationships
between the means of these variables or their covariance structures and hence the number
of model parameters grows at most as O(k2) with respect to the dimensionality k of the
data. The problem of high dimensionality is especially topical for qualitative (categorical)
variables. In this case, the number of model parameters generally increases exponentially
with k. Consequently, even for a moderate number of categorical variables, a correspond-
ing contingency table can be sparse, i.e. many cells in the table are empty or have small
counts. In fact, for categorical data, the number of cells in the corresponding contingency
table is even more important characteristic of sparsity than the dimensionality k itself.
Sometimes the number of cells (the number of unknown parameters) is even greater than
the sample size (very sparse categorical data).
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Example. (Cf. [1, p. 16, Case 3].) Suppose a questionnaire consists of k = 10 questions,
each with 2 possible answers. Then the total number of cells in a contingency table of
the answers is 2k = 210 > 103. Thus, for a sample with 103 respondents, the average of
expected frequencies in the contingency table is less than 1.

According to the rule of thumb expected (under the null hypothesis) frequencies in
a contingency table are required to exceed 5 in the majority of their cells. If this condition
is violated, the χ2 approximations of goodness-of-fit statistics may be inaccurate and the
table is said to be sparse [2].

Examples of real sparse categorical data along with their statistical analysis and dis-
cussion can be found in ( [1, p. 3], [2, p. 149], [3, p. 3]).

Actually, there are three main problems caused by sparsity in statistical analysis of
contingency tables:

1. The standard χ2 approximation for distributions of classical tests is not sufficiently
accurate (see, e.g., [2, 4]). Several techniques have been proposed to tackle this
problem: exact tests [2], alternative approximations [5, 6] parametric and nonpara-
metric bootstrap [7], Bayes approach [8, 9] and other methods.

2. The classical tests are not longer (asymptotically) distribution free [1]. The latter
property for test implies that the test performance is independent of a null hypothe-
sis to be tested and thus leads to universal decision rules. The lack of this property
means that a critical value of every testing problem is a specific problem to be
solved.

3. For (very) sparse data, the classical tests become noninformative: they do not any-
more measure the goodness-of-fit of a null hypothesis to data. For instance, the
classical tests are inconsistent even in cases where a simple consistent test does
exist ( [10, 11], see also [1, 12].

The paper is devoted to the third problem. It reveals that possibly there is no sense to
solve the former two problems. The goal of the paper is to propose alternative nonpara-
metric criteria to the classical ones which are consistent for sparse categorical (nominal)
data as well.

In the next section, we present a brief overview of different approaches to sparsity. We
propose the extended empirical Bayes model of sparse asymptotics. This model contains
the latent distribution and the structural distribution models as special cases. In Section 3,
testing problem is formulated without any assumptions about convergence of distribu-
tions. The consistency of tests based on φ-divergences and grouping is proved. Finite-
sample performance of these tests is studied using Monte Carlo simulations in Section 4.
The proposed tests are compared with the classical criteria.

2 Definitions of sparsity

Let y := (y1, . . . , yn) be a contingency table, i.e. a vector of observed frequencies. Set
µ = Ey. Assume that components of y are independent Poisson random variables,

y ∼ Poisson(µ).
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An alternative assumption might be

y ∼ Multinomialn(N,p), p :=
µ

N
. (1)

Consider a simple hypothesis testing problem

H0: µ = µ◦ versus H1: µ 6= µ◦, (2)

where µ◦ := (µ◦1, . . . , µ
◦
n) is a given vector of positive values.

We are interested in case where contingency tables are sparse. Informally it means
that the number of cells n is large and expected frequencies of a significant part of cells
are small.

There are different ways to define sparsity formally, as well as represent sparsity scale
by introducing the corresponding parameters. The definition of sparsity is based on the
sparse asymptotics (cf. [13, 14]). Denote µ+ := Ey+, y+ :=

∑n
j=1 yj .

Let M → ∞ be some asymptotic parameter. The sparse asymptotics assumes that
n = n(M)→∞ and µ+ = µ+(M)→∞ as M →∞. In what follows we usually hide
the dependence on the asymptotic parameter M though indicate it when introducing new
objects and in cases we need to stress this dependence.

2.1 Latent distribution model

One of the simplest way to deal with the sparsity is to suppose that the expected fre-
quencies µ = (µ1, . . . , µn) of an ordered variable are determined by a latent distribution
function F on [0, 1] via representation

µi = µ+

(
F (ti)− F (ti−1)

)
, (3)

where t0 = 0, ti := i/n, i = 1, . . . , n (cf. [13, 15]). In this setting, it is usually assumed
that there exists rather smooth latent distribution density f , f(u) = dF (u)/du. This
assumption implies

µi = µi(M) = O

(
µ+

n

)
, M →∞.

Thus, in this case the sparsity is expressed by the average expected frequency ρ =
ρ(M) := µ+/n. For multinomial sampling scheme (1) we have µ+ = N where N is the
sample size of the contingency table y. Hence ρ(M) = N/n. A typical assumption for
the sparse asymptotics is ρ = O(1). In this case, the number of unknown parameters n−1
is proportional toN and hence the consistent estimator of the parameters, in general, does
not exist (see, e.g., [16]). The consistent estimator can be constructed under the additional
requirements on smoothness of the latent distribution density f . Then standard (kernel)
smoothing technique can be applied (see, e.g., [13, 15]).

The latent distribution model (3) with uniform with respect to M restrictions on the
smoothness of the latent density f is inappropriate for nominal data. In this case, the
expected frequencies µ and their sparsity can be described by the structural distribution
function introduced by Khmaladze [1] to characterize data with a large number of rare
events (LNRE for short; see also [12, 17]). Thus, LNRE is Khmaladze’s definition of
sparse categorical data.
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2.2 Structural distribution

When dealing with testing problem (2), one can suppose that the cell numbering or-
der is irrelevant. It means that the statement µ = µ◦ is replaced by the statement
{µ1, . . . , µn} = {µ◦1, . . . , µ◦n}. Actually, it is the same as to require the tests to be in-
variant with respect to permutations of the cell numbers. Then only permutation invariant
hypotheses can be tested. This leads to the testing problem

H0: F̂ (M) = (F ◦)(M) versus H1: F̂ (M) 6= (F ◦)(M), (4)

where F̂ (M) is the empirical distribution function of {µ1, . . . , µn},

F̂ (M)(u) =
1

n

n∑
i=1

1[µi≤u], u ∈ R+ := [0,∞),

and (F ◦)(M) is a given discrete distribution function with |supp((F ◦)(M))| ≤ n =
n(M). |A| denotes the number of elements (cardinality) of the set A.

Here we explicitly indicate the dependence of the statements onM , the key parameter
in the sparse asymptotics.

In fact, testing problem (4) as well as (2) is a sequence of statements and it re-
mains some uncertainty how they should be combined. While it is quite natural to take
“H0: µ(M) = (µ◦)(M) ∀ (sufficiently large) M”, a reasonable definition of H1 is not so
clear. Using ideas of the contiguous alternative approach, the testing problem is expressed
through asymptotic characteristics (parameters) of sample distributions.

Definition 1. (Cf. [17].) Suppose that Fρ(t) := F̂ (M)(ρt) with some scaling factor
ρ = ρ(M) converges weakly to some distribution function F as M → ∞. Then F is
called a structural distribution of the expected cell frequencies µ (or simply of the table y)
with the scaling factor ρ.

In terms of the structural distribution the testing problem states

H0: F = F ◦ versus H1: F 6= F ◦, (5)

where F ◦ is a given distribution function with supp(F ◦) ⊂ R+. Again, the sparsity scale
is determined by ρ.

Khmaladze [1] pointed out that the structural distribution can be treated as a latent
mixing distribution in the empirical Bayes approach. Below we extend this approach to
include the null hypothesis in the Bayes model as well.

2.3 Extended empirical Bayes model

Let us suppose that {(µ◦i , µi), i = 1, . . . , n} are independent copies of a random pair
(γ◦, γ) taking values in R2

+ and having distribution P = P (M), M → ∞. Then the
marginal distribution P ◦ of γ◦ (respectively, P γ of γ) coincides with the structural distri-
bution under the null hypothesis H0 (respectively, under the alternative H1), see [1].
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Fix M or set M = ∞. Now the testing problem for structural distribution (5) takes
the following form: H0: P ◦ = P γ versus H1: P ◦ 6= P γ . Thus in this case only the
marginal distributions of P are involved.

Let P γ◦ denote the conditional distribution of γ given γ◦:

P γ◦ (· | a) := P{γ ∈ · | γ◦ = a}, a ∈ R+.

Then problem (2) can be extended in terms of P as follows:

H0: P γ◦ (· | a) = δa ∀a ∈ Ω versus H1: P γ◦ (· | a) 6= δa ∀a ∈ A.

Here δa is the Dirac measure with the support {a}, a ∈ R+,Ω andA are some measurable
sets satisfying, respectively, P ◦(Ω) = 1 and P ◦(A) > 0.

Note that this extension of (2) can not be tested using the latent distribution model, nor
the structural distribution approach. They both suggest some convergence of distributions
asM →∞, i.e. some regularity in the sparse asymptotics of frequency tables. In the next
section the testing problem is formulated without any assumptions about convergence of
distributions thus providing more flexibility in applications.

3 Hypotheses testing under the sparsity

Here we use the extended empirical Bayes framework described in 2.3.
Let P = P(M) be a class of probability distributions P = P (M) on R2

+ = R+ ×R+,
hypothetical distributions of the random pair (γ, γ◦).

Suppose that a discrepancy measure d(P,Q) = d(M)(P,Q) between probability
distributions P ∈ P and Q ∈ P satisfies conditions: d(P,Q) ≥ 0, d(Q,Q) = 0.

Given Q(M) ∈ P(M) and δ = δ(M) > 0, consider the following testing problem:

H0: ∀M, d
(
Q(M), P (M)

)
= 0, (6)

versus
H1: ∀M, d

(
Q(M), P (M)

)
≥ δ(M). (7)

Our proofs of the consistency of testing criteria are based on a general result given below.

3.1 Main lemma

Given P (M) ∈ P(M) for all M , let PP = P(M)
P denote the probability distribution of an

observed data D(M) generated by making use of P (M). Let Q(M) ∈ P(M) be a hypo-
thetical distribution generating D(M).

Assumption C. Assume that for a given δ = δ(M) > 0, there exist an estimator ̂d(Q;P )
of d(Q(M);P (M)) and τ = τ(M) ∈ (0, 1) such that

P(M)
Q

{ ̂d(Q;P ) >
(
1− τ(M)

)
δ(M)

}
→ 0, M →∞, (8)

and for all P (M) ∈ P(M)

P(M)
P

{ ̂d(Q;P ) ≤ d
(
Q(M);P (M)

)
− τ(M)δ(M)

}
→ 0, M →∞. (9)
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Lemma 1. Assume that Assumption C is valid. Then the criterion

K :=
{ ̂d(Q;P ) >

(
1− τ(M)

)
δ(M)

}
,

is consistent as M →∞ for testing (6) versus (7).

Proof. Write τ = τ(M), δ = δ(M) for short. If H0 is valid,

P(M)
Q (K) = P(M)

Q

{ ̂d(Q;P ) > (1− τ)δ
}
→ 0, M →∞,

due to (8). If H1 holds, then d(Q(M);P (M)) ≥ δ and hence

1− P(M)
P (K) = P(M)

P

{ ̂d(Q;P ) ≤ (1− τ)δ
}

≤ P(M)
P

{ ̂d(Q;P ) ≤ d
(
Q(M);P (M)

)
− τδ

}
→ 0, M →∞,

by (9).

In order to apply Lemma 1 we need to specify the discrepancy measure d, the class
P(M) of distributions, the estimator ̂d(Q;P ), and the critical value (1− τ(M))δ(M) for
sparse asymptotics M →∞.

3.2 Discrepancy measures

The φ-divergence between two vectors u, v ∈ Rn+ is defined by (cf. [18])

dφ(v;u) :=

n∑
i=1

viφ

(
ui
vi

)
.

The function φ : R+ → R is convex, strictly convex at 1, φ(1) = 0. The most of
φ-divergences widely used to measure distribution discrepancy belong to power-diver-
gence family (cf. [4]) with φ = φα:

φα(t) :=
tα − α(t− 1)− 1

α(α− 1)
, α(α− 1) 6= 0, (10)

φ1(t) := t ln t− t+ 1, φ0(t) := − ln t+ t− 1. (11)

For φ = φα, denote dα(v;u) := dφ(v;u). Taking α = 1 and α = 2 produce the classical
logarithmic likelihood ratio and Pearson χ2 statistics, respectively,

G2 := d1(µ◦; y) = 2

n∑
i=1

(
yi log

yi
µ◦i
− yi + µ◦i

)
,

X2 := d2(µ◦; y) =

n∑
i=1

(yi − µ◦i )2

µ◦i
,

see also Table 1.
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Table 1. Goodness-of-fit statistics.

Statistic α Definition
Small Samples 5/3 9/5

∑k
i=1 yi((yi/µ

◦
i )

2/3 − 1)

Hellinger Distance 1/2 4
∑k

i=1(
√
yi −

√
µ◦
i )

2

Likelihood Ratio modified 0 2
∑k

i=1(µ
◦
i log(µ

◦
i /yi) + (yi − µ◦

i ))

χ2 modified −2
∑k

i=1(µ
◦
i − yi)2/yi

Likelihood Ratio symmetrized
∑k

i=1(yi − µ
◦
i ) log(yi/µ

◦
i )

χ2 symmetrized (Le Cam) 2
∑k

i=1(yi − µ
◦
i )

2/(yi + µ◦
i )

However, classical test statistics usually are not appropriate for testing goodness-of-
fit in case of sparse contingency tables or LNRE data [1, 10, 11]. A special grouping
procedure is applied to increase power of the classical criteria for such data.

Grouping. The observed data is {(µ◦i , yi), i = 1, . . . , n}, where the conditional distribu-
tion of yi given the random pair (γ◦i , γi) = (µ◦i , µi) is the Poisson distribution with the
mean µi, and {(γ◦i , γi), i = 1, . . . , n} are i.i.d. with the common distribution P (M).

Let ∆ = ∆(M) := {∆k, k = 1, . . . ,K} be a partition of (0, µ◦+] into disjoint
intervals ∆k = (tk−1, tk] of the length |∆k| := tk − tk−1 with t0 = 0, tK−1 < µ◦+n ≤
tK <∞.

Without loss of generality one can assume that the sequence (µ◦i , i = 1, . . . , n) is
nondecreasing. Define cumulative empirical sequences, the sequence for initial data,

µ◦+j =

j∑
i=1

µ◦i ,

and the sequences determined by the partition ∆,

µk+ =

n∑
i=1

µi1[µ◦
+i∈∆k], yk+ =

n∑
i=1

yi1[µ◦
+i∈∆k].

Suppose that Q(M) and P (M) are the empirical distributions based on the data{
(µ◦i , µ

◦
i ), i = 1, . . . , n

}
, (12)

and {
(µ◦i , µi), i = 1, . . . , n

}
, (13)

respectively. The discrepancy between Q(M) and P (M) is measured by φ-divergence for
the grouped data:

d
(
Q(M);P (M)

)
= dφ

(
Q(M);P (M)

)
:=

K∑
k=1

µ◦k+φ

(
µk+

µ◦k+

)
. (14)
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The straighforward plug-in estimator of d(Q(M);P (M)) is given by

̂d(Q;P ) :=

K∑
k=1

µ◦k+φ

(
yk+

µ◦k+

)
. (15)

Let ηu ∼ Poisson(u) and suppose that

Eφ2

(
ηu
v

)
<∞ ∀u, v > 0. (16)

Denote

a(v) := vEφ
(
ηv
v

)
, (17)

σ2(v;u) := v2E
(
φ

(
ηu
v

)
− φ

(
u

v

))2

. (18)

Lemma 2. Suppose (16) is fulfilled. Then

EP ̂d(Q;P ) ≥ d
(
Q(M);P (M)

)
, (19)

EQ ̂d(Q;P ) = A(M) :=

K∑
k=1

a(µ◦k+), (20)

VarP ̂d(Q;P ) ≤ V 2(M) :=

K∑
k=1

σ2(µ◦k+, µk+). (21)

Proof is presented in Appendix.

3.3 Consistency

From Lemma 2 it easy to derive the following result.

Theorem. Let Q(M) and P (M) be the empirical distributions based on the data (12)
and (13), respectively. Suppose (16) is fulfilled and the discrepancy measure between
Q(M) and P (M) is defined by (14) and estimated by (15). If δ(M) > A(M) and

V0(M) + V (M) = o
(
δ(M)−A(M)

)
, M →∞, (22)

where A(M), V (M) are introduced in (20), (21) and

V 2
0 (M) :=

K∑
k=1

σ2(µ◦k+, µ
◦
k+), (23)

then the criterion

K :=
{ ̂d(Q;P ) > A(M) + κ1

(
δ(M)−A(M)

)}
,

is consistent as M →∞ for testing (6) versus (7) with any constant κ1 ∈ (0, 1).
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Proof is presented in Appendix.

Remark 1. If the partition ∆ = ∆(M) with K = K(M)→∞ is such that

∆min = ∆
(M)
min := min

k
|∆k| → ∞, M →∞,

then the statistic ̂d(Q;P ) defined in (15) is asymptotically normal as M →∞. This fact
can be established by arguments of Györfi and Vajda [19] used in the case of multinomial
sampling scheme. In the case of sparse asymptotics, however, the power of the test based
on the statistic ̂d(Q;P ) heavily depends on grouping. Thus, even weaker requirement
∆

(M)
min ≥ κ0 with a pre-specified constant κ0 > 0 may be rather restrictive.

In Section 4 we present (provide) some computer simulation results to illustrate per-
formance of the proposed criterion.

4 Computer experiment

In this section the finite-sample (n = 200, µ+ ≈ 200) behavior of goodness-of-fit tests
based on two different methods of grouping (K = 10) is compared with classical criteria.
The results of Monte Carlo study with R = 1000 replications for two extended Bayes
models are presented.

In the first model, named “Bottom split”, µ differs from µ◦ in the region of low values
of µ◦ (“Bottom”), while in the second, named “Top split”, µ differs from µ◦ in the region
of high values of µ◦ (“Top”). The average values of µ in the both regions are kept close
to that of µ◦.

The Poisson distribution parameters, i.e. the expected frequencies µ and the true
expected frequencies µ◦, are generated as independent Gamma random variables:

µi ∼ Gamma
(
a(i), v(i)

)
, µ◦i ∼ Gamma

(
a◦(i), v◦(i)

)
, i = 1, . . . , 200.

Here Gamma(a, v) denotes the Gamma distribution with the mean a and the variance v,

v◦(i) = v(i) = 10−4,

a◦(i) = 0.4 + 0.001i+ 1.2 · 1[i>n/2],

while

a(i) = abottom(i) := 1.6− 0.9 · 1[i≤n/2] − 0.6 · 1[i≤n/4],

and
a(i) = atop(i) := 0.4 + 0.6 · 1[i>n/2] + 1.2 · 1[i>3n/4],

in the “Bottom split” model and in the “Top split” model, respectively (see (a) in Fig. 1
and Fig. 2).
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(d) Grouping of equal expected frequencies
(K = 10)

Fig. 1. Goodness-of-fit tests power for “Bottom split” model. Legend in (b) applies
to (c) and (d).

Two simple methods of grouping are applied. By the first method, the groups have
equal sizes, i.e. number of elements. In the second method, the groups have equal ex-
pected frequencies µ◦k+, k = 1, . . . , 10.

In the “Bottom” model, the first grouping method is much better than the second one
(Fig. 1(c) and (d)), however, it is slightly worse in the “Top” model (Fig. 2(c) and (d)).
Note that expected frequencies in the first grouping in the “Bottom” region are equal 8 and
thus normal approximation for these frequencies fails. Consequently, the performance of
the test heavily depends on grouping and hence an adaptive grouping rule can significantly
increase the power of the tests. Obviously, the grouping does not help if average values
of µ◦ and µ in each group are close.

The classical criteria based on the same φ-divergencies (but without grouping) have
very low power, see (b) in Fig. 1 and Fig. 2.
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(K = 10)

Fig. 2. Goodness-of-fit tests power for “Top split” model. Legend in (b) applies
to (c) and (d).

Appendix

Proof of Lemma 2. Since the function φ(u/v) is convex with respect to u inequality (20)
follows from Jensen’s inequality. Further, in view of (18)

v2 Varφ

(
ηu
v

)
≤ v2E

(
φ

(
ηu
v

)
− φ

(
u

v

))2

= σ2(v, u).

Consequently,

VarP ̂d(P ◦;P ) =

K∑
k=1

(µ◦k+)2 VarP φ

(
yk+

µ◦k+

)
≤

K∑
k=1

σ2(µ◦k+, µk+),
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since yk+, k = 1, . . . ,K, are mutually independent Poisson random variables (given
γ = µ).

Proof of Theorem. Let us check the first condition of Lemma 1 (8). Set τ(M) = (1−κ1)
(1−A(M)/δ(M)). Then (22), (20), (21), (23), and Chebyshev inequality imply

PQ
{ ̂d(Q;P ) >

(
1− τ(M)

)
δ(M)

}
≤ PQ

{ ̂d(Q;P )−A(M) > κ1

(
δ(M)−A(M)

)}
≤ V 2

0 (M)

κ2
1(δ(M)−A(M))2

→ 0.

Similarly, for the second condition of Lemma 1 (9), we derive from (22), (19), (21),
and Chebyshev inequality

PP
{ ̂d(Q;P ) < d

(
Q(M);P (M)

)
− τ(M)δ(M)

}
≤ PP

{ ̂d(Q;P )− EP ̂d(Q;P ) < −τ(M)δ(M)
}

≤ PP
{ ̂d(Q;P )− EP ̂d(Q;P ) < −(1− κ1)

(
δ(M)−A(M)

)}
≤ V 2(M)

(1− κ1)2(δ(M)−A(M))2
→ 0.

The proof is complete.
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