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Abstract. In this study we consider a mathematical model of an SIR epidemic model with
a saturated incidence rate. We used the optimal vaccination strategies to minimize the susceptible
and infected individuals and to maximize the number of recovered individuals. We work in the
nonlinear optimal control framework. The existence result was discussed. A characterization of the
optimal control via adjoint variables was established. We obtained an optimality system that we
sought to solve numerically by a competitive Gauss–Seidel like implicit difference method.
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1 Introduction

The dynamics of the infectious diseases is an important research area in mathematical
epidemiology. Understanding the transmission characteristics of infectious diseases in
communities, regions and countries can lead to better approaches for decreasing the
transmission of these diseases [1–3].

Epidemic models have been studied by many authors. Most of them are interested
in the formulation of the incidence rate, i.e. the infection rate of susceptible individuals
through their contacts with infected individuals (see, for example, [2,4–7] and references
therein). In order to model this disease transmission process, several authors employ the
following incidence functions. The first one is the bilinear incidence rate βSI , where
S and I are respectively the number of the susceptible and infected individuals in the
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population, and β is a positive constant. The second one is the saturated incidence
rate of the form βSI/(1 + α1S), where α1 is a positive constant. The effect of the
saturation factor (refer to α1) stems from epidemic control (taking appropriate preventive
measures). The third one is the saturated incidence rate of the form βSI/(1 + α2I),
where α2 is a positive constant. In this incidence rate the number of the effective contacts
between infected and susceptible individuals may saturate at high infecting levels due
to the crowding of the infected individuals or due to the protection measures by the
susceptible individuals.

In this study we consider a mathematical model of an SIR epidemic model with
a modified saturated incidence rate:

Ṡ(t) = A− µS(t)− βS(t)I(t)

1 + α1S(t) + α2I(t)
, S(0) = S0 ≥ 0,

İ(t) =
βS(t)I(t)

1 + α1S(t) + α2I(t)
− (µ+ α+ γ)I(t), I(0) = I0 ≥ 0,

Ṙ(t) = γI(t)− µR(t), R(0) = R0 ≥ 0,

where S is the number of the susceptible individuals, I is the number of infected indi-
viduals, R is the number of the recovered individuals, A is the recruitment rate of the
population, µ is the natural death of the population, α is the death rate due to disease, β is
the transmission rate, α1 and α2 are the parameter that measure the inhibitory effect, and
γ is the recovery rate of the infective individuals.

The fundamental characteristic of this model is:
The modified saturated incidence rate βS(t)I(t)/(1 + α1S(t) + α2I(t)) (see, for

example, [8–10]), which includes the three forms:
• βSI (if α1 = α2 = 0),

• βSI/(1 + α1S) (if α2 = 0) and

• βSI/(1 + α2I) (if α1 = 0),

is saturated with the susceptible and the infected individuals.

2 The optimal vaccination

Optimal control techniques are of great use in developing optimal strategies to control
various kinds of diseases. To solve the challenges of obtaining an optimal vaccination
strategy, we use optimal control theory [11]. Our goal, then, is to reduce the numbers of
susceptible and infected individuals and increase the number of recovered individuals.

For the optimal control problem, we consider the control variable u(t) ∈ Uad to be
the percentage of susceptible individuals being vaccinated per unit of time. Here

Uad =
{
u
∣∣ u(t) is measurable, 0 ≤ u(t) ≤ umax <∞, t ∈ [0, tend]

}
indicates an admissible control set. In this optimal problem, we assume a restriction on the
control variable such as 0 ≤ u(t) ≤ umax [12], because vaccination of all of the entire
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susceptible individuals at one time is impossible. The physical meaning of the control
variable in this problem is that if the low levels of the numbers of infected and susceptible
individuals is reached we get more recovered individuals. In case of no vaccination, the
number of infected and susceptible individuals increases while the numbers of recovered
individuals decrease. The prefect time for vaccinations can bring the number of infected
individuals down to a small level, the number of susceptible individuals begins to be built
again, and more individuals recover from the infection.

Now, we consider an optimal control problem to minimize the objective (cost) func-
tional given by

J(u) =

tend∫
0

[
A1S(t) +A2I(t) +

1

2
τu2(t)

]
dt (1)

subject to

Ṡ(t) = A−
(
µ+ u(t)

)
S(t)− βS(t)I(t)

1 + α1S(t) + α2I(t)
, S(0) = S0,≥ 0

İ(t) =
βS(t)I(t)

1 + α1S(t) + α2I(t)
− (µ+ α+ γ)I(t), I(0) = I0 ≥ 0, (2)

Ṙ(t) = γI(t)− µR(t) + u(t)S(t), R(0) = R0 ≥ 0.

• The first two terms in the functional objective represent benefit of S(t) and I(t)
populations that we wish to reduce.

A1 and A2 are positive constants to keep a balance in the size of S(t) and I(t),
respectively.

• Naturally, each control incurs in some costs. Unfortunately, we do not have good
data on the costs associated with vaccination control. Hence, we focus on the use of
“relative” cost for the control. We use in the second term in the functional objective
(as it is customary), the quadratic term (1/2)τu2, where τ is a positive weight
parameter which is associated with the control u(t) and the square of the control
variable reflects the severity of the side effects of the vaccination [13].

There are other types of functions in literature (see, for example, [14]). As
every vaccination requires a certain effort, the more natural is to consider quadratic
function because it can make the analogy with the energy expended.

The objective of our work is to minimize the infected and susceptible individuals and,
therefore, to maximize the total number of recovered individuals (vaccinated individuals
are added directly to the recovered compartment), by using possible minimal control
variables u(t). Susceptible individuals induce a percentage of vaccination control u(t) to
protect against possible infection at a per unit time. Note that such a vaccine is protective
against the primary infection. Therefore, we expect that the vaccine will be effective in
the case of re-infection. So, recovered individuals, who are susceptible again, should
provide the same percentage of vaccination control u(t) to protect from possible re-
infection.
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2.1 Existence of an optimal control

For existence, we consider a control system (2) with initial conditions. Then, we rewrite
our system (2) in the following form:

φt = Bφ+ F (φ), (3)

where φ = [S(t) I(t) R(t)]′,

B =

−(u(t) + µ) 0 0
0 −(µ+ α+ γ) 0
u(t) γ −µ

 , F (φ) =


A− βS(t)I(t)

1+α1S(t)+α2I(t)

βS(t)I(t)
1+α1S(t)+α2I(t)

0

 ,
and φt denote derivative of φ with respect to time t. Equation (3) is a non-linear system
with a bounded coefficient.

We set
D(φ) = Bφ+ F (φ),

∣∣F (φ1)− F (φ2)
∣∣

= 2β

∣∣∣∣S2I2(1 + α1S1 + α2I1)− S1I1(1 + α1S2 + α2I2)

(1 + α1S1 + α2I1)(1 + α1S2(t) + α2I2)

∣∣∣∣
≤ 2β

∣∣S2I2(1 + α1S1 + α2I1)− S1I1(1 + α1S2 + α2I2)
∣∣

≤ 2β|S2I2 + α1S1S2I2 + α2S2I1I2 − S1I1 − α1S1S2I1 − α2S1I1I2|
≤ 2β

∣∣α1S1S2(I2 − I1) + α2I1I2(S2 − S1) + S2I2 − S1I1
∣∣

≤ 2β
∣∣α1S1S2(I2 − I1) + α2I1I2(S2 − S1) + S2(I2 − I1) + I1(S2 − S1)

∣∣
≤ 2β

(
α1S1S2|I2 − I1|+ α2I1I2|S2 − S1|+ S2|I2 − I1|+ I1|S2 − S1|

)
≤ 2β

(
α1

(
A

µ

)2

|I2 − I1|+ α2

(
A

µ

)2

|S2 − S1|+
A

µ
|I2 − I1|+

A

µ
|S2 − S1|

)
≤M

(
|S2 − S1|+ |I2 − I1|

)
,

where

M = 2βmax

((
α1

(
A

µ

)2

+
A

µ

)
;

(
α2

(
A

µ

)2

+
A

µ

))
.

Also, we get |D(φ1)−D(φ2)| ≤ V |φ1 − φ2|, where V = max(M, ‖B‖) <∞.
Thus, it follows that the function D is uniformly Lipschitz continuous. From the

definition of the control u(t) and the restriction on S(t), I(t) and R(t) ≥ 0, we see
that a solution of the system (3) exists [15].

Let us go back to the optimal control problem (1)–(2). In order to find an optimal
solution, first we find the Lagrangian and Hamiltonian for the optimal control prob-
lem (1)–(2). In fact, the Lagrangian of the optimal problem is given by L(S, I, u) =
A1S(t) +A2I(t) + (1/2)τu2(t).
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We seek the minimal value of the Lagrangian. To accomplish this, we define the
Hamiltonian H for the control problem:

H
(
t, x(t), u(t), λ(t)

)
= f

(
t, x(t), u(t)

)
+ λ(t)g

(
t, x(t), u(t)

)
= (integrand of the objective functional)

+ (adjoint)× (RHS of ODE),

which is written in our case:

H(S, I,R, u, λ1, λ2, λ3, t) = L(S, I, u) + λ1
dS(t)

dt
+ λ2

dI(t)

dt
+ λ3

dR(t)

dt
, (4)

where λ1, λ2 and λ3 are the adjoint functions to be determined suitably.

Theorem 1. There exists an optimal control u∗(t) such that

J
(
u∗(t)

)
= min

u∈U
J
(
u(t)

)
subject to the control system (2) with initial conditions.

Proof. To prove the existence of an optimal control we use the result in [16]. Note that
the control and the state variables are nonnegative values. In this minimizing problem,
the necessary convexity of the objective functional in u(t) is satisfied. The control space

Uad =
{
u
∣∣ u(t) is measurable, 0 ≤ u(t) ≤ umax <∞, t ∈ [0, tend]

}
is also convex and closed by definition. The optimal system is bounded which determines
the compactness needed for the existence of the optimal control. In addition, the integrand
in the functional (1), A1S(t)+A2I(t)+(1/2)τu2(t) is convex on the control u(t). Also,
we can easily see that, there exist a constant ρ > 1, positive numbers ω1 and ω2 such that
J(u(t)) ≥ ω2 + ω1(|u|2)ρ/2. We conclude that there exists an optimal control.

2.2 Characterization of the optimal control

In the previous section we showed the existence of an optimal control, which minimize
the functional (1) subject to the system (2). In order to derive the necessary conditions for
this optimal control, we apply Pontryagin’s maximum principle to the HamiltonianH (4).

If (x∗(t), u∗(t)) is an optimal solution of an optimal control problem, then there exists
a non-trivial vector function λ(t) = (λ1(t), λ2(t), . . . , λn(t)) satisfying the following
equalities:

x′(t) =
∂H(t, x∗(t), u∗(t), λ(t))

∂λ
, 0 =

∂H(t, x∗(t), u∗(t), λ(t))

∂u
,

λ′(t) = −∂H(t, x∗(t), u∗(t), λ(t))

∂x
,
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which gives after derivation
u∗(t) = 0 if ∂H

∂u < 0,

u∗(t) ∈ [0, umax] if ∂H
∂u = 0,

u∗(t) = umax if ∂H
∂u > 0.

Now, we apply the necessary conditions to the Hamiltonian H (4).

Theorem 2. Let S∗(t), I∗(t) and R∗(t) be optimal state solutions with associated opti-
mal control variable u∗(t) for the optimal control problem (1) and (2). Then, there exist
adjoint variables λ1, λ2 and λ3 that satisfy

dλ1(t)

dt
= −A1 + λ1(t)

(
µ+ u(t) + Λ1

)
− λ2(t)Λ1 − λ3(t)u(t),

dλ2(t)

dt
= −A2 + λ1(t)Λ2 − λ2(t)

(
Λ2 − (µ+ α+ γ)

)
− λ3(t)γ,

dλ3(t)

dt
= λ3(t)µ,

where

Λ1 =
βI(1 + α2I)

(1 + α1S + α2I)2
and Λ2 =

βS(1 + α1S)

(1 + α1S + α2I)2

with transversality conditions

λi(tend) = 0, i = 1, 2, 3.

Furthermore, the optimal control u∗(t) is given by

u∗(t) = max

(
min

(
(λ1(t)− λ3(t))S∗(t)

τ
, umax

)
, 0

)
.

Proof. We use the Hamiltonian (4) in order to determine the adjoint equations and the
transversality conditions. By putting S(t) = S∗(t), I(t) = I∗(t), R(t) = R∗(t) and
differentiating the Hamiltonian with respect to S, I and R, we obtain

dλ1(t)

dt
= −∂H

∂S
= −A1 + λ1(t)

(
µ+ u(t) + Λ1

)
− λ2(t)Λ1 − λ3(t)u(t),

dλ2(t)

dt
= −∂H

∂I
= −A2 + λ1(t)Λ2 − λ2(t)

(
Λ2 − (µ+ α+ γ)

)
− λ3(t)γ,

dλ3(t)

dt
= −∂H

∂R
= λ3(t)µ,

and by using the optimality conditions we find

∂H

∂u
= τu∗(t)− λ1(t)S∗ + λ3(t)S∗ = 0 at u = u∗(t),
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which gives

u∗(t) =
(λ1(t)− λ3(t))S∗(t)

τ
.

Using the property of the control space, we obtain
u∗(t) = 0 if (λ1(t)−λ3(t))S∗(t)

τ ≤ 0,

u∗(t) = (λ1(t)−λ3(t))S∗(t)
τ if 0 < (λ1(t)−λ3(t))S∗(t)

τ < umax,

u∗(t) = umax if (λ1(t)−λ3(t))S∗(t)
τ ≥ umax.

So the optimal control is characterized as

u∗(t) = max

(
min

(
(λ1(t)− λ3(t))S∗(t)

τ
, umax

)
, 0

)
. �

The optimality system consists of the state system coupled with the adjoint system
with the initial and transversality conditions together with the characterization of the op-
timal control. Utilizing the characterization of the optimal control, we have the following
optimality system.

Ṡ∗ = A− (µ+ u∗)S∗ − βS∗I∗

1 + α1S∗ + α2I∗
,

İ∗ =
βS∗I∗

1 + α1S∗ + α2I∗
− (µ+ α+ γ)I∗,

Ṙ∗ = γI∗ − µR∗ + u∗S∗,

λ̇1 = −A1 + λ1

(
µ+ u∗ +

βI∗(1 + α2I
∗)

(1 + α1S∗ + α2I)2

)
− λ2

(
βI∗(1 + α2I

∗)

(1 + α1S∗ + α2I∗)2

)
− λ3u

∗,

λ̇2 = −A2 + λ1

(
βS∗(1 + α1S

∗)

(1 + α1S∗ + α2I∗)2

)
− λ2

(
βS∗(1 + α1S

∗)

(1 + α1S∗ + α2I∗)2
− (µ+ α+ γ)

)
− λ3γ,

λ̇3 = λ3µ

with λ1(tend) = 0, λ2(tend) = 0, λ3(tend) = 0,S(0) = S0, I(0) = I0, R(0) = R0.

3 Numerical illustration

3.1 The improved GSS1 method

The resolution of the optimality system is created improving the Gauss–Seidel-like im-
plicit finite-difference method developed by Gumel et al. [17], presented in [18] and
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denoted GSS1 method. It consists on discretizing the interval [t0, tend] the points tk =
kl + t0(k = 0, 1, . . . , n), where l is the time step. Next, we define the state and adjoint
variables S(t), I(t),R(t), λ1(t), λ2(t), λ3(t) and the control u(t) in terms of nodal points
Sk, Ik, Rk , λk1 , λk2 , λk3 and uk with S0, I0, R0, λ0

1, λ0
2, λ0

3 and u0 as the state and adjoint
variables and the controls at initial time t0. Sn, In, Rn, λn1 , λn2 , λn3 and un as the state
and adjoint variables and the controls at final time tend.

As it is well known, the approximation of the time derivative by its first-order forward-
difference is given, for the first state variable S(t), by

dS(t)

dt
= lim
l→0

S(t+ l)− S(t)

l
.

We use GSS1 to adapt it to our case as following: we visit the variables one by one by
blocking all other value to the most recently calculated

Sk+1 − Sk

l
= A− (µ+ uk)Sk+1 +

βSk+1Ik

1 + α1Sk+1 + α2Ik
,

Ik+1 − Ik

l
=
βSk+1Ik+1

∆k
− (µ+ α+ γ)Ik+1,

Rk+1 −Rk

l
= γIk+1 − µRk+1 + ukSk+1,

where

∆k := 1 + α1S
k+1 + α2I

k+1.

By applying an analogous technology, we approximate the time derivative of the adjoint
variables by their first-order backward-difference and we use the appropriated scheme as
follows:

λn−k1 − λn−k−1
1

l
= −A1 + λn−k−1

1

(
µ+ uk +

βIk+1(1 + α2I
k+1)

(∆k)2

)
− λn−k2

(
βIk+1(1 + α2I

k+1)

(∆k)2

)
− λn−k3 uk,

λn−k2 − λn−k−1
2

l
= −A2 + λn−k−1

1

(
βSk+1(1 + α1S

k+1)

(∆k)2
− (µ+ α+ γ)

)
− λn−k−1

2

(
βSk+1(1 + α1S

k+1)

(∆k)2

)
− λn−k3 γ,

λn−k3 − λn−k−1
3

l
= λn−k−1

3 µ.

Hence, we can establish an algorithm to solve the optimality system and then to compute
the optimal control.
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3.2 Algorithm

Step 1:
S(0)← S0, I(0)← I0, R(0)← R0,
λ1(tend)← 0, λ2(tend)← 0, λ3(tend)← 0, u(0)← 0

Step 2: For k = 1, . . . , n do

∆k
1 ← ((1 + l(µ+ uk−1))(1 + α2I

k−1)− α1(Sk−1 + lA)

− βIk−1l)2 + 4α1(1 + α2I
k−1)(Sk−1 + lA)(1 + l(µ+ uk−1))

Sk ← −(1+l(µ+uk−1))(1+α2I
k−1)+α1(Sk−1+lA)+βIk−1l

2α1(1+l(µ+uk−1))
+

√
∆k

1

2α1(1+l(µ+uk−1))

∆k
2 ← ((1 + α1S

k)− α2I
k−1 − lβSk + l(µ+ α+ γ)(1 + α1S

k))2

+ 4α2(1 + α1S
k)(1 + l(µ+ α+ γ))

Ik ← −(1+α1S
k)+α2I

k−1+lβSk−l(µ+α+γ)(1+α1S
k)

2α2l(µ+α+γ) +

√
∆k

2

2α2l(µ+α+γ)

Rk ← Rk−1+lγIk+luk−1Sk

1+µl

λn−k1 ←
lλn−k+1

2 (
βIk(1+α2I

k)

(1+α1S
k+α2I

k)2
)+λn−k+1

3 uk−1+λn−k+1
1 +lA1

1+l(µ+uk−1+
βIk(1+α2I

k)

(1+α1S
k+α2I

k)2
)

λn−k2 ←
λn−k+1
2 +lA2+lλn−k+1

3 γ−lλn−k
1 (

βSk(1+α1S
k)

(1+α1S
k+α2I

k)2
)

1−l( βSk(1+α1S
k)

(1+α1S
k+α2I

k)2
)−(µ+α+γ)

λn−k3 ← λn−k+1
3

1+lµ

θk ← (λn−k
1 −λn−k

3 )Sk

τ

uk ← max(min(θk, umax), 0)

end for

Step 3: For k = 1, . . . , n write

S∗(tk) = Sk, I∗(tk) = Ik, R∗(tk) = Rk, u∗(tk) = uk

end for

3.3 Numerical results

Here we consider a general SIR epidemic model and all the parameter values are chosen
hypothetically due to the unavailability of real world data.

We have plotted susceptible, infected and recovered individuals with and without
control by considering values of parameters as S0 = 1000, I0 = 110, R0 = 61, µ = 0.5,
A = 490, α = 0.01, α1 = 0.01, α2 = 0.01, τ = 105, β = 0.01, A1 = 100, A2 = 100,
γ = 0.003.

We obtain Figs. 1–4. The control individuals are marked by blue lines while the
individual without control is marked by dashed black lines.
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In Fig. 1, we see that the population of the susceptible individuals sharply decreases
in first week after that, it begins go to the stable state.

Figure 2 shows a significant difference in the number of infected individuals with and
without control from the very beginning days of vaccination (in the first three days), after
that it begins go to the stable state.

In Fig. 3, we see that the population of recovered individuals with vaccination in-
creases rapidly from the third day and it goes to its stable state, we also see that the number
of recovered individuals without control is very small. As expected, the population of the
susceptible group decreases and consequently, the recovered group increases including
the vaccinated susceptible group.

4 Conclusion
In this paper, we do not consider any special disease but our aim is to set up an optimal
control problem relative to epidemic model with a modified saturated incidence rate, so
it is to minimize the infected and susceptible populations and to maximize recovered
populations. A comparison between optimal control and no control is presented. It is
easy to see that the optimal control is much more effective for reducing the number of
infected individuals. In order to illustrate the overall picture of the epidemic, the numbers
of infected, susceptible and recovered individuals under the optimal control and no control
are shown in figures.
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