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Abstract. A simple zero-order proportional feedback technique for stabilizing unknown fixed points
is described. The technique employs either artificially created or natural stable fixed point to find the
coordinates of the unknown unstable fixed point. Four physical examples have been investigated,
namely the mechanical pendulum, the autonomous Duffing damped oscillator, the van der Pol
oscillator, and the Lorenz system have been considered both analytically and numerically.
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1 Introduction

Stability of any either natural or artificial system is a valuable and desired property. Stabi-
lization in particular of unstable fixed points (UFPs) of dynamical systems is an important
problem in basic science and engineering applications, if periodic or chaotic oscillations
are unacceptable. Usual control methods, based on proportional feedback [1–3] require
knowledge of a mathematical model of a system or at least the exact location of the
UFP in the phase space for the reference point. However, in many real complex systems,
especially in biology, physiology, economics, sociology, chemistry neither the full reliable
models, nor the exact coordinates of the UFPs are known. Moreover, the position of the
UFP may slowly vary with time because of external unknown and unpredictable forces.
Therefore, in some cases model-independent and reference-free methods, automatically
tracing unknown UFP, can be helpful.

A number of adaptive, reference-free methods using either low-pass, high-pass or
notch stable filters have been described in literature (many of the references can be found
in [4, 5]). However, they can stabilize only unstable nodes and unstable spirals, but fail to
stabilize the saddle-type UFPs, more specifically, the UFPs with an odd number of real
positive eigenvalues. To solve the problem of the odd number limitation Pyragas et al. [6]
proposed to use an unstable filter. It was a bold idea to fight an instability with another
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instability. The technique has been demonstrated to stabilize saddle steady states in math-
ematical models [6–8] also in the experiments with an electrochemical oscillator [6, 7],
and the Duffing-type electrical circuit [8]. However, this advanced method is limited to
dissipative dynamical systems. It is not applicable to conservative systems. The limitation
of the unstable filter method can be proved analytically using the Routh–Hurwitz stability
criteria: the necessary condition for stabilizing a saddle UFP is that the dimensionless cut-
off frequency of the unstable filter is lower than the dimensionless damping coefficient of
the system [5, 8]. In conservative systems damping is zero under definition. Formally,
the cut-off frequency could be set to negative value. However, this would mean that
the unstable filter should become a stable one and, therefore, inappropriate to stabilize
a saddle-type UFP. To get around the problem, a conjoint filter, that involves unstable and
stable subfilters, has been suggested and demonstrated for the Lagrange point L2 of the
Sun–Earth conservative astrodynamical system [5].

The control methods described in [4–8] are focused on designing complex higher
order controllers with several adjustable control parameters. Even linear analysis of the
stability properties employs high rank Hurwitz matrixes for determining the threshold
values of the feedback coefficients, while finding optimal control parameters requires
numerical solution of high order characteristic equations. Therefore the developed tech-
niques are somewhat complicated for practical applications.

In this paper, we suggest simple zero-order stable proportional feedback technique,
which employs either artificially created or natural stable fixed points (SFPs) to find
unknown coordinates of the UFP.

To illustrate the idea, we start with extremely simple mathematical examples. A dy-
namical system given by

ẋ = ax− c
has a single unstable steady state x0 = c/a, which can be easily stabilized by means of
a proportional feedback:

ẋ = ax− c+ k(x0 − x),
provided k > a. Note, that the control term k(x0 − x) vanishes, when the goal steady
state x→ x0 is achieved.

However, when the system’s dynamics is not fully defined, e.g. is described by

ẋ = ax− ξ (1)

with ξ as an unknown term, the corresponding UFP, x0 = ξ/a is also unknown and there-
fore the proportional feedback cannot be applied directly. Nevertheless, we demonstrate
that this unknown UFP can be still stabilized by the two-step proportional feedback. In
the first step we apply proportional feedback with an arbitrarily chosen reference point r1:

ẋ = ax− ξ + k(r1 − x), (2)

where r1 is any real, either positive or negative (zero value is also applicable) constant.
For k > a the feedback creates an artificial SFP:

x1 =
kr1 − ξ
k − a

. (3)
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Note, that the control term k(r1−x) in Eq. (2), in general, does not vanish, because the r1
is not the natural UFP of the original Eq. (1). An exception is a “resonant” value r1 = x0.
It means that we are lucky to guess the right reference point x0 and the procedure is
accomplished in one step. Otherwise the unknown term ξ should be derived from (3):

ξ = ax1 + k(r1 − x1). (4)

In the second step we simply replace r1 in Eq. (2) with ξ/a found from (4):

ẋ = ax− ξ + k

(
ξ

a
− x
)

and readily stabilize the initially unknown UPF x0 = ξ/a.
If a dynamical system has two fixed points, specifically an UFP and a SFP, the latter

can be employed to find the position of the first one. In this case stabilization can be
achieved in one step only, without creating an artificial SFP. The following nonlinear
equation is an example:

ẋ = ax− x2 − ξ. (5)

For ξ < a2/4 it has two real fixed points:

x01 =
a

2
−
√
a2

4
− ξ, x02 =

a

2
+

√
a2

4
− ξ.

The x01 is an UFP, while x02 is a SFP. Note an important feature (independent on ξ):

x01 + x02 = a.

Thus, the natural SFP, x02 can be immediately used to find the UFP, x01 = a − x02 and
inserted in the feedback term:

ẋ = ax− x2 − ξ + k(x01 − x).

Now we can generalize the above specific examples in the following form:

ẋ = F (x)− ξ, (6)

where F (x) is either linear or nonlinear function. Depending on F (x) the Eq. (6) can
have several fixed points, which satisfy the steady-state equation F (x0i) = ξ. The fixed
points are either UFPs or SFPs depending on the derivative of F (x) with respect to x, the
F ′(x) at x = x0i. If F ′(x0i) > 0 the x0i is an UFP, and if F ′(x0i) < 0 the x0i is a SFP.
We recall here that all the fixed points are unknown because of the unknown term ξ. Let
us consider an UFP and apply the two-step procedure. The first step similarly to Eq. (2)
is given by

ẋ = F (x)− ξ + k(r1 − x). (7)

The first step yields an artificial SFP x1. The unknown term ξ is found from the steady-
state case of Eq. (7):

ξ = F (x1) + k(r1 − x1)
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and then is inserted into the Eq. (6) for the uncontrolled system. Its steady-state case reads:

F (x0)− F (x1)− k(r1 − x1) = 0. (8)

If the F (x) is well defined the Eq. (8) can be solved with respect to x0 and, finally, the
second step is applied:

ẋ = F (x)− ξ + k(x0 − x).

2 Mechanical pendulum

The first physical example is a mechanical pendulum given by

ϕ̈+ βϕ̇+ sinϕ = ξ. (9)

In Eq. (9) ϕ is the angle between the downward vertical and the rod, β is the damping
coefficient, and ξ is a constant, but generally unknown torque. For small torque ξ < 1,
the system has two fixed points (ϕ01,02, ϕ̇01,02) = (ϕ01,02, 0), where

ϕ01 = arcsin ξ, ϕ02 = π − arcsin ξ.

The ϕ01 is a SFP (lower position of the pendulum), the ϕ02 is a saddle-type UFP (upper
position of the pendulum). One can see that independently on ξ the sum of the two angles
is a constant value:

ϕ01 + ϕ02 = π.

Thus we can apply a simplified one-step procedure, similarly to the first-order nonlinear
mathematical example given by Eq. (5). Here we exploit the existing natural SFP of the
pendulum to determine the position of the UFP, without creating any artificial SFP. The
coordinate of the unknown UFP is readily obtained from the coordinate of the known
(observed) SFP, ϕ02 = π − ϕ01. Then we apply the proportional feedback:

ϕ̈+ βϕ̇+ sinϕ = ξ + k(ϕ02 − ϕ). (10)

Linearization of Eq. (10) around ϕ02 gives the characteristic equation:

λ2 + βλ+ k + cos(π − ϕ01) = 0.

For small ξ the angle ϕ01 � π, thus λ1,2 = −β/2 ±
√
β2/4− (k − 1). The threshold

value of the feedback coefficient is kth = 1 for which the largest eigenvalue λ1 crosses
zero from positive to negative values. The optimal value of the feedback coefficient
kopt = 1 + β2/4; the eigenvalues are both negative and equal to each other, λ1 = λ2 =
−β/2. Further increase of k makes the eigenvalues complex, but does not change their
real parts. So, for higher feedback coefficients the convergence rate saturates with k
and is fully determined by the damping coefficient β. Result of numerical integration
of Eq. (10), shown in Fig. 1, demonstrates dynamics of stabilization (including transient
process) of the saddle-type UFP.
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Fig. 1. One-step stabilization of the upper position of mechanical pendulum given by
Eq. (10). The control is switched on at t = 100. The parameters are β = 0.2, k = 2.
The stable angle observed before switching the control ϕ01 = 0.5, extracted unknown
term ξ = sinϕ01 = 0.47943, stabilized UFP and angle calculated from the relationship

ϕ02 = π − ϕ01 = 2.64.

3 Duffing damped oscillator

The second physical example is the Duffing nonlinear damped oscillator, which, in con-
trast to the classical Duffing system [9, 10], lacks external periodic driving force, but
includes an unknown term ξ:

ẍ+ bẋ− x+ x3 = ξ. (11)

Here b is the damping coefficient. For |ξ| < 2/
√
27 Eq. (11) has three fixed points:

(x01,02,03, ẋ01,02,03) = (x01,02,03, 0). The two side points are SFPs, while the middle one
is a saddle-type UFP. Their coordinates, in general, are rather cumbersome:

x01 = − 2√
3
cos

π − θ
3

, x02 = − 2√
3
cos

π + θ

3
, x03 =

2√
3
cos

θ

3
, (12)

where the formal parameter θ is given by

θ = arccos
ξ
√
27

2
. (13)

While for ξ = 0 they become: x01 = −1, x02 = 0, x03 = 1. There is a simple relationship
between the three coordinates:

x01 + x02 + x03 = 0,

which is valid for the non-zero ξ as well. Therefore one can think about the one-step
algorithm (x02 = −x01 − x03), similarly to the case of the pendulum. From a practical
point of view the procedure is not convenient, since one needs to find (to observe) two
remote SFPs, separated by an UFP. So, if a system is located at one of the SFP, say
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x01, we have to switch it to another SFP (x03) by applying some rather strong external
force. Formally, we can use only one SFP, either x01 or x03. From the corresponding
formulas (12), (13) we can extract ξ and to use it for finding x02, again from the formulas
(12), (13). However, this formal way requires rather long and complicated calculations.
There is a shorter way. Indeed, the SFP x01 satisfies the steady-state equation:

x301 − x01 − ξ = 0.

From here the unknown term ξ is readily derived as ξ = x301−x01 and is used to calculate
x02 from the appropriate formulas (12), (13). Finally, this coordinate is employed in the
proportional feedback:

ẍ+ bẋ− x+ x3 = ξ + k(x02 − x). (14)

Linearization of Eq. (14) around x02 provides the characteristic equation:

λ2 + bλ+ k − 1 + 3x202 = 0.

Its two eigenvalues are given by λ1,2 = −b/2 ±
√
b2/4− (k − 1 + 3x202). For small ξ

the coordinate of the UFP |x02| � 1. Then stabilization parameters are the same as that
for the pendulum: the threshold coefficient kth = 1, the optimal value kopt = 1 + b2/4,
and the best pair of the real negative eigenvalues λ1,2 = −b/2. Numerical results for the
Duffing oscillator obtained by integrating Eq. (14) are presented in Fig. 2.

Fig. 2. One-step stabilization of the UFP of the Duffing oscillator given by Eq. (14). The
control is switched on at t = 100. The parameters are b = 0.5, k = 1.1. SFP observed
before switching the control x01 = −0.8, extracted unknown term ξ = x301−x01 = 0.288,

stabilized UFP and coordinate calculated from the formula (25) x02 = −0.321.

4 Van der Pol oscillator

The next physical example is the well-known van der Pol oscillator, but with an addition-
ally applied unknown force ξ:

ẍ− µ
(
1− x2

)
ẋ+ x = ξ. (15)
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Eq. (15) can be presented in the form of two coupled the 1st order equations:

ẋ = −y + µ

(
x− x3

3

)
,

ẏ = x− ξ.

The van der Pol oscillator for any µ > 0 and |ξ| < 1 has a single UFP (x0, y0):

x0 = ξ, y0 = µ

(
ξ − ξ3

3

)
, (16)

which is either a spiral, if µ(1 − ξ2) < 2, or a node, if µ(1 − ξ2) > 2; however
the both coordinates are unknown because of the unknown force ξ. In contrast to the
two previous examples, there are no SFPs. Therefore, we need to apply the two-step
stabilization technique:

ẋ = −y + µ

(
x− x3

3

)
+ k1(r1 − x),

ẏ = x− ξ.
(17)

The proportional feedback with k1 > µ(1− ξ2) creates an artificial SFP (x1, y1):

x1 = ξ, y1 = µ

(
x1 −

x31
3

)
+ k1(r1 − x1).

The second coordinate y1 is not important in this specific case, since the unknown param-
eter ξ is found immediately from the first coordinate x1: ξ = x1. Then, in the second step
we simply replace the auxiliary reference point r1 with the ξ, found in the first step:

ẋ = −y + µ

(
x− x3

3

)
+ k2(ξ − x),

ẏ = x− ξ
(18)

and stabilize the natural UFP (x0, y0), given by (16). Linearization around the steady
state (x0, y0) yields the characteristic equation:

λ2 +
[
k2 − µ

(
1− x20

)]
λ+ 1 = 0.

For x20 � 1 the λ1,2 = −(k2 − µ)/2±
√
k2 − µ)2/4− 1. Thus, the threshold feedback

coefficient k2th = µ, when Reλ1 becomes negative. The optimal value is k2opt = µ+2,
when the both eigenvalues are negative and equal to each other, λ1 = λ2 = −1.

The two-step technique applied to the van der Pol oscillator to stabilize the unknown
UFP is illustrated by numerical results in Fig. 3.
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Fig. 3. Two-step stabilization of the UFP of the van der Pol oscillator given by
Eqs. (17), (18). The first step is switched on at t = 50, the second step is applied at
t = 100. The parameters are µ = 0.5, k1 = k2 = 2.5, r1 = 0.5. The x-coordinate
of the artificial SFP x1 = 0.3, the extracted unknown force ξ = 0.3, the stabilized UFP

(x0, y0) = (0.3, 0.1455).

5 Lorenz system

Finally we consider the famous Lorenz system [9, 11], which for certain sets of the
parameters exhibits chaotic behaviour. The system is given by three coupled differential
equations:

ẋ = −σx+ σy,

ẏ = ρx− y − xz,
ż = xy − βz.

(19)

Two parameters are usually fixed at σ = 10 and β = 8/3, while the third parameter ρ
is considered as a control parameter to observe various kinds of bifurcations. For ρ < 1
the system has a single SFP at the origin (x01, y01, z01) = (0, 0, 0). For ρ > 1 it looses
stability and two additional SFPs (x02,03, y02,03, z02,03) appear at(

±
√
β(ρ− 1), ±

√
β(ρ− 1), ρ− 1

)
.

Linearization of Eq. (19) around these fixed points leads to the following characteristic
equation:

λ3 + (σ + β + 1)λ2 + β(σ + ρ)λ+ 2σβ(ρ− 1) = 0. (20)

Using the Routh–Hurwitz criteria we find that this pair becomes unstable for

ρ > σ
σ + β + 3

σ − β − 1
≈ 24.74

giving rise to chaotic oscillations, e.g. at ρ = 28, which is the most popular parameter
value used in literature [7, 9, 11].

Now we assume that the exact value of the parameter ρ is unknown, i.e. ρ = ξ.
Consequently, the coordinates of the fixed points are also unknown:(

±
√
β(ξ − 1), ±

√
β(ξ − 1), ξ − 1

)
. (21)
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Therefore, to stabilize the UFPs we apply the two-step procedure:

ẋ = −σx+ σy,

ẏ = ξx− y − xz + k1(r1 − y),
ż = xy − βz.

(22)

For simplicity we set r1 = 0. The feedback term −k1y creates a pair of artificial SFPs
(x12,13, y12,13, z12,13):(

±
√
β(ξ − k1 − 1), ±

√
β(ξ − k1 − 1), ξ − k1 − 1

)
.

We can extract the unknown parameter ξ from any coordinate of the artificial SFP, most
conveniently from the z12: ξ = z12+k1+1. The other coordinates of the natural UFP can
be calculated as (x02,03, y02,03) = (±

√
β(ξ − 1),±

√
β(ξ − 1)) = (±

√
β(z12 + k1),

±
√
β(z12 + k1)). Then the y-coordinates y02,03 are inserted into Eq. (21) instead of the

reference point r1:

ẋ = −σx+ σy,

ẏ = ξx− y − xz + k2(y0 − y),
ż = xy − βz

(23)

to stabilize the UFPs (x02,03, y02,03, z02,03). In Eq. (23) the y0 denotes either y02 or y03.
Linearizing Eq. (23) about this fixed point we obtain the corresponding characteristic
equation:

λ3 + (σ + β + 1 + k2)λ
2 +

[
β(σ + ξ) + k2(σ + β)

]
λ

+ 2σβ(ξ − 1) + k2σβ = 0,

which for k2 = 0 and ξ = ρ coincides with Eq. (20), as expected. The Routh–Hurwitz
criteria provide the following necessary and sufficient condition of stability of this point
for k > 0:

ξ(k2 − σ + β + 1) + σ(σ + β + 3)

+ k2

(
σ2

β
+ 2σ +

σ

β
+ β + 1

)
+ k22

(
σ

β
+ 1

)
> 0. (24)

Let us consider the 1st term only in the inequality (24), since it contains a negative
component −σ. If

k2 > σ − β − 1 ≈ 6.33, (25)

then the fixed point is stable for all ξ > 0. This is a very rough estimation (the upper
limit) of the stabilization threshold. However this threshold is conveniently independent
on ξ. Taking into account the 2nd term in the inequality (24), we find that depending on ξ
the stabilization can be achieved at essentially lower feedback coefficients

k2 > σ − β − 1− σσ + β + 3

ξ
≈ 0.73
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at ξ = 28. However for very large ξ the threshold approaches the value given by condition
(25). The 3rd term in the inequality (24) further diminishes the stabilization threshold, e.g.
to k2 ≈ 0.22 at ξ = 28. The 4th term, which is quadratic with respect to k, for small k
makes only very small correction.

The two-step stabilization of the UFP (x02, y02, z02) in the Lorenz system is demon-
strated in Fig. 4 for two slightly different initial conditions. Similar results are obtained
for the UFP (x03, y03, z03).

(a) (b)

Fig. 4. Two-step stabilization of the spiral UFP in the Lorenz system given by Eqs. (22),
(23). The first step is switched on at t = 40, the second step is applied at t = 50. The
parameters are σ = 10, β = 8/3, k1 = k2 = 10, r1 = 0. The z-coordinate of the artificial
SFP z12 = z13 = 19, the extracted unknown parameter ξ = z12 + k1 + 1 = 30, the
stabilized UFP (8.79, 8.79, 29.0). Initial conditions: (a) x(0) = 0.10, y(0) = z(0) = 0;

(b) x(0) = 0.11, y(0) = z(0) = 0.

The same two-step method can be used to stabilize the saddle-type UFP at the origin
(0, 0, 0). The coordinates of the UFP are known (they do not depend on ξ) in this specific
case. One may think that the proportional feedback method can be applied directly. How-
ever, the feedback coefficient k, required to make this UFP stable, essentially depends on
the unknown parameter ξ. Linearizing Eq. (23) around the origin we obtain one negative
eigenvalue immediately, λ3 = −β, independent on k2. Two remaining eigenvalues are
easily found from the second order characteristic equation:

λ2 + (σ + k2 + 1)λ+ σ(k2 + 1− ξ) = 0,

λ1,2 = −(σ + k2 + 1)/2 ±
√

(σ + k2 + 1)2/4− σ(k2 + 1− ξ). The both eigenvalues
λ1,2 are negative only if

k2 > ξ − 1. (26)

Here the parameter ξ is unknown. Therefore, it should be found from the first step, given
by Eq. (22), and then used in condition (26) and in Eq. (23) (with y0 = y01 = 0) to
stabilize the UFP (x01, y01, z01) = (0, 0, 0).

Numerical results of stabilizing the saddle-type UFP are presented in Fig. 5, again for
two different initial conditions.

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 1, 86–98
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(a) (b)

Fig. 5. Two-step stabilization of the saddle UFP in the Lorenz system given by Eqs. (22),
(23). The first step is switched on at t = 40, the second step is applied at t = 50. The
parameters are σ = 10, β = 8/3, k1 = 10, r1 = 0. The z-coordinate of the artificial SFP
z12 = z13 = 39, the extracted unknown parameter ξ = z12 + k1 + 1 = 50, k2 = 60.
The stabilized UFP (0, 0, 0). Initial conditions: (a) x(0) = 0.10, y(0) = z(0) = 0;

(b) x(0) = 0.11, y(0) = z(0) = 0.

6 Concluding remarks

We have suggested simple proportional feedback technique for stabilizing uncertain UFPs
of dynamical systems. The method involves either one or two step algorithm of stabiliza-
tion. It makes use of either natural or of artificially created SFPs in order to find the
hidden coordinates of the UFP. Two simple mathematical examples have been presented
and four different physical examples have been investigated. Specifically, the mechanical
pendulum, the autonomous Duffing damped oscillator, the self-excited van der Pol os-
cillator, and the chaotic Lorenz system with either unknown external forces or unknown
control parameters are considered analytically and numerically.

Moreover, different physical examples, presented here, demonstrate the performance
of the method not only in the case of saddle-type UFPs, but also in the case of node/spiral
UFPs as well. From this point of view the described technique has an advantage, com-
pared to the methods employing stable [4,7] and unstable [5–8] tracking filters, which are
suitable to stabilize either unstable nodes/spirals or saddles, respectively. In the case of
stabilizing unstable spirals in the chaotic Lorenz system [7,12,13] the proposed technique
is simpler, both mathematically and physically, than the conventional stable filter method
[4, 7, 14–16].

The described proportional feedback method reminds the two-step control algorithm
used to stabilize unstable periodic orbits (UPOs) by means of unstable delayed feedback
controller [17]. However, in [17] the two-step technique was used simply to improve the
global control performance, namely to enlarge the control domain of the UPOs in the
parameter space. In the present paper the two-step algorithm is an essential procedure.
It is necessary to find the unknown coordinates of the UFPs, in the case the system does
not possess any natural SFP. The typical examples are the saddle-type Lagrange point
L2 [5], the node/spiral UFP of the van der Pol oscillator, the saddle-type UFP at the
origin (0, 0, 0) and the two symmetric non-zero spiral-type UFPs in the chaotic Lorenz
system.
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In addition to the Lorenz system, we have checked the technique for some other au-
tonomous chaotic systems, namely the Rossler equations [18], the Vilnius oscillator [19],
and the autonomous Duffing–Holmes type oscillator [20].

Finally, we emphasize, that the control terms, k(ϕ02−ϕ), k(x02−x), k2(ξ−x), and
k2(y0−y) in all the examples converge to zero, as the goal fixed points are stabilized, i.e.
the stabilization is achieved with vanishing small perturbations. The feedback does not
change the system, but changes its stability properties.
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Autonomous Duffing–Holmes type chaotic oscillator, Elektronika ir Elektrotechnika, 5(93),
pp. 43–46, 2009.

www.mii.lt/NA


