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A novel chaotic system and its topological horseshoe
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Abstract. Based on the construction pattern of Chen, Liu and Qi chaotic systems, a new three-
dimensional (3D) chaotic system is proposed by developing Lorenz chaotic system. It’s found
that when parameter e varies, the Lyapunov exponent spectrum keeps invariable, and the signal
amplitude can be controlled by adjusting e. Moreover, the horseshoe chaos in this system is
investigated based on the topological horseshoe theory.

Keywords: chaotic system, invariable Lyapunov exponent spectrum, amplitude control, topological
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1 Introduction

In 1963, Lorenz discovered a chaotic system when studying the atmospheric convec-
tion [1]. As the first chaotic model, Lorenz system has become a paradigm for chaos
investigation [2–7]. Many three-dimensional chaotic systems have been proposed by de-
veloping Lorenz chaotic system, such as Chen system [4], Liu system [5], Qi system [6],
Lü system [7]. Due to powerful applications in chemical reactions, cryptology, nonlinear
circuits, secure communication and so on, researchers have paid great attention to gener-
ate new chaotic systems and analyse their dynamical behaviors and dynamical properties.
Generally speaking, for these presented chaotic systems, the Lyapunov exponent spec-
trums vary gradually and rang from stable equilibrium points, periodic orbits to chaotic
oscillations with the changing of system parameters.
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As a basic and striking theory in chaotic dynamics, topological horseshoe with sym-
bolic dynamics provides a powerful tool in rigorous studies of chaos in dynamical sys-
tems. Up till now, remarkable theoretical progress has been made in seeking sufficient
conditions for the existence of horseshoes. Kennedy introduced an important chaos lemma
which proposed a topological horseshoe theory in continuous map [8, 9]. Yang obtained
another concernful criteria to find the topological horseshoe in non-continuous map [10,
11], which have been applied successfully to some practical dynamical systems to present
computer-assisted verification of chaos [12–15]. Recently, Li introduced a new method
for finding horseshoes in chaotic systems by using several simple results on topological
horseshoes [16]. However, it is still a challenge for researchers to seek a topological
horseshoe in practical chaotic systems.

This paper proposes a new 3D chaotic system based on the construction pattern of
Chen, Liu and Qi chaotic systems. Some basic dynamical characters of the presented
chaotic system, such as phase portraits, equilibrium points, bifurcation diagram and Lya-
punov exponents are investigated. It’s found that with the variation of parameters a, b
and c, the novel system can occur period doubling bifurcations. Of particular interest is
that the Lyapunov exponent spectrum keeps invariable when the product term parameter e
changes. When parameter e increases gradually, the amplitude of the signals x1, x2 varies
by the power function with a minus half index, but the third one keeps its amplitude in
the same range. So we can control the signal amplitude artificially by adjusting e, but
the dynamical system is always chaotic. Therefore, it can be concluded that this chaotic
system has a more complicated dynamics. Finally, based on the topological horseshoe
theory [16], we carefully pick a suitable cross-section with respect to the attractor, and
find a topological horseshoe of the corresponding first-returned Poincaré map, thus giving
a rigorous confirmation of the chaos existed in this dynamical system.

2 The proposed 3D chaotic system

In the light of construction pattern of Chen, Liu and Qi chaotic systems, a new 3D chaotic
system is proposed from Lorenz chaotic system:

ẋ1 = a(x2 − x1) + x2x3,

ẋ2 = (c− a)x1 − x1x3 + cx2,

ẋ3 = ex22 − bx3,
(1)

where x1, x2, x3 are the state variables, a, b, c, e are the positive parameters.

2.1 Equilibria and analysis of stability

In order to obtain the equilibria of system (1), let’s suppose

x∗ =

√
b[(c− 2a) + (c2 + 4ac)0.5]

2e
, y∗ =

√
b[(c− 2a)− (c2 + 4ac)0.5]

2e
.
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Then, if 2c− a > 0, we get three equilibria of system (1):

P0(0, 0, 0), P1

(
x∗ +

ex3∗
ab

, x∗,
ex2∗
b

)
, P2

(
−x∗ −

ex3∗
ab

,−x∗,
ex2∗
b

)
and if 2c− a < 0, there are five equilibria in system (1):

Q0(0, 0, 0), Q1

(
x∗ +

ex3∗
ab

, x∗,
ex2∗
b

)
, Q2

(
−x∗ −

ex3∗
ab

,−x∗,
ex2∗
b

)
,

Q3

(
y∗ +

ey3∗
ab

, y∗,
ey2∗
b

)
, Q4

(
−y∗ −

ey3∗
ab

,−y∗,
ey2∗
b

)
.

Linearizing system (1) at any equilibrium (x10, x20, x30), it yields the corresponding
Jacobian matrix

J =

 −a a+ x30 x20
c− a− x30 c −x10

0 2ex20 −b

 .
The characteristic equation is obtained as follows:

f(λ) = λ3 + C2λ
2 + C1λ+ C0, (2)

where

C0 = −2abc+ a2b− 2e(c− a+ x30)x220 − (c− 2a)bx30 + bx230 + 2aex10x20,

C1 = −2ac+ ab− bc+ a2 + (2a− c)x30 + x230 + 2ex10x20,

C2 = a+ b− c.
(3)

According to the Routh–Hurwitz criterion, only when C2 > 0, C1 > 0, C0 > 0 and
C2C1 −C0 > 0, the real parts of all the roots are negative. Thus, there are three unstable
equilibria in system (1) when a = 40, b = 5, c = 30, e = 3.

2.2 Chaotic phase portraits

When a = 40, b = 5, c = 30, e = 3, system (1) is chaotic with the Lyapunov
exponents L1 = 3.88, L2 = 0.00, L3 = −25.52. The phase portraits are depicted in
Fig. 1. It appears from Fig. 1 that the novel attractor resembles Chen attractor, however,
it possesses some interesting characters such as invariable Lyapunov exponent spectrum
and controllable amplitude.

2.3 Topological equivalence

Let
ẋ = g(x) (4)

denote the Lorenz (Chen, Liu or Qi) system. And the proposed system (1) is described by

ẏ = f(y). (5)
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(a) (b)

(c)

Fig. 1. (a) x1 − x2 phase portrait; (b) x1 − x3 phase portrait; (c) x2 − x3 phase portrait.

Definition 1. (See [17].) If systems (4) and (5) are said to be topological equivalent, then
there would exist a diffeomorphism y = T (x), such that

g(x) = J−1(x)f
(
T (x)

)
,

where J(x) = dT (x)/dx is the Jacobian matrix of T at the point x.

Let x0 and y0 = T (x0) be the corresponding equilibria of g(x) and f(x), A(x0) and
B(y0) denote the Jacobians of g(x) and f(x), respectively. If (4) and (5) are topological
equivalent, then A(x0) and B(y0) are similar, i.e., their characteristic polynomials and
eigenvalues should coincide.

Based on the concept and techniques of the equilibrium and resultant eigenvalue, we
know that parameter e does not contribute to the eigenvalues of system (1) (see Section 3.3
for concrete analysis), and it is easy to actually verify that the system (5) with any
parameter set is not smoothly equivalent to system (4). Therefore, systems (4) and (5)
are not topological equivalent, although both have similar attractors.
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3 Complex dynamics of novel 3D system by varying each parameter

This system has been found to exhibit complex dynamical behaviors by varying each
parameter in a wide range, which is expatiated as below.

3.1 Dynamics of novel system by varying parameters a, b, c

Let a, b, c vary in some region, respectively, but the values of other parameters are set as in
Section 2.2. The corresponding bifurcation diagrams are shown in Fig. 2. It’s known from
Fig. 2, that system (1) has a rich dynamical behavior, ranging from equilibrium points,
periodic orbits to chaos, depending on the parameter values.

(a) (b)

(c)

Fig. 2. Bifurcation diagrams of system (1) versus: (a) parameter a; (b) parameter b;
(c) parameter c.

3.2 Dynamics of novel system by varying parameter e

Now, let a = 40, b = 5, c = 30, while e vary in the region [0, 10]. The corresponding
bifurcation diagram and Lyapunov exponent spectrum are depicted in Fig. 3.

It is notable from Fig. 3 that, when parameter e changes from 0 to 10 gradually, the
Lyapunov exponent spectrums keep invariable, and the system is always chaotic.
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(a) (b)

(c) (d)

Fig. 3. (a), (b) and (c) bifurcation diagram versus e; (d) Lyapunov exponent spectrum
versus e.

Another interesting phenomenon is that, with the increasing of e, the signal amplitude
adjusts in certain pattern. Speaking concretely, with the increasing of e, the amplitude of
x1, x2 decreases nonlinearly, but the amplitude of x3 keeps in the same range.

3.3 Analysis of constant Lyapunov exponent spectrum

As argued above, the Lyapunov exponent spectrum keeps invariable with the varying of
e. In fact, when putting the equilibrium in the coefficient expression (3), we can eliminate
the influence of e. For example, when inserting equilibrium P0 into (3), we obtain

C0 = −2abc+ a2b, C1 = −2ac+ ab− bc+ a2, C2 = a+ b− c

and when substituting equilibrium P1 or P2 into (3), we get

C0 = −2abc+ a2b− b(3c− 6a)

2
B0 +

5b

4
B2

0 ,

C1 = −2ac+ ab− bc+ a2 +
(2a+ 2b− c)

2
B0 +

(a+ 2b)

4a
B2

0 ,

C2 = a+ b− c,
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whereB0 = (c−2a)+(c2 +4ac)0.5. Therefore, the eigenvalues relating to characteristic
equation (2) are irrespective parameter e, and when parameter e varies, the Lyapunov
exponent spectrum remains constant.

3.4 Analysis of amplitude control

It’s known from the forementioned analysis, with the increasing of e, the signal ampli-
tudes vary according to some criteria.

Theorem 1. The coefficient e of the square term x22 is a local parameter of nonlinear
amplitude adjuster, and with the increasing of e, the amplitude of x1, x2 changes by the
power function with an index of −1/2, but the third one keeps its amplitude in the same
range.

Proof. Let x1 = k0.5x∗1, x2 = k0.5x∗2, x3 = x∗3 (k > 0), then system (1) can be
transformed to 

ẋ∗1 = a(x∗2 − x∗1) + x∗2x
∗
3,

ẋ∗2 = (c− a)x∗1 − x∗1x∗3 + cx∗2,

ẋ∗3 = ekx∗22 − bx∗3,

therefore, the amplitude adjuster of signals x1, x2, x3 correspond to the variety of param-
eter e, and when e increases successively, the amplitude of x1, x2 changes by the power
function with an index of −1/2, but the amplitude of x3 keeps in the same range.

As a numerical explanation, we consider the influence of parameter e on the amplitude
of x1, x2, x3, as described in Fig. 4. Clearly, when e = 2, the amplitude of signals x1, x2
is two times as large as the one with e = 4; and the amplitude of x3 is same as the case
with e = 4.

(a) (b)

Fig. 4. Phase portrait and time series of system (1) with different e: (a) phase portrait;
(b) time series.
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4 Review of topological horseshoe theorem

Before introducing the results on topological horseshoe, we should first recall the concept
of m-shift map.

Let Sm = {1, 2, . . . ,m} be the set of non-negative integer from 1 tom. And let space∑
m be the collection of all one-sided infinite sequences with the elements Sm , i.e., each

element s of
∑
m is of the following form:

s = {s1, s2, . . . , sm, . . . }, si ∈ Sm.

Now let’s consider another sequence s̃(s̃ ∈ Sm). Then the distance between s and s̃
can be defined as follows:

d(s, s̃) =

∞∑
i=1

|si − s̃|
2i(|si − s̃|+ 1)

.

With the distance defined as above equation,
∑
m is a metric space.

A m-shift map σ :
∑
m →

∑
m is defined as

σ(si) = si+1.

As a dynamical system defined on
∑
m, the shift map σ has:

(a) a countable infinity of periodic orbits consisting of orbits of all periods;
(b) an uncountable infinity of nonperiodic orbits;
(c) a dense orbit.

A consequence of these three properties is that the dynamics generated by the shift
map σ displays sensitive dependence on the initial conditions, therefore is chaotic.

Let S be a separable metric space and E ⊂ S is a compact subset, and there exist m
mutually disjoint compact subsets E1, E2, . . . , Em of E. f : E → S is a map and f | Ei,
the restriction of f to each Ei, is continuous.

Definition 2. (See [18].) For each 1 6 i 6 m, let E1
i , E

2
i ⊂ Ei be two fixed disjoint

compact subsets. If γ ∩ E1
i and γ ∩ E2

i are nonempty and compact, we say a connected
subset γ of Ei connect E1

i and E2
i , and we denote this by E1

i
γ↔ E2

i

Definition 3. (See [18].) Let γ be a connected subset of Ei, if there exists a connected
subset γi ⊂ γ such that f(γi) ⊂ Ei , and f(γi) ∩ E1

i and f(γi) ∩ E2
i are nonempty, we

call f(γ) is suitably across Ei with respect to E1
i and E2

i . In this case, we denote it by
f(γ) 7→ Ei .

Definition 4. Let S and
∑
m be two topological spaces, f : S → S and g :

∑
m →

∑
m

are continuous functions. If there exists a continuous surjection h :
∑
m → S such that

foh = hog , we say that f is topologically semiconjugate to g .

Lemma 1. (See [16].) Let m be a positive integer, if fp(Ei) 7→ Ei, then fmp(Ei) 7→ Ei.

Theorem 2. (See [16].) If fp(E1) 7→ E1, fp(E1) 7→ E2 and fq(E2) 7→ E1, then
a compact invariant set Λ ⊂ E will be found, such that f2p+p | Λ is semiconjugate
to 2-shift dynamics, and we have ent(f) > (q + 1/2p) log 2 , here ent(f) denotes the
topological entropy of f .
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5 Topological horseshoe in the novel chaotic system

It is no easy job to seek topological horseshoes in a dynamical system, especially to select
a suitable polygon in the cross-section. In this section we will search the horseshoe existed
in system (1) by using the topological horseshoe theorem in Section 4.

We consider the plane Γ = {(x1, x2, x3) ∈ R3: x2 = 0}, and the parameters of
system (1) is selected as a = 40, b = 5, c = 30, e = 3. As shown in Fig. 5, the
four vertices of the corresponding quadrilateral P on this plane is selected as (−8, 0, 5),
(1, 0, 5), (1, 0, 25), (−8, 0, 25).

First, in the cross-section P , after a great deal of computer simulations, we select
a quadrilateral E1 with the vertices A1(−1.714, 0.0, 12.077), B1(−1.545, 0.0, 12.714),
C1(−1.102, 0.0, 11.423), D1(−1.241, 0.0, 10.786). The Poincaré map H : E1 → P is
defined as below: for each point x ∈ E1, H(x) is the first return intersection point with
P under the flow with initial condition x.

Precisely, let d1r and d1l denote the right and left sides ofE1, respectively. Numerical
simulations show that, under the map H , the image H(x)(x ∈ E1) lies wholly across the
quadrilateral E1, and H(d1r) lies on the left side of A1B1, H(d1l) lies on the right side
of C1D1. For the details, see Fig. 6.

Then, we will take a quadrilateral E2 such that H(E2) 7→ E1 and H(E1) 7→ E2. By
many trial-and-error numerical simulations, we pick the four vertexes of E2 as
A2(−2.380, 0.0, 14.071),B2(−2.317, 0.0, 14.283),C2(−2.089, 0.0, 13.728),D2(−2.152,
0.0, 13.499), respectively.

Similarly, we suppose d2r and d2l denote the right and left sides of E2, respectively.
The first return Poincaré mapH(E2) is described as Fig. 7. Obviously,H(d2r) lies on the
right side of C1D1, H(d2l) lies on the left side of A1B1, therefore, the image H(x)(x ∈
E2) is wholly across the quadrangle E1.

Thus, according to Theorem 2, there exists a compact invariant set Λ ⊂ E, such that
H3 | Λ is semiconjugate to 2-shift dynamics, and ent(H) > 1.5 log 2 > 0. Thereby it
indicates that the attractor depicted in Fig. 5 is chaotic.
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Fig. 5. Poincaré cross-section of system (1).
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Fig. 6. The subset E1 and its image.
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Fig. 7. The subset E2 and its image.
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6 Conclusion

In this paper, a new chaotic system has been proposed from Lorenz system. Some basic
properties of the presented chaotic system have been studied in terms of phase portraits,
equilibrium points, bifurcation diagram and Lyapunov exponent spectrum. Careful in-
vestigation reveals that with the variation of parameters a, b and c, a period-doubling
sequence of bifurcations leads to chaos. An interesting phenomenon is that the Lyapunov
exponent keeps constant while parameter e varies. And with the increasing of parameter e,
the amplitude of the signals x1, x2 change by the power function with an index of −1/2,
but the third one keeps in the same range. Finally, the horseshoe chaos in this system is
investigated based on the topological horseshoe theory.
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