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Algirdas Lančinskasa, Pilar Martinez Ortigosab, Julius Žilinskasa

aVilnius University Institute of Mathematics and Informatics
Akademijos str. 4, LT-08663 Vilnius, Lithuania
algirdas.lancinskas@mii.vu.lt; julius.zilinskas@mii.vu.lt
bUniversidad de Almería, ceiA3
Ctra. Sacramento s/n, La Cañada de San Urbano 04120, Almería, Spain
ortigosa@ual.es

Received: 10 September 2012 / Revised: 13 May 2013 / Published online: 18 June 2013

Abstract. A hybrid multi-objective optimization algorithm based on genetic algorithm and
stochastic local search is developed and evaluated. The single agent stochastic search local
optimization algorithm has been modified in order to be suitable for multi-objective optimization
where the local optimization is performed towards non-dominated points. The presented algorithm
has been experimentally investigated by solving a set of well known test problems, and evaluated
according to several metrics for measuring the performance of algorithms for multi-objective
optimization. Results of the experimental investigation are presented and discussed.
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1 Introduction

Global optimization problems can be found in various fields of science and industry, i.e.
mechanics, economics, operational research, control engineering, project management,
etc. In general, global optimization is a branch of applied mathematics that deals with
finding “the best available” (usually minimum or maximum) values of a given objective
function, according to a single criterion. Without reducing the generality further we will
focus on the case of minimization, since any maximization problem can be easily trans-
formed to a minimization one.

Mathematically, a global optimization problem with d variables is to find the value

f∗ = min
x∈D

f(x) (1)
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and a decision vector x∗ such as
f(x∗) = f∗, (2)

where f(x) is an objective function which is subject to minimization while decision vector
x = (x1, x2, . . . , xd) varies in a search space D ∈ Rd, and d defines the number of
variables.

Real-world optimization problems often deal with more than one objective functions
that are conflicting to each other – improvement of one objective can lead to deterioration
of another. Such type of optimization problems are known as Multi-objective Optimiza-
tion Problems (MOP).

Mathematically, a MOP with d variables and m objectives in the objective vector

F(x) =
(
f1(x), f2(x), . . . , fm(x)

)
(3)

is to find an objective vector
F∗ = min

x∈D
F(x). (4)

Since there exist conflicts among objectives, it is natural that a single solution best
according to all objectives does not exist. However a set of Pareto optimal solutions,
which cannot be improved by any objective without reducing the quality of any another,
may be found.

In multi-objective optimization two different decision vectors can be compared by
their dominance relation. They can be related to each other in a couple of ways: either
one dominates the other or none of them is dominated by the other [1].

Suppose two decision vectors x and y from a set D. It is said that decision vector x
dominates decision vector y if
• decision vector x is not worse than y by all objectives and
• decision vector x is strictly better than y by at least one objective.

The relation is denoted by x � y and mathematically can be described as

x � y⇔

{
∀i ∈ (1, . . . ,m) fi(x) 6 fi(y),

∃j ∈ (1, . . . ,m) fj(x) < fj(y).
(5)

If (5) is satisfied then decision vector x is dominator of decision vector y. The decision
vector which has no dominators is called non-dominated or Optimal in Pareto sense. If
neither x � y nor y � x are not satisfied then the decision vectors x and y are called
indifferent and denoted by x ∼ y.

The set of all decision vectors that are non-dominated according to some set D′ ⊂ D
is called Pareto set, and the set of decision vectors that are non-dominated according to the
whole search space D is called Pareto-Optimal Set. The corresponding set of objective
vectors are called Pareto Front and Pareto-Optimal Front, respectively.

Usually it is hard and time consuming to find the Pareto-optimal front therefore a lot of
multi-objective optimization algorithms are based on approximation of the Pareto-optimal
front.
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2 Evolutionary multi-objective optimization

One well known class of optimization algorithms are Evolutionary Algorithms (EAs).
They are well suited to multi-objective optimization problems as they are fundamen-
tally based on biological processes which are inherently multi-objective. Multi-Objective
EAs (MOEAs) can yield a whole set of potential solutions – which are all optimal in
some sense – and give the option to assess the trade-offs between different solutions.
Furthermore EAs require little knowledge about the problem being solved and they are
robust, easy to implement and inherently parallel. The only requirement to solve a certain
optimization problem is to be able to evaluate the objective functions for a given set of
input parameters.

After the first works on multi-objective evolutionary optimization [2], several different
algorithms have been proposed and successfully applied to various problems.

Although there are many techniques to design MOEAs, which have different charac-
teristics, the advantages of a particular technique can be improved by hybridizing two or
more different techniques, for example, hybridizing different search methods, search and
updating methods or different search methods in different search phases. A special case
of hybrid MOEA is memetic MOEA [3] – incorporation of local optimization techniques
into an evolutionary algorithm.

In this paper we will focus on one of the most popular multi-objective evolution-
ary algorithm Non-dominated Sorting Genetic Algorithm (NSGA) [1], and local multi-
objective optimization technique Multi-Objective Single Agent Stochastic Search
(MOSASS) [4], derived from algorithm for single-objective optimization Single Agent
Stochastic Search (SASS) [5].

The Non-dominated Sorting Genetic Algorithm (NSGA) was proposed in [1], and
was one of the first MOEA. Since then NSGA was applied to various problems [6,7]. The
updated version of NSGA – NSGA-II has been proposed in [8].

The algorithm begins with an initial parent population, consisting of decision vec-
tors randomly generated over the search space. Then the algorithm continues with the
following generational process (see Fig. 1):

1. A new child population is created by applying genetic operators (selection, crossover
and mutation) to the elements of the parent population. Usually a child population
has the same size as the parent population.

2. Parent and child populations are combined into one population.

3. The population is sorted according to the number of dominators.

4. Obtained population is reduced to the size of parent population by removing the
most dominated elements. If two or more decision vectors are equally dominated
then crowding distances estimator [8] is used to choose the most promising decision
vector.

5. The reduced population is used as a parent population in the next generation.
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Fig. 1. Scheme of NSGA-II algorithm.

3 Hybrid multi-objective optimization

3.1 Modified single agent stochastic search

Single Agent Stochastic Search (SASS) is a random local optimization technique, based
on a single agent stochastic search strategy [5]. SASS algorithm begins with an initial
solution x which is assumed to be the best solution found so far, and a new candidate
solution x′ is generated by the expression

x′ = x + ξ, (6)

where ξ = (ξ1, . . . , ξd) is a vector of random numbers

ξi = N
(
bi, σ(x+i − x

−
i )
)
, (7)

generated following Gaussian distribution with the mean bi, i = 1, . . . , d, and the standard
deviation σ. Here x−i and x+i correspond to the lower and upper bounds of the value of
variable xi. In the case of

f(x′) < f(x), (8)

the solution x′ is accepted as x – the best solution found so far – and the algorithm
continues to the next iteration. Otherwise the opposite solution

x′′ = x− ξ (9)

is investigated and accepted as x if

f(x′′) < f(x). (10)

If either (8) or (10) is satisfied then the mean values bi are recalculated by

bi =

{
0.2bi + 0.4ξi if f(x′) < f(x),

bi − 0.4ξi if f(x′′) < f(x),
i = 1, . . . , d, (11)

and the iteration is supposed to be successful. Otherwise, the iteration is supposed to be
failed and the mean values are recalculated by

bi = 0.5bi, i = 1, . . . , d. (12)

www.mii.lt/NA
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If the number of repetitive successful iterations (scnt) reaches the given value Scnt , then
the standard deviation value is expanded by

σ = σe, (13)

Analogically, if the number of repetitive failed iterations (fcnt) reaches the given value
Fcnt , then the standard deviation is contracted by

σ = σc. (14)

If standard deviation σ falls below the given minimum value σmin, it is increased to the
given value σmax.

The values e > 1 and c ∈ (0, 1) – expansion and contraction coefficients, respectively,
are given as input parameters as well as the values Scnt and Fcnt , the upper and lower
ranges for standard deviation (σmin and σmax), and the number of iterations to be per-
formed (Niters). Recommended values for the parameters are e = 2, c = 0.5, Scnt = 5,
Fcnt = 3, σmin = 10−5, σmax = 1.0 [5].

SASS algorithm has been successfully used in evolutionary algorithms for single-
criterion optimization problems [9–11]. In order to apply it for multi-objective opti-
mization problems a new version called Multi-Objective Single Agent Stochastic Search
(MOSASS) has been developed. Primary version of MOSASS algorithm and its evalua-
tion on several test functions has been presented in our previous work [4]. Further we will
present a modified version of MOSASS algorithm where modifications are mainly based
on involving probability in generation of neighbor solutions.

MOSASS algorithm begins with an initial solution x, empty archive A and constant
NA, which defines how many solutions can be stored in the archive. Previously defined
SASS parameters Scnt , Fcnt , e, c, σmin, σmax and Niters are given as initial parameters
for MOSASS as well.

Since a new solution x′ is generated, following equation (6), and objective vector
F(x′) is calculated, the dominance relation between x′ and x is evaluated. In the case of
x′ � x, the present solution x is changed by x′ and the algorithm continues to the next
iteration. Otherwise, if x′ does not dominate x and is not dominated by any solution in
A∪{x} then the archiveA is supplemented by x′ and algorithm goes to the next iteration.
If solution x′ is dominated by any member of A ∪ {x}, then x′ is rejected and opposite
solution x′′ is investigated in the same way as x′. If archive size exceeds the limit NA

then a half of elements are removed by utilizing crowding distance operator [8].
If either a present solution x is changed or the archive is supplemented then the

iteration is assumed to be successful, otherwise – failed.
The mean and standard deviation parameters are dynamically adjusted as in SASS

algorithm.
A strategy which is used in selecting neighbor solution can play an important role

in random search techniques. In SASS as well as in MOSASS a neighbor solution is
generated by (6). Since values of all variables of x are changed without any probabilistic
choice, it is a large probability that obtained neighbor solution x′ or x′′ differs from its
precursor x by all variables. However, sometimes it is necessary to make only a slight
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Fig. 2. Illustration of difference in generation of neighbor decision vector in MOSASS and
MOSASS/P.

modification of the current solution – to alter only one variable in order to obtain a neigh-
bor solution which would dominate its precursor or at least would be non-dominated by
other solutions. This is especially important in a later stage of the algorithm when almost
optimal solutions are used to produce new ones. In order to approve (or disprove) this
slight modification, we previously modified MOSASS by involving the probability in
generating a neighbor decision vector, and call the modified algorithm by MOSASS/P.
The modification has been done by changing the expression (7) to the following one:

ξi =

{
N(bi, σi) if r 6 p,

0 otherwise,
(15)

where r is a random number uniformly generated in [0, 1] and p ∈ (0, 1] is a probability
value, predefined in advance. The larger p value is, the larger probability that the par-
ticular coordinate will be changed. If p equals to 1, the algorithm behaves as MOSASS.
The main difference in generation of neighbor decision vector in algorithms MOSASS
and MOSASS/P is shown in Fig. 2, where the most likely neighbor decision vectors x′

to be generated by MOSASS (on the left) and MOSASS/P (on the right) are illustrated
(xi = 0.5, p = 0.5, σ = 0.1 and bi = 0, i = 1, 2).

There is also possible situation that all coordinates will remain unchanged. Then the
generation of the new decision vector is repeated until at least one coordinate will be
changed.

3.2 Memetic algorithm

In order to improve some performance metrics of original NSGA-II algorithm a memetic
algorithm, based on performing the local search towards a set of non-dominated decision
vectors, has been developed. The memetic algorithm begins with an initial parent pop-
ulation P , consisting of N decision vectors randomly generated over the search space.
Further, the algorithm continues with the following processes:
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1. A new child population, of the size N , is generated by applying genetic operations
to the elements of the parent population. The uniform crossover that combines pairs
of parent population elements, and mutation with mutation rate equal to 1/d are
used.

2. Parent and child populations are combined into one 2N -size population, and each
decision vector is evaluated by counting the number of its dominators.

3. The obtained population is reduced to the size of N by removing the required
number of most dominated elements. In the case of removing two decision vectors
that are equally dominated, the crowding distance operator [8] is used to choose the
most promising one.

4. The counter of NSGA-II generations G is increased by one. If the value of G
does not exceed the predefined number, then the algorithm returns to the first step.
Otherwise the algorithm continues to the next step.

5. An auxiliary set PL of k decision vectors is created from the population P . Non-
dominated decision vectors are chosen to be included into the set PL. If |PL| > k
then |PL| − k decision vectors are randomly removed from PL. Otherwise, if
|PL| < k, then k − |PL| randomly chosen dominated decision vectors are added.

6. All decision vectors in PL are locally optimized by performing a predefined number
of MOSASS or MOSASS/P iterations for each decision vector. Since MOSASS
as well as MOSASS/P returns a set of non-dominated decision vectors and |PL|
decision vectors are optimized, |PL| sets are resulted from the local optimization.
All these sets are combined into one set together with the population P , which is
reduced to the size of N . The same scheme as in third step is used to perform the
reduction.

7. The algorithm continues to the first step by reseting the generations counter G to 0,
and using the obtained population as the parent population for performing NSGA-II
generation.

Depending on the local search algorithm (MOSASS or MOSASS/P) used, we denote
the derived memetic algorithm by NSGA/LS and NSGA/LSP, respectively. The number
of NSGA-II iterations after which local search is performed, the size of the auxiliary set
PL, and the number of local search iterations are given as input parameters by the user.

4 Experimental investigation

4.1 Description of experiments

The proposed memetic algorithms NSGA/LS and NSGA/LSP have been experimentally
investigated by solving a set of multi-objective optimization problems which are listed in
Table 1.
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Table 1. List of test problems used in experimental investigation.

Problem d m Ref. Problem d m Ref.
ZDT1 30 2 [12] UP4 30 2 [14]
ZDT2 30 2 [12] UP7 30 2 [14]
ZDT3 30 2 [12] UP8 30 3 [14]
ZDT4 10 2 [12] UP10 30 3 [14]
ZDT6 30 2 [12] KNO1 2 2 [15]
DTLZ1 6 2 [13] OKA1 2 2 [15]
DTLZ2 12 2 [13] OKA2 3 2 [15]
DTLZ3 6 2 [13] VLMOP2 2 2 [15]
DTLZ4 12 2 [13] Kursawe 3 2 [16]
DTLZ7 12 2 [13] DMM 2 2 [17]
UP1 30 2 [14] VLMOP3 2 3 [15]
UP2 30 2 [14] Comet 3 3 [13]
UP3 30 2 [14] SPH 10 3 [18]

4.2 Performance metrics

The following performance metrics were used in experimental investigation to evaluate
the performance of the algorithms:

• Pareto Front Size (PS ) – number of non-dominated objective vectors in the ob-
tained Pareto front.

• Coverage of Pareto Optimal Front (C) – number of decision vectors which are non-
dominated regarding to members of Pareto-optimal front. This metric is based on
Coverage metric proposed in [12]:

C
(
P̃ , P ∗

)
=
∣∣{x ∈ P̃ : x ∼ x′ ∀x′ ∈ P ∗}

∣∣, (16)

where P ∗ denotes the Pareto-optimal front, and P̃ – the obtained approximation.
Naturally C 6 |P̃ | and larger C value implies better quality of P̃ . The value
C(P̃ , P ∗) = 0 means that all decision vectors in P̃ are dominated by at least one
decision vector in P ∗. The opposite, C(P̃ , P ∗) = |P̃ | represents the situation when
all decision vectors in P̃ are indifferent to decision vectors in P ∗.

• Hyper-Volume (HV ) – the volume of a region made by the members of obtained
Pareto front and the given reference point (Ref ) [19]. The larger HV value means
the better quality of Pareto Front. Two examples of HV are presented in Fig. 3,
where Pareto front on the left has more points and better (more similar to uniform)
distribution than Pareto front on the right. Therefore the dominated space of the
Pareto front on the left is noticeably larger.

• Inverted Generational Distance (IGD) – the average distance from the element
of the Pareto-optimal front P ∗ to the nearest element of the approximated Pareto
front P̃ :

IGD
(
P̃ , P ∗

)
=

1

|P ∗|
∑

x′∈P∗
min
x∈P̃

∥∥F(x′)− F(x)
∥∥. (17)
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Since it is expected to find decision vectors which would be as close as possible to
the members of the Pareto-optimal front, lower IGD value implies better quality of
the approximation.

• Pareto Spread (∆) shows how well members of Pareto front are spread. The original
metric is based on calculating the distance between two consecutive solutions and
is dedicated to bi-objective problems. We use an extended version of spread metric
which is based on calculating the distance from a point to its nearest neighbor [19]:

∆ =

∑m
i=1 d(ei, P̃ ) +

∑
x∈P̃ |d(x, P̃ )− d̄(P ∗, P̃ )|∑m

i=1 d(ei, P̃ ) + |P ∗|d̄(P ∗, P̃ )
, (18)

where P̃ is an obtained approximation of Pareto front, P ∗ – Pareto-optimal front,
e1, . . . , em are m decision vectors, corresponding to extreme objective vectors
in P ∗ and

d(x, P̃ ) = min
y∈P̃ ,y 6=x

∥∥F(x)− F(y)
∥∥2, (19)

d̄(P ∗, P̃ ) =
1

|P ∗|
∑
x∈P∗

d(x, P̃ ). (20)

If the members of approximated Pareto front are well distributed and include ex-
treme solutions, then ∆ = 0.

4.3 Results

The first set of experiments was aimed at choosing the appropriate number (EG) of
function evaluations after which local search is performed, and the number (NL) of
function evaluations to be performed during each local search. A set of 36 different
combinations of parameters (EG, EL) has been used. The results of the investigation
are presented in Table 2, where the numbers of test functions for which particular set
of parameters (EG, EL) was the best by hyper-volume metric are given. From the table
we can see that it is worth to perform local search every 500–2000 function evaluations.
The number of function evaluations, performed in each local search, should be 300–500.
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We have chosen a median point – (1000, 400) as an appropriate parameter set (EG, EL)
for further experiments.

Sensitivity of the algorithm to the values of parameters (EG, EL) depends on test
function being solved. For 5 test functions the loss of HV when choosing the worst
combination of parameters was less than 5%, while for 15 test functions – less than 10%,
and for 20 test functions – less than 20%. The algorithm was most sensitive to the values
of the parameters when solving test functions ZDT4, UP8, OKA2, ZDT6 and UP10 – loss
of HV was 28%, 35%, 37%, 56%, 91%, respectively.

The second experiment was dedicated to investigate performance of proposed algo-
rithms NSGA/LS and NSGA/LSP. The performance of the algorithms has been compared
with each other and with classical NSGA-II, implemented as given in literature [8]. All
three algorithms have been performed for 100 independent runs on all 26 test functions.
The crossover probability equal to 0.8, mutation rate equal to 1/d and population size
equal to 100 have been used for NSGA-II. Local optimization has been performed after
every 10 NSGA generations (1000 function evaluations) for 400 function evaluations, as
this combination of parameters gives the best statistical results in previous experiment.
A set of 10 decision vectors have been selected (see Section 3.2) for local optimization.
The probability in generating new decision vector in NSGA/LSP was chosen to be equal
to 1/d – the same as mutation rate in NSGA-II.

Results of the experimental investigation are presented in Tables 3–7, where values of
PS , C, HV , IGD and ∆ metrics are presented respectively. 100 independent runs were
performed for each test function. Average values and standard deviations are presented in
the tables. The best values of performance metric are marked in bold.

Table 2. Numbers of test functions for which particular values (EG, EL) was the best by
HV value.

EL EG

500 1000 2000 3000 4000 5000

50 1 1 0 0 0 0
100 0 0 0 0 0 0
200 1 1 0 2 1 3
300 2 1 1 0 1 0
400 1 3 0 0 0 0
500 0 3 1 0 0 2

Table 3. Pareto size.

Problem NSGA-II NSGA/LS NSGA/LSP
Mean StDev Mean StDev Mean StDev

ZDT1 96.70 15.30 94.40 2.30 96.10 2.30
ZDT2 91.50 20.60 77.70 17.20 95.60 2.44
ZDT3 94.90 14.10 86.00 4.60 92.20 6.43
ZDT4 72.40 15.60 67.00 8.10 59.60 12.80
ZDT6 16.10 3.49 14.10 2.30 77.20 7.93
DTLZ1 62.10 31.10 87.70 3.70 84.00 18.90
DTLZ2 92.90 3.90 93.40 2.00 92.50 2.34
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Table 3. (Continued.)

Problem NSGA-II NSGA/LS NSGA/LSP
Mean StDev Mean StDev Mean StDev

DTLZ3 50.70 23.90 82.70 6.20 86.50 14.50
DTLZ4 62.60 30.10 63.40 35.30 92.50 3.80
DTLZ7 86.60 5.23 93.50 1.90 86.10 4.45
UP1 39.70 6.55 64.20 14.60 78.60 6.91
UP2 92.40 6.96 92.00 3.70 90.60 3.46
UP3 16.90 5.73 28.50 6.80 63.60 13.50
UP4 77.60 3.39 73.60 4.20 51.00 6.75
UP7 46.80 4.15 70.80 19.10 82.30 7.78
UP8 83.80 7.69 77.40 11.80 86.20 5.74
UP10 23.10 21.70 23.10 15.00 26.40 21.00
KNO1 89.30 5.68 95.60 1.90 81.50 6.67
OKA1 28.20 14.70 48.00 6.90 63.20 9.93
OKA2 5.90 8.00 13.20 4.80 24.00 6.48
VLMOP2 86.30 16.70 85.70 5.30 79.90 3.92
Kursawe 64.30 8.30 66.10 3.90 60.80 4.32
DMM 66.60 11.60 80.50 7.60 76.00 7.59
Comet 70.10 10.10 73.10 10.90 71.90 8.22
VLMOP3 85.30 5.33 85.90 6.20 82.70 5.71
SPH 86.80 3.55 86.50 4.90 74.80 6.47

Table 4. Coverage of Pareto front.

Problem NSGA-II NSGA/LS NSGA/LSP
Mean StDev Mean StDev Mean StDev

ZDT1 0.00 0.00 1.80 1.50 88.10 3.56
ZDT2 0.00 0.00 0.10 0.40 88.50 3.75
ZDT3 0.90 1.10 12.40 4.40 85.40 6.85
ZDT4 2.80 2.00 15.00 4.10 8.50 12.40
ZDT6 0.00 0.00 0.00 0.00 21.40 7.87
DTLZ1 0.00 0.00 38.90 15.80 64.00 19.30
DTLZ2 51.00 12.00 25.60 9.50 70.30 5.98
DTLZ3 0.00 0.00 34.20 15.10 61.10 15.60
DTLZ4 0.10 1.30 32.80 28.50 84.10 5.18
DTLZ7 6.60 4.20 67.20 10.10 78.40 5.24
UP1 4.00 5.60 0.40 1.60 40.70 10.70
UP2 0.00 0.20 0.00 0.10 14.40 4.50
UP3 0.00 0.00 0.00 0.00 1.85 7.37
UP4 0.00 0.00 0.80 0.00 0.00 0.00
UP7 3.90 5.70 2.90 8.10 37.00 18.60
UP8 58.30 6.20 0.00 0.00 12.50 7.01
UP10 15.40 22.00 0.00 0.00 0.90 5.09
KNO1 11.40 10.00 39.20 4.60 25.60 9.13
OKA1 0.00 0.10 0.03 0.20 0.00 0.00
OKA2 0.00 0.00 0.00 0.00 0.00 0.00

(continued on next page)
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Table 4. (Continued.)

Problem NSGA-II NSGA/LS NSGA/LSP
Mean StDev Mean StDev Mean StDev

VLMOP2 63.20 6.10 63.70 5.90 58.80 5.35
Kursawe 1.00 0.60 1.40 0.60 1.64 0.75
DMM 51.50 32.00 77.20 8.20 70.80 7.70
Comet 65.20 9.40 28.50 7.00 32.30 8.12
VLMOP3 79.10 6.40 52.40 4.90 48.20 5.21
SPH 10.50 4.90 0.37 0.60 0.00 0.00

Table 5. Hyper-volume.

Problem NSGA-II NSGA/LS NSGA/LSP
Mean StDev Mean StDev Mean StDev

ZDT1 0.6466 0.0020 0.6558 0.0011 0.6603 0.0005
ZDT2 0.3046 0.0120 0.2452 0.0828 0.3272 0.0004
ZDT3 0.5061 0.0071 0.5109 0.0014 0.5137 0.0020
ZDT4 0.6103 0.0220 0.5245 0.0446 0.5372 0.0519
ZDT6 0.0098 0.0023 0.0251 0.0065 0.3892 0.0035
DTLZ1 0.4601 0.0180 0.4315 0.0468 0.4759 0.0510
DTLZ2 0.2097 0.0002 0.2086 0.0004 0.2093 0.0004
DTLZ3 0.1769 0.0170 0.1621 0.0265 0.2008 0.0226
DTLZ4 0.1595 0.0770 0.1379 0.0877 0.2091 0.0007
DTLZ7 0.4135 0.0130 0.4176 0.0019 0.4199 0.0007
UP1 0.5053 0.0400 0.5130 0.0476 0.5505 0.0266
UP2 0.5915 0.0070 0.6024 0.0089 0.6217 0.0106
UP3 0.3738 0.0260 0.3742 0.0306 0.4253 0.0384
UP4 0.2395 0.0035 0.2363 0.0043 0.2570 0.0044
UP7 0.3026 0.0700 0.3183 0.0763 0.3554 0.0795
UP8 0.5794 0.0140 0.5700 0.0182 0.6175 0.0175
UP10 0.0447 0.0420 0.0465 0.0308 0.0434 0.0400
KNO1 0.6641 0.0120 0.6864 0.0070 0.6716 0.0132
OKA1 0.5320 0.0140 0.5749 0.0115 0.5766 0.0117
OKA2 0.0928 0.0180 0.1259 0.0234 0.1681 0.0397
VLMOP2 0.3086 0.0005 0.3084 0.0006 0.3068 0.0012
Kursawe 0.2908 0.0011 0.2914 0.0013 0.2918 0.0014
DMM 0.7708 0.0800 0.8199 0.0006 0.8191 0.0011
Comet 0.5116 0.0034 0.5136 0.0033 0.5164 0.0034
VLMOP3 0.8272 0.0025 0.8253 0.0028 0.8258 0.0024
SPH 0.5539 0.0073 0.5462 0.0053 0.5502 0.0061

Table 6. Inverted generational distance.

Problem NSGA-II NSGA/LS NSGA/LSP
Mean StDev Mean StDev Mean StDev

ZDT1 0.0121 0.0016 0.0074 0.0017 0.0051 0.0005
ZDT2 0.0290 0.0150 0.1094 0.1084 0.0054 0.0006
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Table 6. (Continued.)

Problem NSGA-II NSGA/LS NSGA/LSP
Mean StDev Mean StDev Mean StDev

ZDT3 0.0081 0.0062 0.0051 0.0008 0.0053 0.0018
ZDT4 0.0581 0.0340 0.1599 0.0623 0.1068 0.0427
ZDT6 0.5541 0.0190 0.4707 0.0265 0.0119 0.0026
DTLZ1 0.0243 0.0130 0.0480 0.0331 0.0190 0.0518
DTLZ2 0.0045 0.0002 0.0050 0.0005 0.0049 0.0005
DTLZ3 0.0501 0.0270 0.0483 0.0275 0.0145 0.0296
DTLZ4 0.1123 0.1700 0.1613 0.1956 0.0059 0.0011
DTLZ7 0.0166 0.0170 0.0090 0.0095 0.0047 0.0007
UP1 0.1280 0.0380 0.1123 0.0336 0.0904 0.0229
UP2 0.0659 0.0150 0.0551 0.0175 0.0469 0.0166
UP3 0.2180 0.0320 0.2112 0.0302 0.1877 0.0391
UP4 0.0913 0.0077 0.0921 0.0074 0.0654 0.0089
UP7 0.2326 0.1200 0.2019 0.1280 0.1708 0.1228
UP8 0.1500 0.0300 0.1339 0.0267 0.1140 0.0351
UP10 0.4928 0.1400 0.4654 0.1200 0.4691 0.1184
KNO1 0.0846 0.0140 0.0624 0.0064 0.0751 0.0123
OKA1 0.0853 0.0150 0.0603 0.0193 0.0604 0.0198
OKA2 0.3668 0.0510 0.3301 0.0536 0.2377 0.0932
VLMOP2 0.0059 0.0005 0.0066 0.0012 0.0079 0.0021
Kursawe 0.1329 0.0011 0.1326 0.0010 0.1332 0.0015
DMM 0.0409 0.0520 0.0089 0.0014 0.0100 0.0020
Comet 0.0315 0.0034 0.0295 0.0025 0.0280 0.0022
VLMOP3 0.0209 0.0380 0.0118 0.0016 0.0172 0.0071
SPH 0.0717 0.0044 0.0709 0.0038 0.0712 0.0041

Table 7. Spread.

Problem NSGA-II NSGA/LS NSGA/LSP
Mean StDev Mean StDev Mean StDev

ZDT1 0.00009 0.00004 0.00015 0.00005 0.00011 0.00004
ZDT2 0.00063 0.00081 0.00673 0.00773 0.00011 0.00004
ZDT3 0.00019 0.00026 0.00011 0.00015 0.00013 0.00011
ZDT4 0.00146 0.00120 0.00477 0.00241 0.00249 0.00144
ZDT6 0.07628 0.01500 0.06772 0.01330 0.00032 0.00013
DTLZ1 0.00031 0.00013 0.00018 0.00017 0.00557 0.03590
DTLZ2 0.00017 0.00003 0.00019 0.00005 0.00016 0.00005
DTLZ3 0.00270 0.00190 0.00025 0.00016 0.00337 0.02242
DTLZ4 0.01586 0.02700 0.02268 0.03742 0.00014 0.00003
DTLZ7 0.00069 0.00079 0.00034 0.00054 0.00009 0.00002
UP1 0.00508 0.00630 0.00219 0.00180 0.00146 0.00101
UP2 0.00101 0.00083 0.00064 0.00062 0.00056 0.00062
UP3 0.03557 0.02300 0.01605 0.00864 0.00923 0.00395
UP4 0.00146 0.00032 0.00151 0.00030 0.00176 0.00060
UP7 0.01846 0.01900 0.00858 0.00832 0.00512 0.00464

(continued on next page)
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Table 7. (Continued.)

Problem NSGA-II NSGA/LS NSGA/LSP
Mean StDev Mean StDev Mean StDev

UP8 0.00162 0.00150 0.00303 0.00188 0.00163 0.00155
UP10 0.17940 0.18000 0.12659 0.15271 0.12065 0.10789
KNO1 0.00239 0.00045 0.00163 0.00015 0.00221 0.00041
OKA1 0.00341 0.00220 0.00139 0.00129 0.00110 0.00100
OKA2 0.11960 0.05100 0.05850 0.03328 0.02227 0.01488
VLMOP2 0.00011 0.00002 0.00012 0.00003 0.00015 0.00007
Kursawe 0.00216 0.00019 0.00227 0.00035 0.00254 0.00032
DMM 0.00057 0.00026 0.00040 0.00010 0.00046 0.00018
Comet 0.00136 0.00035 0.00152 0.00040 0.00146 0.00035
VLMOP3 0.00094 0.00027 0.00091 0.00022 0.00086 0.00024
SPH 0.00596 0.00098 0.00562 0.00086 0.00572 0.00111

Fig. 4. Comparison of the algorithms by number of problems solved best.

Each algorithm was evaluated by counting the number of test problems for which the evaluated
algorithm gives the best result according to a particular metric of performance. All three algorithms
were evaluated according to all five performance metrics used in the experimental investigation.
The results are illustrated in Fig. 4, where the vertical axis represents the number of problems
which were solved best, and horizontal axis – performance metric. Different columns in a group
represent different algorithms: NSGA-II, NSGA/LS and NSGA/LSP, respectively. As illustrated
in the figure, NSGA-II gives the best Pareto size values for 7 test problems, while NSGA/LS was
the best for 8, and NSGA/LSP – for 11. According to coverage metric, NSGA-II was the best
for 5, NSGA/LS – for 5, NSG-II/LSP – for 14 test problems, and for 1 test problem all three
algorithms give zero values of coverage metric. According to the hyper-volume metric, NSGA-II
solves best 5 test problems, NSGA/LS – 3 and NSGA/LSP – 18. Three test problems were solved
best by NSGA-II according to IGD metric, while NSGA/LS and NSGA/LSP solve best 8 and 15
test problems, respectively. According to spread metric, NSGA-II solves best 7, NSGA/LS – 6, and
NSGA/LSP – 13 test problems. Thus we can conclude that algorithm NSGA/LSP gives the best
result of the evaluation according to any metric of performance. One test problem (VLMOP2) was
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solved best by NSGA-II, however advantages were insignificant, and 9 test problems were solved
best by NSGA/LSP according to all metrics.

Although NSGA/LSP increases the performance metrics for most of test problems which were
investigated, for some test problems some performance metrics were reduced. Also there is no
information about how much a performance metric was increased or reduced. In order to elicit
such an information, algorithms NSGA/LS and NSGA/LSP were evaluated by the percentage
improvement of values of performance metrics obtained by the classical algorithm NSGA-II. The
results of the evaluations are illustrated in Figs. 5–8. In order to avoid the uncertainty which would
arise zero values of C metric values produced by NSGA-II for most test problems, this metric
was not included in the evaluation. Instead, the results of evaluation by improvement in amount
of decision vectors is presented in Fig. 9. Results presented in the figures show that performance
metrics have been more or less improved for most of test problems investigated.

Several illustrations of approximations of Pareto fronts obtained by NSGA-II and NSGA/LSP
are illustrated in Fig. 10.

Fig. 5. Percentage improvement of performance metric PS .

Fig. 6. Percentage improvement of performance metric HV .
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Fig. 7. Percentage improvement of performance metric IGD .

Fig. 8. Percentage improvement of performance metric ∆.

Fig. 9. Improvement in units of performance metric C.
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Fig. 10. Illustration of approximations of Pareto fronts of several test functions, obtained
by NSGA-II and NSGA/LSP.
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Third experiment was dedicated to compare the performance of the algorithm NSGA/LSP with
performance of the Multi-objective Optimization Evolutionary Algorithm based on Decomposition
(MOEA/D), which has been presented by Zhang and Li in [20]. MOEA/D decomposes a multiob-
jective optimization problem into a number of scalar optimization subproblems and optimizes them
simultaneously. MOEA/D has the best performance on test functions UP1–UP10 in the CEC 2009
Special Session and Competition [14]. Implementation of the algorithm has been downloaded from
the MOEA/D Homepage. Both algorithms NSGA/LSP and MOEA/D have been ran for a certain
time period – 20 seconds, within which at least one of the algorithms provide valuable solution. The
size of the population in NSGA/LSP has been chosen to be 200.

Local search has been performed for 800 function evaluations after every 2000 function evalu-
ations performed by global search. The parameters of MOEA/D have been chosen to be the same as
in CEC 2009 Special Session and Competition. Both algorithms have been ran for 100 independent
runs on test functions UP1, UP2, UP3, UP4, UP7, UP8 and UP10. Performance of the algorithms
has been evaluated by hyper-volume metric, which was measured at discrete time moments – 3rd,
5th, 10th, 15th and 20th second of experiment. Results of the experiment are presented in Fig. 11,
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Fig. 11. HV values of different test functions, obtained by algorithms MOEAD/D and
NSGA/LSP at discrete time moments.
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Table 8. IGD values obtained solving test problems with 10 objectives.

Problem NSGA-II NSGA/LSP
Mean StDev Mean StDev

DTLZ1 20.350 14.530 0.523 0.237
DTLZ2 1.641 0.238 0.677 0.104
DTLZ3 25.020 15.480 0.912 0.258
DTLZ4 2.126 0.201 0.781 0.139

where the horizontal axis in each graph represents time moments, and the vertical axis – value of
hyper-volume. Different graphs represent different test function and different curves – different
algorithm. The results show that NSGA/LSP produces significantly better results for almost all test
functions within fixed time period. MOEA/D was significantly better for one test function – UP3,
however MOEA/D was unable to find any evaluable approximation of Pareto front of test function
UP10 within 20 seconds.

The last experiment was dedicated to investigate the ability of NSGA/LSP to solve hard test
problems – DTLZ1 to DTLZ4 with 10 objectives. Number of variables have been chosen to be 14
for test problems DTLZ1 and DTLZ3, and 20 – for DTLZ2 and DTLZ4, as it was suggested in [13].
The algorithm has been ran for 1 × 106 function evaluations with population size of 1000. Local
search has been performed for 5000 function evaluation after every 10000 function evaluations of
global search. Every test function has been optimized by 100 independent runs. Performance has
been measured and compared with NSGA-II by IGD metric. Results, presented in Table 8, showed
that NSGA/LSP gives significantly better IGD value for all test functions investigated.

5 Conclusions

The paper proposes a hybrid multi-objective optimization algorithm based on Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) and improved Multi-Objective Single Agent Stochastic Search
algorithm. The developed algorithm NSGA/LSP has been experimentally investigated and eval-
uated by solving a set of 26 test problems and measuring five different metrics of performance.
Given results show that involving the presented local search method into the evolutionary algorithm
NSGA-II gives significant advantage for most of test functions according to different performance
metrics. Performance metrics are significantly improved for most of test problems by involving
improvement in Multi-objective Single Agent Stochastic Search based on changing randomly only
part of coordinate values.
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