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Abstract. A model for a generic disease with incubation and recovered stages is proposed. It
incorporates a vaccinated subpopulation which presents a partial immunity to the disease. We study
the stability, periodic solutions and impulsive vaccination design in the generalized modeled system
for the dynamics and spreading of the disease under impulsive and non-impulsive vaccination. First,
the effect of a regular impulsive vaccination on the evolution of the subpopulations is studied. Later
a non-regular impulsive vaccination strategy is introduced based on an adaptive control law for
the frequency and quantity of applied vaccines. We show the later strategy improves drastically the
efficiency of the vaccines and reduce the infectious subpopulation more rapidly over time compared
to a regular impulsive vaccination with constant values for both the frequency and vaccines quantity.
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1 Introduction

There is a network of interactions that define the spreading of any infectious disease.
It usually involves different types of susceptible and infectious subpopulations [1–5] as
well as the transitions between them. These transitions and the system dynamics derived
from them strongly depend on the type of disease and the circumstances in which it is
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transmitted, such as the number of different hosts susceptible to the infection and the
development of the infectious disease in each of those subpopulations [6]. Infectious
disease have been modeled and described in many papers both in the absence of vac-
cination and with different vaccination strategies. In this paper, we have chosen a dis-
ease model inspired in a previous work [7], but changing some attributes related to the
vaccinated subpopulation. We consider, in particular, the use of impulsive vaccination
and provide several design methods to adjust both the inter-vaccination time period and
the fraction of vaccinated population. Also, a reproduction number is provided to de-
scribe the stability of the periodic regime. Consequently, the mathematical model re-
sulting introduces two types of susceptible subpopulation with different incidence rates
of contagion: the susceptible and the vaccinated subpopulation [8–10]. Moreover, there
are two classes of infected subpopulations since the infectious process is divided in two
stages. The primary stage assumes that the infectious agent is already inside the host but
remains latent and non-infectious. At the secondary stage the host develops the disease
and becomes symptomatic and infectious [11, 12]. Finally, the host recovers from the
disease and becomes immune to the disease for a certain time after becoming susceptible
again. When only a regular non-impulsive vaccination is applied the dynamics of the
SVEIR model asymptotically leads the state variables of the system (subpopulations) to
either a disease-free equilibrium (DFE) regime or an endemic one. The reached final
state depends on the model parameters, i.e., the propagated disease. We focus our study
when the disease-free equilibrium point is unstable and a regular impulsive vaccina-
tion is added to the regular non-impulsive one in order to avoid the permanence of the
infectious subpopulation. In this way, the state can be maintained oscillating around
the disease-free equilibrium point and, given this context, we study the induced peri-
odicity. Furthermore, non-regular impulsive vaccination strategies will be developed in
order to improve the disease removal when the disease-free equilibrium point is un-
stable or, if it is stable, when the disease prevalence decreases slowly. Consequently,
a regime where the infectious subpopulation tends to zero is obtained. Such vaccina-
tion strategies are based on adaptive control techniques since the rules for generating
the impulses are updated based on those used formerly for signal adaptation [13–19],
but whose application in disease control and vaccination is novel. In this sense, a closed
loop control system governs the vaccination impulses, each one characterized by a vac-
cination rate θ, that involves the fraction of vaccinated population at such impulsive
vaccination instant, and an inter-vaccination period tv until the next impulse is applied.
In this paper, we first present the possible outcomes of a disease-free population from
a set of constants θ and tv . Then, we define a set of adaptive sampling laws with the
obtained results, namely we set at each vaccination action θ or tv to a certain range of
values based on the available data of susceptible and infectious subpopulation measures
[20–23].

Furthermore, after applying the two proposed different adaptive sampling laws, one
adjusting the θ while tv remains constant and the other adjusting tv while θ is constant,
we compare the efficiency of this research with that obtained when a regular impulsive
vaccination is applied, where the parameters θ and tv are set constant. We find a relevant
increase of the efficiency of the vaccination when adaptive rules for tv or θ are applied.
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In this sense, various laws for updating tv or θ and their capabilities to lead the system to
the desired state will be presented and discussed.

The paper is organized as follows. In Section 2, the disease model is presented with
the significance of all the parameters included in it. Section 3 studies the equilibrium
points of the dynamics without impulsive vaccination and establishes the stability of such
points by defining a reproduction number. The stability of the disease-free state with
a regular impulsive vaccination is discussed in Section 4 and all the preceding theoretical
results are verified through simulations in Section 5. First, a simulation for a regular
non-impulsive vaccination system, and then simulations for a set of regular impulsive
systems are developed. Section 6 introduces the adaptive laws involving a constant inter-
vaccination time interval tv while the vaccination rate θ is updated. On the contrary, in
Section 7, tv is adjusted in real time while the vaccination rate θ remains constant. The
efficiency of the previous adaptive sampling laws with respect to the regular impulsive
vaccination will be compared in Section 8, and in Section 9, the SVEIR model will be
used to describe a possible outbreak of pertussis and the evolution of the disease applying
different vaccination strategies. Final conclusions will be presented in Section 10.

2 The SVEIR model

2.1 Notation

Our model is described in the following terms:

Subpopulations
S(t) subpopulation susceptible to the disease
V (t) subpopulation which has been vaccinated
E(t) subpopulation exposed to the disease, although not sick or infectious yet
I(t) subpopulation which fully develops the disease and is able to infect others
R(t) subpopulation immune due to vaccination or being recovered from the disease
N(t) total population which is the sum of all the subpopulations

Parameters
Here we present all the parameters involving the epidemic model. Observe that all the
parameters are non-negative.
b1, b3 birth rates of the population, a constant one (b1) and a population-dependent

one (b3)
b2 natural death rate of any subpopulation
γ, γ1 ratio of transition to recovered from infected (I → R) and vaccinated (V → R)

subpopulations, respectively
α extra death rate caused by the disease in the infected (I) subpopulation
τ average time of transition from exposed to infected (E → I) subpopulations
ω average time of transition from immune to susceptible subpopulations (R→ S)
β disease transmission constant
η constant saturation related to the transmission of the disease which defines the

incidence rate
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δ a diminishing factor related to the disease transmission in the vaccinated sub-
population in contrast to that corresponding to the susceptible one

Vc fraction of the population which is vaccinated since birth (Vc ∈ [0, 1])
tv time intervals between two consecutive impulsive vaccinations
θ vaccination rate or the fraction of the susceptible subpopulation affected by the

impulsive vaccination

Vaccination strategies
Three different vaccination strategies can be applied to the SVEIR model:
• Regular non-impulsive vaccination: This vaccination strategy is applied at all time

instants to a fraction Vc of the arriving (newborn) susceptible subpopulation. This
strategy can be applied alone or complementary to the other two.

• Regular impulsive vaccination: This vaccination strategy is applied to a constant
fraction θ of the susceptible subpopulation at uniformly distributed time instants,
i.e., at time instant ntv with n ∈ N and a constant tv > 0.

• Non-regular impulsive vaccination: This vaccination strategy is applied to a time-
varying fraction θ(ti) of the susceptible subpopulation at non-uniformly distributed
time instants ti with i ∈ N.

2.2 The model

We propose a generic model of five subpopulations with two delays for the spreading of
diseases based on a previous model [7] where the full immunity acquired by vaccination
has been replaced with the same temporal immune response derived from experiencing
the disease. This model is, in turn, based on simpler SIR and SVEIR epidemic models
[4, 12, 24–26]. We call ω to the delay from the moment one individual recovers and
acquires the immunity to the moment such an individual becomes susceptible to the
disease again (susceptible subpopulation). The second delay τ is defined from the time
instant when the host becomes infected to that when it becomes infective to others. We
call this apparent healthy, non-infectious subpopulation, exposed subpopulation. Also,
we assume that the recovered subpopulation presents an immunity to the disease obtained
through two different ways: either it is acquired after recovering from the disease or
it is induced by vaccination. This vaccination is administered regularly to a fraction of
newborn individuals that depend on the total population and, at specific moments in
time, to a fraction of the susceptible subpopulation by means of an impulsive vaccination
strategy. Both transitions, from vaccinated and infectious subpopulations to the recovered
one, lead to an immunity indistinguishable from each other. The natural death rate b2 is the
inverse of the life expectancy, and the rates γ and γ1 are the inverse of the average times
of transition from infectious to immune and from vaccinated to immune subpopulations,
respectively.

The infectious incidence rate in the susceptible subpopulation is proportional to β
and depends on I(t) and S(t). Due to the effects of the impulsive vaccination, there
is a great variation in the number of the susceptible individuals, so a saturation factor,
similar to some other previous true mass action-type models [3,27], is introduced in order
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Fig. 1. A block diagram of the SVEIR model.

to maintain a reasonable infection rate irrespective of the value of S(t) is high or low.
This saturation factor is proportional to 1/(1 + ηS(t)) with η ∈ R, η > 0. A similar
incidence rate occurs in the vaccinated subpopulation with the parameter β reduced by
a diminishing factor δ ∈ [0, 1), which implies the reduced possibility of a successful
contagion to the disease in this subpopulation, and a saturation factor analogous to that of
the susceptible subpopulation given by 1/(1 + ηV (t)). The SVEIR model with delays is
described by the following equations:

Ṡ(t) = b1 − b2S(t)− βS(t)I(t)

1 + ηS(t)
+ e−b2ω

(
γI(t− ω) + γ1V (t− ω)

)
+ b3(1− Vc)N(t), (1)

V̇ (t) = −δ βV (t)I(t)

1 + ηV (t)
− γ1V (t)− b2V (t) + b3VcN(t), (2)

Ė(t) = β

[
S(t)I(t)

1 + ηS(t)
+ δ

V (t)I(t)

1 + ηV (t)

− e−b2τ
(
S(t− τ)I(t− τ)

1 + ηS(t− τ)
+ δ

V (t− τ)I(t− τ)

1 + ηV (t− τ)

)]
− b2E(t), (3)

İ(t) = βe−b2τ
(
S(t− τ)I(t− τ)

1 + ηS(t− τ)
+ δ

V (t− τ)I(t− τ)

1 + ηV (t− τ)

)
− (b2 + α+ γ)I(t), (4)

Ṙ(t) = γ1V (t) + γI(t)− b2R(t)−
(
γI(t− ω) + γ1V (t− ω)

)
e−b2ω, (5)

S(t+) = (1− θ)S(t), V (t+) = V (t) + θS(t),

E(t+) = E(t), I(t+) = I(t), R(t+) = R(t)
(6)

if t = ntv (n = 1, 2, 3, . . . ), θ ∈ [0, 1] withN(t) = S(t)+V (t)+E(t)+I(t)+R(t) being
the total population. Equation (6) is an impulsive function representing a vaccination
campaign acting periodically on a fraction (0 6 θ 6 1) of the susceptible subpopulation,
which is converted into vaccinated subpopulation. A visual representation of the model
structure can be seen at Fig. 1 where all the transition between subpopulations are rep-
resented through arrows, and the influence of the disease on those transitions is depicted
by dashed arrows. Through the paper the notation for the left limit at the impulse time
instants nt−v will be simply denoted by ntv . The parameters ω and τ are the internal delays
at (1), (5) and (3), (4), respectively. The above model is different from other models [3]
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not only due to the distinct growth and death rates involved, but also because an additional
population-dependent birth rate is considered and vaccination is administered to a fraction
of the newborn. Furthermore, note that the presence of delays is often relevant in dynamic
systems [12, 23, 26], and the migrations from vaccinated and infectious to the susceptible
subpopulation (through the temporary immune recovered subpopulation) are taken into
account.

3 Disease-free equilibrium point with no impulsive vaccination

In order to study the equilibrium points, first we will consider the SVEIR model with
regular non-impulsive vaccination, i.e., θ = 0 in (6), and a constant vaccination rate
Vc is applied. Let S∗, V ∗, E∗, I∗, R∗ be the respective subpopulations at the eventual
equilibrium points, i.e., limt→∞(S(t), V (t), E(t), I(t), R(t)T = (S∗, V ∗, E∗, I∗, R∗)T.
Since the values of the subpopulations at an equilibrium point are constant, delay-depen-
dency disappears at the equilibrium so that limt→∞ I(t − τ) = limt→∞ I(t − ω) =
limt→∞ I(t) = I∗ and limt→∞E(t − τ) = limt→∞E(t) = E∗. The model equa-
tions (1)–(5) lead to

b1 − b2S∗ −
βS∗I∗

1 + ηS∗
+
(
γI∗ + γ1V

∗)e−b2ω + b3(1− Vc)N∗ = 0,

−δ βV
∗I∗

1 + ηV ∗
− γ1V ∗ − b2V ∗ + b3VcN

∗ = 0,

(
1− e−b2τ

)
β

(
S∗

1 + ηS∗
+ δ

V ∗

1 + ηV ∗

)
I∗ − b2E∗ = 0,

e−b2τβ

(
S∗

1 + ηS∗
+ δ

V ∗

1 + ηV ∗

)
I∗ − (b2 + α+ γ)I∗ = 0,(

1− e−b2ω
)(
γ1V

∗ + γI∗
)
− b2R∗ = 0,

Ṡ∗ + V̇ ∗ + Ė∗ + İ∗ + Ṙ∗ = b1 − (b2 − b3)N∗ − αI∗ = 0

(7)

for the purpose of obtaining the respective subpopulations at the equilibrium points.
By assuming the condition of non-negativity for all subpopulations, i.e., (S∗, V ∗, E∗,
I∗, R∗)T > 0, the solution of equation (7) reveals a set of points at which the equilibrium
is reached. A solution of (7) such that I∗ 6= 0 is defined as an endemic equilibrium point
and, if I∗ = 0, then we say it is a disease-free equilibrium point. The model discussed
here presents only one disease-free equilibrium (DFE) point, where I∗ = 0 and E∗ = 0.
The values of the susceptible, vaccinated and recovered subpopulation as well as the total
population at such a DFE point are obtained from the equations in (7) by introducing
I∗ = E∗ = 0. In this way,

N∗ =
b1

b2 − b3
, (8)

S∗(ω) =
b1
b2

[
1 +

b3
b2 − b3

(
1 + Vc

(
e−b2wγ1
b2 + γ1

− 1

))]
, (9)
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V ∗ = Vc
b3b1

(γ1 + b2)(b2 − b3)
, (10)

R∗(ω) =
1− e−b2w

b2
γ1V

∗ = Vc
b1
b2

b3γ1(1− e−b2w)

(γ1 + b2)(b2 − b3)
. (11)

Observe that the susceptible and recovered subpopulation depend on the ω delay.

3.1 Linearization

Proposition 1. The following properties hold:

(i) The DFE point (S∗(ω), V ∗, 0, 0, R∗(ω))T of system (1)–(5) is locally asymptotically
stable for any delays τ ′ ∈ (τ − ∆τ, τ + ∆τ) and ω′ ∈ (ω − ∆ω, ω + ∆ω) for
∆τ ∈ [0,∆τ∗), ∆ω ∈ [0,∆ω∗) with sufficiently small ∆τ∗ and ∆ω∗ if b2 > b3
and α+ γ1 + b2 > βe−b2τ (S∗(ω)/(1 + ηS∗(ω)) + δV ∗/(1 + ηV ∗)).

(ii) The DFE point (S∗(0), V ∗, 0, 0, R∗(0))T of system (1)–(5) is locally asymptotically
stable for any delays τ ∈ [0, τ∗) and ω ∈ [0, ω∗) with small enough τ∗ and ω∗ if
b2 > b3 and α+ γ1 + b2 > β(S∗(0)/(1 + ηS∗(0)) + δV ∗/(1 + ηV ∗)).

Proof. First, we linearize the dynamic equations (1)–(5) around the DFE point by means
of the associated Jacobi matrix J = [Jij ] = [∂ẋi/∂xj ] for i, j∈{1, 2, . . . 5}with x1 ≡ S,
x2 ≡ V, x3 ≡ E, x4 ≡ I and x5 ≡ R evaluated at the DFE point. The eigenvalues of this
matrix are obtained by calculating the roots of the characteristic equation

Det(λI − J) = 0. (12)

Such eigenvalues are given by

λi =

{
−b2, −b2, −b2 − γ1, −b2 + b3,

βe−b2τ
(

S∗(ω)

1 + ηS∗(ω)
+ δ

V ∗

1 + ηV ∗

)
− (b2 + α+ γ)

}
, (13)

where S∗(ω) and V ∗ at the DFE point are given in (9) and (10), respectively. The real
part of all the eigenvalues of the Jacobi matrix must be less than zero so that the linearized
model around the DFE point is asymptotically stable, which means that this point is
locally stable in the non-linear model.

Note that all parameters of the model are always defined as positive or zero for any
infectious disease. Thus, the DFE point is locally asymptotically stable around some given
delays τ and ω if

b3 − b2 < 0, (14)

βe−b2τ
(

S∗(ω)

1 + ηS∗(ω)
+

δV ∗

1 + ηV ∗

)
− (b2 + α+ γ) < 0. (15)

Since the eigenvalues of the Jacobian matrix are continuous functions of all its entries,
there are sufficiently small delay perturbations ∆τ∗ and ∆ω∗ which guarantee the local
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stability of the DFE point for any delays τ ′ ∈ (τ −∆τ, τ + ∆τ) and ω′ ∈ (ω−∆ω, ω+
∆ω) for all ∆τ ∈ [0,∆τ∗), ∆ω ∈ [0,∆ω∗). Hence Property (i).

In the same way, if ω = 0 and τ = 0, the stability conditions follow from a well
known result in general theory of time-delay systems [19]. Just in this sense, the stability
conditions of the equilibrium point for zero delays

α+ γ1 + b2 > β

(
S∗(0)

1 + ηS∗(0)
+ δ

V ∗

1 + ηV ∗

)
, b2 > b3, (16)

directly guarantee the stability for small delays τ ∈ [0, τ∗] and ω ∈ [0, ω∗]. Hence
Property (ii).

Remark 1. If α+γ+b2 < β(S∗(0)/(1+ηS∗(0))+δV ∗/(1+ηV ∗)), then the DFE point
is unstable for zero and sufficient small delays τ ∈ [0, τ∗] and ω ∈ [0, ω∗] as it would
happen if b2 < b3 which would also imply negative subpopulations. If α + γ + b2 =
β(S∗(0)/(1+ηS∗(0))+δV ∗/(1+ηV ∗)) and b2 > b3, then the linearized system around
the DFE point is critically stable. Finally, if b2 = b3, then I∗ = b1/α 6= 0 from (7). As
a consequence, the system does not posses a DFE point.

Remark 2. Proposition 1(i) establishes the conditions to have a DFE point asymptotically
locally stable for delays ω, τ . The first condition (14) implies that the population does not
grow exponentially as the death rate is greater than the population-related birth rate. We
can rearrange the parameters from the second condition (15) so we get

R0 =
βe−b2τ

b2 + α+ γ

(
S∗(ω)

1 + ηS∗(ω)
+ δ

V ∗

1 + ηV ∗

)
, (17)

where S∗(ω) and V ∗ at the DFE point are given in (9) and (10), respectively. The pa-
rameter R0 defined through (17) is referred to the basic reproduction number, which is
defined in epidemic research as the expected number of secondary infections derived per
infected individual βe−b2τ (S∗(ω)/(1 + ηS∗(ω)) + δV ∗/(1 + ηV ∗)) during the average
course of the infectious phase of the disease (b2 + γ + α)−1 [28–30]. Since S∗(ω) =
S∗(Vc, b1, b2, b3, ω, γ1) and V ∗ = V ∗(Vc, b1, b2, b3, γ1) the reproduction number will be
R0(β, b1, b2, b3, δ, η, α, γ, γ1, ω, τ) and will give us information about the local stability
around the DFE point as condition from (15) is equivalent to R0 < 1. A consequence
from Proposition 1 follows below.

Remark 3. If R0 > 1, then the DFE point is locally unstable as it would happen if
b2 < b3, which would also imply negative subpopulations. If R0 = 1 and b2 > b3, then
the linearized system around the DFE point is critically stable.

4 Regular impulsive vaccination around the disease-free equilibrium
point

The behavior of the model under a regular impulsive vaccination is studied in this section.
The main motivation is to mitigate and, potentially, eradicate the infection from the host
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population when the DFE point is unstable under a regular non-impulsive vaccination
strategy. The regular impulsive vaccination is characterized by a constant vaccination
rate θ and a constant inter-vaccination time interval tv . We will apply this vaccination
strategy to an auxiliary model that we construct from the original model (1)–(6), in which
there are not infected subpopulations: E(t) = 0 and I(t) = 0 for all t > t0, being t0 the
hypothetical time instant at which the disease has been eradicated. The results we obtain
in this auxiliary model would be analogous to our SVEIR model when it hypothetically
tends to the disease-free state. The dynamic equations for this reduced model are

Ṡ′(t) = b1 − b2S′(t) + b3(1− Vc)N ′(t) + γ1V
′(t− ω)e−b2ω,

V̇ ′(t) = −γ1V ′(t)− b2V ′(t) + b3VcN
′(t),

Ṙ′(t) = γ1
(
V ′(t)− V ′(t− ω)e−b2ω

)
− b2R′(t)

(18)

for all t 6= ntv and

S′
(
t+
)

= (1− θ)S′(t),
V ′
(
t+
)

= V ′(t) + θS′(t),

R′
(
t+
)

= R′(t)

(19)

for all t = ntv with θ ∈ [0, 1]. The equation of the total population in such a disease-free
situation is

Ṅ ′(t) = Ṡ′(t) + V̇ ′(t) + Ṙ′(t) = b1 − (b2 − b3)N ′(t). (20)

Such a total population presents a time evolution given by N ′(t) = N∗ − (N∗ −N0) ×
e−(b2−b3)t, where N0 denotes the initial value N ′(0) > 0. By supposing that b2 > b3, it
follows that limt→∞N ′(t) = N∗ and the system reaches the DFE state where the total
population N∗ is given by (8).

We will find the solution of these simplified equations (18)–(19) under a periodic
impulsive vaccination showing that they exhibit a periodic steady regimen of period T =
T (m,σ) = mtv + σ with σ ∈ [0, tv), m ∈ N ∪ {0} , No. Furthermore, we will
obtain the maximum values of the susceptible and vaccinated subpopulations within such
a periodic regime. Proposition 2 establishes that the period T (m,σ) of such a solution
must be always a multiple of tv . and that such a period is always tv .

Proposition 2. The following properties hold:
(i) For a general periodic solution of (18)–(19) with a time period T = T (m,σ) =

mtv + σ, it is required that σ = 0.
(ii) There is a unique general solution with time period T (1, 0) = tv . This solution

would be, from (i), that with the smallest time period.

Proof. Assuming that the solutions of (18)–(19) exhibits a periodic behavior and that
the period is given by T (m,σ) with σ 6= 0, this would imply that, for any n1 ∈ N,
S(n1tv) = S((n1 +m)tv+σ). However, while the susceptible subpopulation is required
by the dynamic equation in (19) to show an impulse at t = n1tv , this impulse is not
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present at t′ = (n1 + m)tv + σ since (n1 + m)tv < t′ < (n1 + m + 1)tv . Therefore,
periodicity is not reached if σ 6= 0. Hence Property (i).

The demonstration of Property (ii) is omitted due to length constraints. The procedure
for obtaining the proof is to find first the generic solution for T (n, 0) and show then that
this solution is unique and based on a superposition of T (1, 0) solutions which, from
Property (i), would be the solution with the smallest period. Hence Property (ii).

In order to simplify the notation, we redefine the variables for the vaccinated and
susceptible subpopulations within the interval between two consecutive impulses after
a large enough time so that they have reached the periodic regime and limt→∞N(t) =
N∗. In such a situation, the susceptible and vaccinated subpopulations can be denoted by

Si(τ) , lim
r→∞

S′
(
τ + (i+ r)tv

)
,

Vi(τ) , lim
r→∞

V ′
(
τ + (i+ r)tv

) (21)

for all {i, r} ∈ No, τ ∈ [0, tv), where (8) and (10) has been taken into account. Once
we know that Si(τ) = Sj(τ), Vi(τ) = Vj(τ) for all i, j ∈ N, the equations in (18) at
the periodic regime can be rearranged by using (21). In this way, the dynamics of the
vaccinated subpopulation (2) is described by

V̇i(τ) = (γ1 + b2)
(
V ∗ − Vi(τ)

)
. (22)

On the other hand, the dynamics of the susceptible subpopulation (1) is rewritten as a two
part equation due to the discontinuity derived from the delay ω = ktv+xtv , being k ∈ N0

and x ∈ [0, 1) ∩ R, namely,

Ṡi(τ) =


b2(S∗(ω)− Si(τ)) + γ1(Vi(0

+)− V ∗)e−b2ω−(b2+γ1)(τ−(1−x)tv),
0 6 τ < xtv,

b2(S∗(ω)− Si(τ)) + γ1(Vi(0
+)− V ∗)e−b2ω−(b2+γ1)(τ−xtv),

xtv 6 τ < tv,

(23)

where V ∗ and S∗(ω) are the values of the susceptible and vaccinated subpopulation
from (9) and (10), respectively. It can be seen from these equations that in the periodic
regime Ṡi(τ) > 0 and V̇i(τ) < 0 if Si(τ) < S∗ and Vi(τ) > V ∗ for all τ ∈ (0, tv).
This means that the susceptible subpopulations is continuously increasing, while the vac-
cinated subpopulation is continuously decreasing within the time interval [jtv, (j + 1)tv)
for any j ∈ N and large enough such that the model dynamics has reached the stationary
periodic regime. Therefore, we know the maximum values of both subpopulations:

max
06τ<tv

{
Si(τ)

}
= Si(tv) =

Si(0
+)

1− θ
,

max
06τ<tv

{
Vi(τ)

}
= Vi

(
0+
)
,

(24)
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where the values for Vi(0+), Si(0+) are defined as

Si
(
0+
)

= S0 =
s1(1− θ)

s2 − eb2(xtv−ω)θs3
,

Vi
(
0+
)

= V ∗ +
s1θ

(s2 − eb2(xtv−ω)θs3)(1− e−(b2+γ1)tv )

(25)

with s1, s2 and s3 given by

s1 =
(
eb2tv − 1

)(
e(b2+γ1)tv − 1

)
S∗(ω),

s2 =
(
e(b2+γ1)tv − 1

)(
eb2tv − (1− θ)

)
,

s3 = eγ1xtv + e(b2+γ1)tv − e(b2+xγ1)tv − 1.

(26)

Since the subpopulations S′(t) and V ′(t) in the auxiliary model will be, respectively,
above the values S(t) and V (t) of the original SVEIR model (the demonstration of this
is omitted due to the constrains of the length of the paper) when the disease is permanent,
i.e., limt→∞ inf{S′(t) − S(t)} > 0 and limt→∞ inf{V ′(t) − V (t)} > 0 if I(t) > 0
and E(t) > 0, we use the values from the auxiliary model in (24) to define the impulsive
reproduction number R(θ, tv) as

R(θ, tv) =
βe−b2τ

γ + b2 + α

(
max

06t<tv

{
Si(t)

1 + ηSi(t)

}
+ max

06t<tv

{
δ

Vi(t)

1 + ηVi(t)

})
, (27)

R(θ, tv) =
βe−b2τ

γ + b2 + α

(
Si(tv)

1 + ηSi(tv)
+ δ

Vi(0
+)

1 + ηVi(0+)

)
. (28)

Now we take the dynamic equation for the infectious subpopulation from (4). For a suf-
ficiently large time t > t′ = n0tv , n0 ∈ N, so that (21) is fulfilled, we can establish an
upper-bound for the growth of the infectious subpopulation, namely,

İ(t) 6 βe−b2τ
(

max
t′6t<t′+tv

{
S(t)

1 + ηS(t)
+

δV (t)

1 + ηV (t)

})
× I(t− τ)− (γ + b2 + α)I(t)

6 βe−b2τ
(

max
t′6t<t′+tv

{
S(t)

1 + ηS(t)

}
+ max
t′6t<t′+tv

{
δV (t)

1 + ηV (t)

})
× I(t− τ)− (γ + b2 + α)I(t)

6 βe−b2τ
(

max
t′6t<t′+tv

{
S′(t)

1 + ηS′(t)

}
+ max
t′6t<t′+tv

{
δV ′(t)

1 + ηV ′(t)

})
× I(t− τ)− (γ + b2 + α)I(t)

6 βe−b2τ
(

max
06t<tv

{
Si(t)

1 + ηSi(t)

}
+ max

06t<tv

{
δVi(t)

1 + ηVi(t)

})
× I(t− τ)− (γ + b2 + α)I(t),

6 (γ + b2 + α)
(
R(θ, tv)I(t− τ)− I(t)

)
. (29)
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The interpretation given to the impulsive reproduction number R(θ, tv) is intuitively
analogous to the standard reproduction number R0 from (17), but under a more complex
regular impulsive vaccination instead of only a regular non-impulsive vaccination Vc.
It leads to the identification of the parameters which make the model presents a stable
oscillation around the DFE point under an impulsive vaccination strategy when R0 > 1,
i.e., when the DFE point is unstable with the application of only a regular non-impulsive
vaccination Vc.

The following result in Proposition 3 is addressed to give conditions for guaran-
teeing that the infectious subpopulation converge asymptotically to zero provided that
R(θ, tv) < 1.

Proposition 3. If R(θ, tv) < 1, then I(t)→ 0 as t→∞.

Proof. For all t > 0, we know from (4) that

İ(t) = aI(t) + b(t)I(t− τ) (30)

being a = −(α+b2+γ) and b(t) = βe−b2τS(t− τ)/(1+ηS(t−τ))+δβe−b2τV (t− τ)/
(1 + ηV (t− τ)). At a sufficient large t, we know from (28) that

|b(t)|
|a|

6 R(θ, tv) < 1 (31)

and then limt→∞ I(t) = 0 is obtained from [19].

Proposition 4. If θ = 0 (i.e., in the absence of impulsive vaccination), then the impulsive
reproduction number R(0, tv) becomes the standard, non-impulsive, reproduction num-
ber, i.e., R(0, tv) = R0, and implies that the stability at the DFE point when R0 < 1 is
not only local, but also globally asymptotically stable.

Proof. As θ = 0, R(0, tv) = (βe−b2τ/(γ + b2 + α))(S∗(ω)/(1 + ηS∗(ω)) + δV ∗/
(1 + ηV ∗)) = R0 < 1. Then, from Proposition 3, we get that limt→∞ I(t) = 0.
The dynamic for the exposed subpopulation from (3) becomes Ė(t) → −b2E(t), so
that limt→∞E(t) = 0 since b2 > 0. Then, the susceptible, vaccinated and recovered
subpopulations reach their values in (9)–(11) at the DFE point.

5 Numerical simulations with regular impulsive vaccination

Parameter settings

In order to check if the reproduction number R0 is equally valid in the periodic stationary
regime of the non linear SVEIR model, we run a simulation of the dynamics of the disease
for a given set of initial conditions during a sufficient time to obtain a stationary regime,
and study the result. We have decided to use a student version of MATLAB c©7.11.0
(R2010)b Language for setting different values for the model parameters, displaying the
solution data, and performing the technical computing, while the Simulink block-module
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environment from Matlab resolves the dynamics of the SVEIR model (1)–(5). We design
the Simulink system using such equations, plus the following restriction that guarantee
the non-negativity of the subpopulations:

Xi(t0) < 0 ⇒ Xi(t0) = 0 ∀t0. (32)

The proposed SVEIR model is now tested numerically for a given parameterization.
A real case study for pertussis is later on discussed in Section 9. The average life span is
established as 70 years, so b−12 = 70 years. We set b3 < b2 as the population would grow
exponentially otherwise, and choose b−11 = b−13 = 140 years in order to have a disease-
free total population equal to 1 (N∗ = b1/(b2 − b3) = 1). The vaccination parameters
are set Vc = 1 and δ = 0.2 while the saturation constant η = 0.18. For the transition rate
from vaccinated to recovered subpopulation, we will pick five months of partial immunity
before getting a total one in the recovered state, so γ−11 = 150/365 years. The extra death
rate for the infected is 0.5 months−1, so α−1 = 2/12 years. About the parameters τ , ω
and γ, we will take a range of possible values from the data available [31–36] in order to
study further the dynamics of the epidemic:

• τ = 0.04−4 years (15−1500 days), ω = 1−100 years, γ = 12.2−2.4 years−1.

Finally, we choose a value of the disease transmission constant β so we can get
the reproduction number higher than one, since as it is seen in (17), the reproduction
number R0 is directly proportional to β.

6 Non-regular impulsive vaccination strategy with adaptable
vaccination rate θ

After proving the convenience of a regular impulsive vaccination, it is studied the implan-
tation of a more sophisticated impulsive vaccination strategy. We introduce the concepts
of vaccination cost (VC), directly related to the treatment and the number of consumed
vaccines, and the disease cost (DC), related to the quantity of infected subpopulation over
time. Our purpose is to guarantee the health of the population while minimizing both DC
and VC costs.

A constant interval tv between consecutive impulsive vaccination time instants is
chosen, with a vaccination rate varying according to different rules within the range
θ ∈ [0, 1]. The notation for the time varying vaccination rate will be θi = θ(itv) = θ(ti).
Also, the normalization of the infectious and susceptible subpopulation with respect to
the total population N∗ at the DFE point, i.e., I ′(t) = I(t)/N∗, S′(t) = S(t)/N∗ are
used for defining the rules which on-line adjust θi.

6.1 Vaccination rate updating rule based on infectious subpopulation quantity
(VRIQ)

This strategy updates the impulsive vaccination rate θi by using a rule based on the
quantity of infectious subpopulation. As R(θ, tv) is a strictly decreasing function with
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respect to θ ∈ [0, 1] i.e., ∂R(θ, tv)/∂θ < 0, there is only one value of θ corresponding
to a given value of R(θ, tv) with tv being constant. Moreover, Proposition 3 establishes
that if the impulsive reproduction number is smaller than 1, the disease is guaranteed to
be eradicated, i.e., if R(θ, tv) < 1, then limt→∞ I(t) = 0. Such a result is used in the
following way. Given a set of values for the SVEIR model parameters, a fixed value
for tv is chosen such that R(0, tv) > 1 and R(1, tv) < 1. Then a database of R(θ, tv) for
θ ∈ [θmin, 1], where θmin = arg{θ ∈ [0, 1] | R(θ, tv) = 1}, by taking into account (24),
(25) and (28).

The aim of the VRIQ rule is to increment the impulsive vaccination rate if the infec-
tious subpopulation exceeds a predefined size in order to reduce it. For such a purpose, the
law used for updating such a vaccination rate at each vaccination time instant is given by

θi = arg
{
θ
∣∣ R(θ, tv) = 1 + gi

(
R(1, tv)− 1

)}
, (33)

where gi is an auxiliary value given by

gi =


1 if log10[I ′(ti)] > 0,

1− | log10[I ′(ti)]/CI | if log10[I ′(ti)] ∈ [−CI , 0],

0 if log10[I ′(ti)] < −CI
(34)

with I ′(ti) being the normalized infectious subpopulation at the moment before the vacci-
nation time instant ti, and CI > 0 a predefined constant. Note that the vaccination rate θi
takes the minimum value θmin when the infectious subpopulation is very small, namely,
I ′(ti) < 10−CI � 1 if CI is large enough. In other words, θi = θmin when the infection
is near to be eradicated.

6.2 Vaccination rate updating rule based on susceptible subpopulation quantity
(VRSQ)

We will use two different rules in order to update the value θi based on the susceptible
subpopulation. The first one (VRSQ1) is similar to the rule VRIQ in Section 6.1. The main
difference between them is that the subpopulation accountable in the rule VRSQ1 for set-
ting the vaccination rate θi is not the infectious one, but the susceptible one. By taking into
account that the contagion rate is directly proportional to the susceptible subpopulation
from (1)–(5), the updating rule for θi has to maintain the susceptible subpopulation below
a small upper-bound. For such a purpose, the law used to update the impulsive vaccination
rate is given by

θi = arg
{
θ
∣∣ R(θ, tv) = 1 + gi

(
R(1, tv)− 1

)}
, (35)

where the auxiliary value gi is

gi =


1 if log10[S′(ti)] > 0,

1− | log10[S′(ti)]/CS | if log10[S′(ti)] ∈ [−CS , 0],

0 if log10[S′(ti)] < −CS
(36)
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with a predefined constant CS > 0 and S′(ti) the value of the normalized susceptible
subpopulation at the moment before the impulsive vaccination time instant ti. Note that θi
takes the minimum value when S′(ti) < 10−CS , i.e., when the susceptible subpopulation
is very small if a suitable value for CS is chosen.

In the second rule (VRSQ2), the values θi are updated by using an explicit function of
the susceptible subpopulation at the impulsive vaccination time instants

θi = 1− 1

1 + aS′(ti)
with a > 0. (37)

6.3 Vaccination rate updating rule based on the infectious subpopulation growth
(VRIG)

In this case, the impulsive vaccination rate θi is slightly increased or decreased from the
previous value at each impulsive vaccination time instant with a function that depends on
the growth of the infectious subpopulation, namely,

θi+1 = θi + ∆θi, ∆θi = sgn
[
İ ′(ti)

] | log10[|İ ′(ti)|]|
CI

,

θi+1 =


0 if θi+1 < 0,

θi+1 if θi+1 ∈ [0, 1],

1 if θi+1 > 1

(38)

with a predefined constant CI > 0. Here İ ′(ti) can be estimated in practice in two ways,
namely: a) İ ′(ti) can be the growth of the normalized infectious subpopulation at the time
of the impulse, or b) İ ′(ti) can be replaced by (I ′(ti) − I ′(ti−1))/tv , i.e., the difference
between the normalized infectious subpopulation just before the current impulse time in-
stant (ti) and just before the previous one (ti−1) divided by the constant inter-vaccination
time interval (tv). Such a measure can be used as a suitable approximation to the true
growth İ ′(ti).

6.4 Vaccination rate updating rule based on the susceptible subpopulation growth
(VRSG)

The θi rate, like in the VRIG rule, is readjusted at each vaccination impulse time instant,
but the purpose here is to react against the increase of the susceptible subpopulation with
an increase of the impulsive vaccination rate, given that it indicates that the disease is still
present:

θi+1 = θi + ∆θi, ∆θi = CSṠ′(ti),

θi+1 =


0 if θi+1 < 0,

θi+1 if θi+1 ∈ [0, 1],

1 if θi+1 > 1

(39)
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with a predefined constant CS > 0. Here Ṡ′(ti), as the İ ′(ti) before, can be: a) the
growth of the normalized susceptible subpopulation at the time of the impulse, or b) it
can be replaced by (S′(ti) − S′(ti−1))/tv , i.e., the difference between two data of the
normalized susceptible subpopulation, one just before the current impulse time instant
(ti) and the other just before the previous impulse (ti−1), divided by the constant inter-
vaccination time interval (tv).

7 Non-regular impulsive vaccination strategy with adaptable inter-
vaccination time intervals

In our second approach, for obtaining an optimization of the vaccination and disease
costs related to a disease, a set of rules for updating the time period tv(i) from the current
vaccination time instant to the next one is developed while the impulsive vaccination rate
θ remains constant. Again, the infectious and susceptible subpopulations are normalized
with respect to the total population N∗ at the DFE point. As the inter-vaccination time
interval is time-varying, we define now the current vaccination time instant as the sum of
all preceding inter-vaccination time intervals, namely, ti =

∑i
j=1 tv(j), where tv(j) =

tj − tj−1 for j ∈ N and tv(1) = t1 − t0 = t1 since t0 = 0, i.e., since the initial time
instant is denoted by t0.

7.1 Inter-vaccination time intervals updating rule based on infectious subpopula-
tion quantity (IVIIQ)

The inter-vaccination time interval, as θ in the VRIQ rule, depends on the quantity of
infectious subpopulation. Analogous to the previous methods, we create a database of
R(θ, tv) between a maximum and a minimum tv . We will pick the more convenient time
interval tv within the range tv ∈ [tmin

v , tmax
v ] with tmin

v chosen such that R(θ, tmin
v ) < 1

for a prefixed θ. We will take advantage from the fact that R(θ, tv) decreases as the inter-
vaccination time interval does, as ∂R(θ, tv)/∂tv > 0 for all tv for a constant θ. Further-
more, from Proposition 3 an impulsive vaccination reproduction number R(θ, tv) < 1
will guarantee limt→∞ I(t) = 0, so in order to decrease the infectious subpopulation
we will reduce the impulsive vaccination time intervals as the infectious subpopulation
exceeds a predefined size. For such a purpose, we use the rule

tv(i+ 1) = arg
{
tv ∈

[
tmin
v , tmax

v

] ∣∣ R(θ, tv) = 1 + gi
(
R
(
θ, tmin

v

)
− 1
)}
, (40)

where the auxiliary function gi is given by

gi =


1 if log10[I ′(ti)] > 0,

1− | log10[I ′(ti)]/CI | if log10[I ′(ti)] ∈ [−CI , 0],

0 if log10[I ′(ti)] < −CI
(41)

with a predefined constant CI > 0, and where I ′(ti) is the normalized infectious subpop-
ulation at the moment before the vaccination time instant.
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7.2 Inter-vaccination time intervals updating rule based on susceptible subpopula-
tion quantity (IVISQ)

As in the previous VRSQ1 and VRSQ2 rules, we now propose two alternative ways to up-
date the time interval between consecutive impulsive vaccinations. The first rule (IVISQ1)
is defined as the IVIIQ one in Section 7.1, with the difference that the subpopulation
used for measuring the state of the disease propagation is not the infectious one, but the
susceptible one. The aim is to reduce the susceptible subpopulation by vaccination so the
following law is used for updating the inter-vaccination time intervals

tv(i+ 1) = arg
{
tv ∈

[
tmin
v , tmax

v

] ∣∣ R(θ, tv) = 1 + gi
(
R
(
θ, tmin

v

)
− 1
)}
, (42)

where gi is given by

gi =


1 if log10[S′(ti)] > 0,

1− | log10[S′(ti)]/CS | if log10[S′(ti)] ∈ [−CS , 0],

0 if log10[S′(ti)] < −CS
(43)

with a predefined constant CS > 0, and S′(ti) being the value of the normalized sus-
ceptible subpopulation at the moment before the impulsive vaccination time instant. The
second rule (IVISQ2) used to update the inter-vaccination time intervals is

tv(i+ 1) = tmin
v +

tmax
v − tmin

v

1 + aS′(ti)
with a > 0. (44)

7.3 inter-vaccination time intervals updating rule based on infectious subpopula-
tion growth (IVIIG)

In this case, the inter-vaccination time interval tv(i+ 1) is slightly increased or decreased
from the previous one at each impulsive vaccination time instant with a rule based on
the growth of the infectious subpopulation. In this sense, the following adjusting law is
proposed:

tv(i+ 1) = tv(i)−∆tv(i), ∆tv(i) = sgn
[
İ ′(ti)

] | log10[|İ ′(ti)|]|
CI

,

tv(i+ 1) =


tmin
v if t̄v(i+ 1) < tmin

v ,

t̄v(i+ 1) if t̄v(i+ 1) ∈ [tmin
v , tmax

v ],

tmax
v if t̄v(i+ 1) > tmax

v

(45)

with CI > 0 being a predefined constant. İ ′(ti) can be a) the growth of the normalized
infectious subpopulation at the time of the impulse, or b) İ ′(ti) can be replaced by
(I ′(ti) − I ′(ti−1))/tv(i), i.e., the difference between the normalized infectious subpop-
ulation just before the current impulse time instant (ti) and just before the previous one
(ti−1) divided by the inter-vaccination time interval (tv(i) = ti − ti−1). Such a measure
can be used as a suitable approximation to the true growth İ ′(ti).
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7.4 inter-vaccination time intervals updating rule based on susceptible subpopula-
tion growth (IVISG)

Here tv(i), like in the IVIIG rule of the previous section, is readjusted at each impulsive
vaccination time instant, although the proposed adaptation law is based on the susceptible
subpopulation instead of the infectious one. Now, an increase of the susceptible subpop-
ulation gives place to a decrease of the time interval between impulsive vaccination time
instants, namely,

tv(i+ 1) = tv(i)−∆tv(i), ∆tv(i) = CSṠ
′(ti),

tv(i+ 1) =


tmin
v if t̄v(i+ 1) < tmin

v ,

t̄v(i+ 1) if t̄v(i+ 1) ∈ [tmin
v , tmax

v ],

tmax
v ift̄v(i+ 1) > tmax

v

(46)

with CS > 0 a predefined constant. Ṡ′(ti) can be a) the growth of the normalized suscep-
tible subpopulation at the time of the impulse, or b) replaced by (S′(ti)−S′(ti−1))/tv(i),
i.e., the difference between two data points of the normalized susceptible subpopulation,
one just before the current impulse time instant (ti) and the other just before the previous
impulse (ti−1), divided by the inter-vaccination time interval (tv(i) = ti − ti−1).

8 Efficient method for coherency in the comparison of non-regular
impulsive vaccination strategies against regular ones

The impact of the different rules for updating the vaccination rate θi and the time interval
tv(i) from Sections 6 and 7 is studied. For such a purpose, a simulation of an outbreak
is run, beginning with initial conditions near the DFE point plus a small fraction of
infectious subpopulation. We set a constant time interval tv = 1 for the adaptive laws
adjusting the time-varying rate θi in Section 6 and a constant vaccination rate θ = 0.05
for the adaptive laws adjusting the time-varying inter-vaccination time intervals within
a range of tv(i) ∈ (0.46, 1.50) in Section 7. The parameters of the system are set as those
used in Section 5 giving place to a reproduction number R0 = 1.25 associated to an
unstable DFE point. The reproduction number R0 is also small enough so the impulsive
reproduction number R(θ, tv) achieves values under 1 given the proposed range for θ
and tv . The disease cost is defined as DC = A

∫ tf
0
I(t) dt, related to the value of the

infectious subpopulation during the simulation time, and the vaccination cost is defined
as V C = V1 + V2. The first part V1 =

∫ tf
0
b3VcN(t) dt is related to the amount of

newborns vaccinated during the simulation from 0 to tf and it is proportional to the
constant vaccination rate Vc, while the second part V2 =

∑n
i=1 θiS(ti) is related to the

total amount of vaccinated individuals by means of impulsive vaccination s with n being
the number of impulsive vaccinations during the simulation.

After running the simulation and gathering information about the dynamics of the
non-regular impulsive vaccination strategy and their DC and VC, we re-run the simula-
tion again, now using a regular impulsive vaccination strategy with constant vaccination
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Fig. 2. A comparison between the model dynamics with a non-regular impulsive vaccination with a VRIQ
strategy and a regular impulsive vaccination with the same vaccination cost.

parameters θ and tv . We will use the data from the non-regular impulsive vaccination
strategy and get the most approximate vaccination parameters so the regular impulsive
vaccination presents a VC comparable to the non-regular one. In this sense, a regular im-
pulsive vaccination strategy of constants rates θm and inter-vaccination time intervals tm
will be applied, where θm and tm are defined by the data registered from the vaccination
rate θi and the inter-vaccination time intervals of the non-regular impulsive vaccination
strategies of Sections 6 and 7, respectively. Namely,

θm =

∑n
i=1 S(ti)θi∑n
i=1 S(ti)

, tm =
1

n

∑
i=1

tv(i), (47)

i.e., tm is the average value of the inter-vaccination time intervals in the simulation
corresponding to the strategies of Section 7 and θm is and average value of the vaccination
rate corresponding to strategies of Section 6 pondered with the susceptible subpopulation
at the impulsive instants. Our results show the differences over 70 years of simulation
of the susceptible and the vaccinated subpopulations between the regular and the VRIQ
strategy, as we can see at the 1st and 2nd graphic of Fig. 2. The change of rate between the
vaccinated and susceptible subpopulations has a direct impact in the evolution of the re-
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Fig. 3. Vaccination cost and number of deaths by infection versus time for a non-regular impulsive vaccination
with VRIQ strategy and a regular impulsive vaccination.

covered and exposed subpopulations (3rd and 5th graphic) which subsequently, shapes the
value of the infectious subpopulation as we see in the 4th graphic dropping to depreciable
amounts at (I < 10−7) so that the disease is considered effectively controlled. Finally,
the value of the total population (6th graphic) is influenced by the extra death derived from
the disease. The velocity of the disease decrement is also very important, as the disease
cost DC can be too high if the infectious subpopulation presents high values for a long
time. It is seen that the infectious subpopulation reaches an acceptable minimum level
more rapidly when the VRIQ is applied instead of the regular impulsive vaccination. The
death rate related to the disease is proportional to the number of infectious subpopulation,
so the disease cost (DC) will give us also the total number of deaths caused by the disease
after the simulation time, namely, DC = A

∫ tf
0
I(t) dt = A′[death by disease], where

A and A′ are some positive constants.
We see at Fig. 3 the consequences of the different dynamics induced in Fig. 2 for the

regular impulsive vaccination and the non-regular impulsive one using the VRIQ rule.
Both strategies have similar vaccination cost but they differ clearly in the disease cost.
In this sense, the mortality by causes related to the infection is higher when a regular
impulsive vaccination is used instead of a non-regular one with the VRIQ rule. In Table 2,
we present the different death numbers after 70 years for each vaccination strategy against
a regular impulsive vaccination with the same VC.

We can see in Table 2 that, with the exceptions of the IVIIG2 and the VRSG rules,
the non-regular impulsive vaccination strategies are more effective and are able to control
more rapidly an outbreak than the regular impulsive vaccination one. A better visualiza-
tion of the costs of these strategies can be seen in Fig. 4. In these graphics, the vaccination
and disease costs corresponding to different non-regular impulsive vaccination strategies
are compared to the costs of several regular impulsive vaccination strategies. For such
a purpose, two set of simulations are developed. The first set (discontinuous line) uses
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Table 2. Deaths for different strategies.

Vacc. strategy Deaths (non-regular) Deaths (regular)
VRIQ — CI ∈ (4−12) 10−3−8 · 10−3 9 · 10−3−13 · 10−3

VRSQ1 — CS ∈ (0.04−0.12) 5 · 10−4−20 · 10−4 9 · 10−3−12 · 10−3

VRSQ2 — a ∈ (1.3−4) 5 · 10−4−6 · 10−4 7 · 10−4−10 · 10−4

VRIG1 — CI ∈ (40−120) — İ′ ∼ 5 · 10−4 5 · 10−4−50 · 10−4

VRIG2 — CI ∈ (40−120) — ∆I′/∆t ∼ 5 · 10−4 5 · 10−4−40 · 10−4

VRSG1 — CS ∈ (10−90) — Ṡ′ 5 · 10−4−28 · 10−4 5 · 10−4−14 · 10−4

VRSG2 — CS ∈ (10−90) — ∆S′/∆t 5 · 10−4−15 · 10−4 5 · 10−4−14 · 10−4

IVIIQ — CI ∈ (50−125) 3 · 10−3−3.5 · 10−3 4 · 10−3−6 · 10−3

IVISQ1 — CS ∈ (2−6) 2.85 · 10−3−2.87 · 10−3 2.9 · 10−3−3.1 · 10−3

IVISQ2 — a ∈ (0.67−1.67) 2 · 10−2−6 · 10−2 2 · 10−2−6 · 10−2

IVIIG1 — CI ∈ (25−62) — İ′ 0.9 · 10−2−1.7 · 10−2 2.2 · 10−2−2.3 · 10−2

IVIIG2 — CI ∈ (25−62) — ∆I′/∆t 3 · 10−3−6 · 10−3 14 · 10−3−30 · 10−3

IVISG1 — CS ∈ (0.67−1.67) — Ṡ′ 27 · 10−3−28 · 10−3 3.4 · 10−3−3.8 · 10−3

IVISG2 — CS ∈ (0.67−1.67) — ∆S′/∆t 2.9 · 10−3−3.1 · 10−3 2.82 · 10−3−2.85 · 10−3

Fig. 4. A disposition of the different DC (assumingA = 1) and VC values for the vaccination strategies with the
constants CI and CS from Table 2. The graphic of the top presents the vaccination strategies from Section 6,
while the graphic of the bottom presents the strategies from Section 7. The discontinuous line in both graphics
represents the DC/VC values of a regular impulsive vaccination with tv = 1 for θ ∈ (0, 1), while the continuos
lines represent the cost values associated to regular impulsive vaccination with different tv ∈ (0.4, 1.5) for
a set of different values of θ = {0.05, 0.25, 0.45, 0.65}.

the same value for the inter-vaccination time intervals (tv = 1) and different constants
values for θ, one value for each simulation. The second (continuos lines) uses a constant
value for θ and different constant values for tv within tv ∈ (0.4 − 1.5), one value of θ
for each line (θ = {0.05, 0.25, 0.45, 0.65}). The most adequate non-regular impulsive
vaccination strategy can be identified in the graphic as the costs decreases in both axis.
The non-regular impulsive vaccination rate strategies based on the VRIQ rules clearly
present the minimum VC and the fastest decrement of the infectious subpopulation mini-
mizing DC.
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9 Vaccination strategies on a known disease: Pertussis

After proving the efficiency of the vaccination strategies in a generic disease, we apply
our method to a specific disease so we can test our methods in a simulation of an actual
disease. We have chosen pertussis (whooping cough) as it presents a temporary immunity
while it still has a significant death ratio [35, 36] so all the parameters are suitable to
the SVEIR model. According to the available data of pertussis, these model parameters
are: τ = 8 days, ω = 12 years, γ−1 = 15 days, γ−11 = 4 days. A small mortality rate
associated to the disease is given by α−1 = 3.8 years, while the parameters independent
of the disease, such as the characteristic growth and death rate of the population, the
newborn vaccination rate and the saturation parameters for the vaccine and susceptible
subpopulation remain the same as in the previous simulation (b−12 = 70 years, b−11 =
b−13 = 140 years, Vc = 1, δ = 0.2, η = 0.18). The disease transmission constant β is set
so that the reproduction number is R0 = 1.5.

Initial conditions are set near to the DFE (S(0) = S∗, V (0) = V ∗ and R(0) = R∗)
plus a small perturbation of infected subpopulation (I(0) = 0.0001N∗). We first compare
the DC and VC (see Section 8) of a non-regular impulsive vaccination strategy with an
adaptive vaccination rate θi to the DC and VC derived from a regular vaccination strategy
given the same initial conditions. We choose the VRIQ strategy from Section 6.1, in which
an impulse vaccination is administered annually (tv = 1) to a fraction θi of the susceptible
subpopulation, which can vary between 0 and 1.

It is seen in Fig. 5 that when the non-regular strategy is applied the DC, proportional
to the deaths resulting from pertussis, is reduced substantially (56%), while the VC, de-
rived from the number of vaccines administered, is only slightly increased (4%). Another
comparison is made between a non-regular impulsive vaccination strategy with adaptive
inter-vaccination time intervals and a regular impulsive vaccination strategy. We choose
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Fig. 5. Vaccination cost and number of deaths by infection versus time for a regular and a non-regular impulsive
vaccination strategy (VRIQ).
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Fig. 6. Vaccination cost and number of deaths by infection versus time for a regular and a non-regular impulsive
vaccination strategy (IVIIG).
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Fig. 7. Evolution over time (years) of vaccinated subpopulation from initial conditions near to DFE, given a
regular and a non-regular impulsive vaccination strategy (IVIIG).

the IVIIG vaccination rule based on the infectious population growth from Section 7.3,
in which an impulsive vaccination is administered at a constant rate to the susceptible
subpopulation (θ = 0.05) varying the interval between the impulses from 5 to 18 months
(tv ∈ [0.41, 1.5]), and compare the DC and VC to a regular vaccination strategy with the
same vaccination rate and an inter-vaccination time interval which would be the average
we get from the non-regular IVIIG strategy. We can see at Fig. 6 the result in terms of
vaccines administered over time and extra deaths resulting from pertussis, which are pro-
portional to the VC and DC, respectively. We can see that when the non-regular strategy
is applied, the DC is reduced approximately to a 19% while the VC only increases a 5%.

The difference of the vaccinated subpopulation between the impulsive vaccination
with adaptive time intervals and the regular one can be seen at Fig. 7. Observe that in the
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case of the non-regular impulsive vaccination, a pattern of intensive vaccination emerges
at intervals concurring with the average immunity time.

10 Conclusion

Theoretically valid impulsive vaccination strategies are presented and studied in order to
eradicate an infectious disease. The impulsive reproduction number, related to the inter-
vaccination time interval and the impulsive vaccination rate, gives us a first method for
studying the stability of periodic solutions for subpopulations around the DFE point when
such an equilibrium point is unstable with a regular non-impulsive vaccination strategy.
It is the basis for controlling contagious diseases by means of prevention actions and
for describing the model and the usefulness of the application of regular or non-regular
(adaptive) impulsive vaccination strategies. The model may present an unstable disease-
free equilibrium point under regular non-impulsive vaccination, but if a certain impulsive
vaccination is applied, the system reaches a disease-free periodic state. Although the
values of the subpopulations are constantly adjusted by impulsive vaccination, both the
steady state oscillation reached under the regular impulsive vaccination and the DFE state
have virtually eradicated the infected subpopulation. A non-regular adjustable vaccination
strategy is proposed based on a set of rules that update the vaccination rate at each vacci-
nation instant, which are uniformly distributed in time. Another set of rules maintain the
vaccination rate constant and update the inter-vaccination time intervals. Both alternatives
improve the result about the eradication of the disease compared with the results obtained
with a regular impulsive vaccination. In the case of pertussis, the disease cost is reduced
substantially at the expense of a small increase in the vaccination cost.

Acknowledgment. The authors would like to thank the reviewers for their useful sug-
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