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aVytautas Magnus University
Vileikos str. 8, LT-44404 Kaunas, Lithuania
j.jachimaviciene@if.vdu.lt
bInstitute of Mathematics and Informatics, Vilnius University
Akademijos str. 4, LT-08663 Vilnius, Lithuania
mifodijus.sapagovas@mii.vu.lt
cFaculty of Mathematics and Informatics, Vilnius University
Naugarduko str. 24, LT-03225 Vilnius, Lithuania
arturas.stikonas@mif.vu.lt; olga.stikoniene@mif.vu.lt

Received: 20 February 2013 / Revised: 6 February 2014 / Published online: 19 February 2014

Abstract. A new explicit conditionally consistent finite difference scheme for one-dimensional
third-order linear pseudoparabolic equation with nonlocal conditions is constructed. The stability
of the finite difference scheme is investigated by analysing a nonlinear eigenvalue problem. The
stability conditions are stated and stability regions are described. Some numerical experiments are
presented in order to validate theoretical results.
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1 Introduction

We consider third-order linear pseudoparabolic equation with nonlocal integral conditions

ut = ηutxx + uxx + f(x, t), x ∈ (0, X), 0 < t 6 T, (1)

u(0, t) = γ0

X∫
0

u(x, t) dx+ vl(t), 0 6 t 6 T, (2)

u(X, t) = γ1

X∫
0

u(x, t) dx+ vr(t), 0 6 t 6 T, (3)

u(x, 0) = v0(x), x ∈ [0, X], (4)

where η > 0. The goal of this paper is to present explicit finite difference schemes (FDS)
for this problem and to investigate their stability properties.
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In the field of numerical analysis of differential equations, great attention has been
dedicated to the development of efficient and accurate methods, mostly of implicit type.
Implicit finite difference schemes for linear or nonlinear pseudoparabolic equation with
Dirichlet boundary conditions were introduced in early 1970s [1, 2]. Stability and con-
vergence of finite difference method were investigated in these papers. There are several
situations in which the use of implicit methods causes a huge amount of computation
(for example, systems of very large dimension, in presence of strong nonlinearity). Ex-
plicit methods for partial differential equations overcome these difficulties successfully.
The main disadvantage of explicit methods concerns their stability. So, the benefits and
stability properties of explicit methods have to be deeply analysed for safe exploiting.

Theoretical research of pseudoparabolic equations with nonlocal boundary conditions
(NBC) was started due to their applications for complex problems in science and technol-
ogy. One of the first results for the third-order pseudoparabolic equations with NBCs was
given in monograph [3] for problems of soil dampness dynamics. A number of papers
devoted to underground water flow dynamics modelling by pseudoparabolic equation with
NBCs were published later, see [4, 5].

Numerical methods for pseudoparabolic equations with NBCs are of permanent in-
terest for researchers during the last decades. The Rothe time-discretization method for
a nonlinear pseudoparabolic equation with integral conditions was considered in [6].
A numerical method for solving a one-dimensional nonlinear pseudoparabolic equation
with one integral condition in reproducing kernel space was proceeded in [7]. Implicit
FDS for a linear one- and two-dimensional pseudoparabolic equation with various integral
conditions are analysed in [8–11].

Applications of pseudoparabolic problems with different boundary conditions includ-
ing NBCs are discussed in papers [6, 7] and monograph [12]. Both explicit and implicit
FDS for numerical solution of (1) are investigated completely enough for case of parabolic
equation (η = 0). Problems with classical boundary conditions are studied in many
monographs (for example, [13]). Note that, in the case η 6= 0, third-order derivative utxx
does not allow to write two-layer explicit FDS for (1).

Three-layer FDS for the second order parabolic equation (equation (1) in the case
η = 0) with classical boundary conditions are investigated in details in [13]. Such schemes
for problems with NBCs are studied in [14, 15]. Following [14], we can convert three-
layer FDS to two-layer system

Wj+1 = SWj + F,

where Wj ,F are vectors and matrix S is non-symmetrical due to nonlocal conditions.
Energy norm of vector Wj is connected with the eigenvalue problem for finite differ-
ence operator with NBCs. Nonlinear eigenvalue problem is also used for investigation of
spectrum of matrix S. A number of papers devoted to the investigation of spectrum of
differential or difference operators with NBCs and their applications. We refer to [16–26]
for detailed discussions.

Applying the methodology of [14] to investigation of three-layer schemes with non-
local conditions, we prove that stable explicit FDS can be constructed using specific
approximation of third-order derivative.
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The rest of this paper is organised as follows. We formulate a difference problem for
approximation of the pseudoparabolic problem (1)–(4) in Section 2. Stability regions and
stability conditions are investigated in Section 3. Results of numerical experiments are
presented in Section 4. Final conclusions are done in Section 5.

2 Finite difference scheme

2.1 Three-layer explicit scheme

Let us write three-layer explicit FDS for differential problem (1)–(4). To this aim, we use
specific approximation of the third-order derivative. As far as the authors are aware, such
approximation firstly was used for solution of pseudoparabolic equation in [27, 28].

We introduce grids with uniform steps

ωh := {xi: xi = hi, i = 0,M}, h =
X

M
,

ωτ := {tj : tj = τj, j = 0, N}, τ =
T

N
,

ωh := {x1, x2, . . . , xM−1}, ωτ := {t1, t2, . . . , tN−1}. In the domain [0, X]× [0, T ], we
use grids ω := ωh × ωτ , ω := ωh × ωτ .

We use the notation U ji := U(xi, tj) for functions defined on the grid (or parts of this
grid) ωh × ωτ . Let us define vectors U = (U0, U1, . . . , UM )> and U = (U1, U2, . . . ,
UM−1)>.

If solution u of differential problem (1)–(4) is smooth enough, then the following
approximation can be written in any point (xi, tj) ∈ ω:

(utxx)ji = (uxxt)
j
i =

1

h2
(
(ut)

j
i−1 − 2(ut)

j
i + (ut)

j
i+1

)
+O(h2).

In order to construct explicit FDS, we approximate (ut)
j
i by the forward differences, and

another two derivatives by the backward differences:

(utxx)ji =
1

h2

(
uji−1 − u

j−1
i−1

τ
− 2

uj+1
i − uji
τ

+
uji+1 − u

j−1
i+1

τ
+O(τ)

)
+O(h2)

=
1

τ

(uji−1 − 2uj+1
i + uji+1

h2
−
uj−1i−1 − 2uji + uj−1i+1

h2

)
+O

(
τ

h2
+ h2

)
. (5)

Let us consider three-layer FDS for problem (1)–(4)

U j+1
i − U j−1i

2τ
=
η

τ

(
U ji−1 − 2U j+1

i + U ji+1

h2
−
U j−1i−1 − 2U ji + U j−1i+1

h2

)
+
U ji−1 − (U j+1

i + U j−1i ) + U ji+1

h2
+ F ji , (xi, tj) ∈ ω, (6)
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U j0 = γ0L(U
j
) + V jl , tj ∈ ωτ , (7)

U jM = γ1L(U
j
) + V jr , tj ∈ ωτ , (8)

U0
i = (V0)i, xi ∈ ωh, (9)

U1
i = (V1)i, xi ∈ ωh, (10)

where L(U
j
) = (U j0 + U jM )h/2 +

∑M−1
i=1 U ji h. In order to use three-layer scheme, we

need to impose an additional condition on the first layer. One way of proceeding it is to
apply at the first step the two-layer implicit scheme of accuracy O(τ2 + h2) [13].

We could rewrite equation (6) as

U j+1
i − U ji

2τ
=
η

τ

(
U ji−1 − 2U ji + U ji+1

h2
− 2U j+1

i − 2U ji
h2

−
U j−1i−1 − 2U j−1i + U j−1i+1

h2
+

2U ji − 2U j−1i

h2

)
+
U ji−1 − 2U ji + U ji+1

h2
+

2U ji − (U j−1i + U j+1
i )

h2
+ F ji . (11)

Taking into account (5), we get that difference problem (6)–(10) approximates differential
problem (1)–(4) conditionally with truncation error O(τ2 + h2 + τ/h2) as τ = o(h2).

If η = 0, equation (6) corresponds to Dufort–Frankel scheme, which is conditionally
consistent with error O(τ2 + h2 + τ2/h2) to the second order parabolic problem with
Dirichlet boundary conditions, and it is unconditionally stable.

2.2 Two-layer system and nonlinear eigenvalue problem

According to methodology of [14], we reduce the three-layer FDS (6)–(10) to two-layer
system. Firstly, we consider (7) and (8) as a linear system with unknowns U j0 and U jM
and write modified NBCs

U j0 = γ̃0L̃
(
Uj
)

+ Ṽ jl , U jM = γ̃1L̃
(
Uj
)

+ Ṽ jr , (12)

where γ̃0 = γ0/d, γ̃1 = γ1/d, L̃(Uj) =
∑M−1
i=1 U ji h, d = 1− h(γ0 + γ1)/2 and

Ṽ jl =
V jl + hcj

d
, Ṽ jr =

V jr − hcj

d
, cj =

γ0V
j
r − γ1V

j
l

2
.

Note that d > 0 for γ0 + γ1 6 0 and d > 0 if h is sufficiently small (h < 2/(γ0 + γ1))
in the case γ0 + γ1 > 0.

Substituting expressions (12) in equation (11), we rewrite FDS (6)–(8) for every j =
1, N − 1 as

AUj+1 + BUj + CUj−1 = 2τFj , (13)

www.mii.lt/NA



Stability of explicit FDS for a pseudoparabolic equation with nonlocal conditions 229

where A, B, C are (M − 1)× (M − 1) matrices:

A =
(
1 + 2(τ + 2η)h−2

)
I, B = 2(τ + η)Λ− 4(τ + 2η)h−2I,

C =
(
−1 + 2(τ + 2η)h−2

)
I− 2ηΛ,

Λ =
1

h2


2− γ̃0h −1− γ̃0h −γ̃0h . . . −γ̃0h −γ̃0h
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 . . . 2 −1
−γ̃1h −γ̃1h −γ̃1h . . . −1− γ̃1h 2− γ̃1h

 ,

and I be the identity (M − 1) × (M − 1) matrix, Fj be column vectors ((M − 1) × 1
matrices).

Eigenvalue problem
ΛU = λU

is equivalent to the eigenvalue problem for the difference operator with NBCs (see [14]
for detailed explanation)

−Ui−1 − 2Ui + Ui+1

h2
= λUi, xi ∈ ωh, (14)

U0 = γ0L(U), UM = γ1L(U). (15)

Let us introduce 2(M − 1)-order vector

Wj =

(
Uj

Uj−1

)
, j = 1,M.

Then three-layer FDS (13) can be written as two-layer scheme [13, 14]

Wj+1 = SWj + 2τGj , j = 1,M − 1, (16)

where

S =

(
−A−1B −A−1C

I 0

)
, Gj =

(
A−1Fj

0

)
,

and 0 is zero matrix (or vector). Matrix S is nonsymmetric except case γ0 = γ1 = 0 (as
well as matrices Λ, B and C).

In the next section, stability of FDS (16) will be analysed using spectrum of matrix S.
So, we investigate eigenvalues of this matrix which are determined as the roots of the
following equation:

det(S− µI) = 0 or det

(
−A−1B− µI −A−1C

I −µI

)
= 0.

It follows that
det
(
µ2I + µA−1B + A−1C

)
= 0
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or
det
(
µ2A + µB + C

)
= 0. (17)

Equation (17) is characteristic equation of the nonlinear eigenvalue problem(
µ2A + µB + C

)
U = 0. (18)

Nonlinear eigenvalue problem of such type when matrices A, B and C are symmetric is
well known (see [29]). In our case, matrix B (and C if η 6= 0) is nonsymmetric. So,
it is possible to investigate nonlinear eigenvalue problem (18) using another property of
these matrices. Namely, matrices A, B and C have the same system of eigenvalues as
matrix Λ.

The next statements are true [14, 30].

Lemma 1. Eigenvalues of matrix S coincide with eigenvalues of nonlinear eigenvalue
problem (18).

Lemma 2. Eigenvectors of matrices A, B and C coincide with system of eigenvectors of
eigenvalue problem (14)–(15) of difference operator with nonlocal conditions.

Lemma 3. All the eigenvalues of matrix Λ are real and simple. Moreover,

(i) if γ1 + γ2 < 2, then all the eigenvalues are positive;

(ii) if γ1 + γ2 = 2, then there exists one zero eigenvalue, other eigenvalues are positive;

(iii) if γ1 +γ2 > 2 and h < 2/(γ1 +γ2), then there exists one negative eigenvalue, other
eigenvalues are positive.

From Lemma 3 follows that condition h < 2/(γ1 + γ2) ensures that eigenvectors of
matrix Λ are independent.

Lemma 4. If γ1 + γ2 6 2, then all the eigenvalues of matrix Λ are nonnegative and
λi(Λ) ∈ [0, 4/h2], i = 1,M − 1.

3 Stability of finite difference schemes

3.1 Case of real eigenvalues

Let us investigate the stability of FDS (6)–(10). We use matrix and vectors norms

‖S‖∗ = %(S) = max
16i62(N−1)

∣∣µi(S)
∣∣, (19)

‖W‖∗ =
∥∥P−1W∥∥

2
=

(
2(N−1)∑
i=1

W̃ 2
i h

)1/2
,

where P is nonsingular matrix which columns are eigenvectors of matrix S and W̃i are
coordinates of vector P−1W. Such or similar definitions of norm for problems with
NBCs are used in many works (see [15, 16, 19, 30] and comments about norms therein).
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According to definition of matrix S norm (19), stability condition for FDS (16) can
be written as

%(S) 6 1.

Theorem 1. If condition γ1 + γ2 6 2 is true, then %(S) 6 1 and FDS is stable.

Proof. Eigenvalues of matrix S can be found from equation (18). Let us denote any eigen-
value of Λ as λ and correspondent eigenvector as U. We denote eigenvalues of A, B and
C as λ(A), λ(B) and λ(C), respectively. Then we have

λ(A) = 1 +
2

h2
(τ + 2η),

λ(B) = 2(τ + η)λ− 4

h2
(τ + 2η),

λ(C) = −1 +
2

h2
(τ + 2η)− 2ηλ.

Substituting U into (18), we get quadratic equation

(1 + δ)µ2 + 2
(
(τ + η)λ− δ

)
µ+ δ − 1− 2ηλ = 0, (20)

where

δ := β

(
τ

2
+ η

)
> 0, β :=

4

h2
> 0.

We rewrite this quadratic equation as

µ2 + bµ+ c = 0 (21)

with coefficients

b :=
2(τ + η)λ− 2δ

1 + δ
=

2τλ

1 + δ
− c− 1, c :=

δ − 1− 2ηλ

1 + δ
. (22)

According to Hurwitz criterion, roots of (21) with real coefficients |µ| 6 1 if and only if

c 6 1, |b| 6 c+ 1.

The first inequality of Hurwitz criterion for coefficients (22) gives condition for λ

δ − 1− 2ηλ 6 1 + δ ⇐⇒ ηλ > −1. (23)

The second inequality is equivalent to

2ηλ− 2δ 6 2(τ + η)λ− 2δ 6 2δ − 2ηλ

or
0 6 λ 6

2δ

τ + 2η
= β. (24)

Condition τλ > 0 is stronger than (23). Lemma 4 implies that λ ∈ [0, β] when γ0+γ1 6 2
and the theorem is proved.
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3.2 Case of complex eigenvalues. Stability regions

In general, eigenvalues of operator Λ can be complex numbers. For example, when
problem involves the integral conditions with variable weight coefficients (see (31)–(32)),
the eigenvalues of matrix Λ can be complex numbers [23]. Such eigenvalues also can
arise when the interval of integration in conditions (2)–(3) is different from [0, X] [31].
Only in special cases (for example, in the case of integral boundary conditions (15)) all
the eigenvalues are real.

A polynomial satisfies the root condition if all the roots of that polynomial are in the
closed unit disc of complex plane and roots of magnitude 1 are simple [32, 33].

Coefficients of equation (20) depend on complex variable λ. If polynomial p(µ, λ) :=
a(λ)µ2 +b(λ)µ+c(λ) satisfies the root condition, then we say that λ is in stability region
defined by equation p(µ, λ) = 0.

For any polynomial of the second order

aµ2 + bµ+ c, a 6= 0, b, c ∈ C, (25)

the following theorem [34] and lemma are valid.

Theorem 2. The roots of the second order polynomial are in the closed unit disc of
complex plane and roots of magnitude 1 are simple if

|c|2 + |āb− b̄c| 6 |a|2, |b| < 2|a|.

Lemma 5. The second order polynomials with coefficient a = 1 have multiple root µ =
eiϕ if and only if b = −2eiϕ and c = e2iϕ, ϕ ∈ [0, 2π).

Proof. If µ = eiϕ is a double root of equation (25), then 2aµ + b = 0, i.e. b = −2aeiϕ

and c = ae2iϕ.

For quadratic equation (21), we have a system

δ − (τ + η)λ = (1 + δ)eiϕ, δ − 1− 2ηλ = (1 + δ)e2iϕ,

where λ and ϕ are unknowns. In order to obtain stability region, we find more simple
necessary condition for existence of double roots instead of solving this system. If we
substitute b = −2aeiϕ and c = ae2iϕ into the first formula for coefficient b in (22), then
we derive equation for λ ∈ Cλ

−2eiϕ =
2τλ

1 + δ
− e2iϕ − 1. (26)

From this equation we find

z := τλ =
(1 + δ)(eiϕ − 1)2

2
= (1 + δ)(cosϕ− 1)eiϕ, ϕ ∈ [0, 2π).

These points are located on curve Dδ in the complex plane Cz (see Fig. 1).
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Fig. 1. Curves Dδ for δ = 0,
0.5, 1, 3.

(a) complex plane Cz , z = τλ (b) complex plane Cλ
Fig. 2. Stability regions for Dufort–Frankel scheme (η = 0) in the
case δ = α = τβ/2 = 2τ/h2.

Remark 1. Curve Dδ gives necessary condition for double root. For z = 0 ∈ Dδ , we
have simple roots µ1 = 1 and µ2 = (δ − 1)/(δ + 1).

If η = 0, then we have Dufort–Frankel scheme for parabolic equation and δ = βτ/2.
We introduce new parameter α := 2τ/h2 > 0. Then δ = α for this scheme. From
equality

(1 + α)µ2 + 2(z − α)µ+ α− 1 = 0, z = τλ,

we express z = α − (µ − µ−1)/2 − α(µ + µ−1)/2. Substituting µ = eiϕ, ϕ ∈ [0, 2π),
into this expression, we get formula for boundary of the stability region

z = α(1− cosϕ)− i sinϕ.

The boundary is ellipse (x− α)2/α2 + y2 = 1, z = x+ iy (see Fig. 2(a)). If α = 0, the
ellipse degenerates into a segment [−i,+i] of the imaginary axis and we have double roots
in the points ±i (see Fig. 1, the case δ = 0). We can easily get the regions in complex
plane Cλ using homothety (centre is z = 0 and ratio is equal to 1/τ , see Fig. 2(b)). In
the complex plane Cλ, ellipse intersects real axis at points λ = 0 and λ = 4/h2, and the
vertical semi-axis is 1/τ .

Now we consider equation (20) in the form (τ > 0)

(1 + δ)µ2 + 2
(
(1 + ξ)z − δ

)
µ+ δ − 1− 2ξz = 0, (27)

where ξ := η/τ . Then δ = α(1 + 2ξ).
For α = 1, equation (27) has two roots

µ1 = z − 1, µ2 =
ξ

1 + ξ

and |µ2| < 1. So, stability region is |z−1| 6 1 for all ξ > 0. The boundary of this region
is S1(1), where Sr(z0) denotes a circle with radius r and centre z0.

The stability regions for α > 1 are presented in Fig. 4. The boundary transforms from
ellipse (the case ξ = 0) to circle Sα(α) (the case ξ =∞).
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Fig. 3. Stability region for α=1. Fig. 4. Boundaries of stability
regions for α > 1.

Fig. 5. Boundaries of stability
regions for 0 < α < 1.

(a) ξ = 0.2 (b) ξ = 1 (c) ξ = 5

Fig. 6. Boundaries of stability regions for 0 < α < 1, 0 < ξ < +∞: 1) α = 1, 2) α = 0.75, 3) α = 0.5,
4) α = 0.25, 5) α = 0.125.

The stability regions for 0 < α < 1 are presented in Fig. 5. For fixed α, the boundary
of stability region transforms from ellipse (the case ξ = 0) to circle Sα(α) (the case
ξ = ∞). Note that the stability regions intersect with the left-half plane Re z < 0.
For fixed ξ (see Fig. 6), the boundary transforms from circle S1(1) (the case α = 1) to
degenerate curve (the case α = 0)

z = − i sinϕ

1 + ξ − ξe−iϕ
, ϕ ∈ [0, 2π).

Remark 2. For all ξ > 0 and α > 0, the boundary of the stability region does not have
double root points.

Remark 3. We investigate stability regions which depend on pair parameters ξ > 0 and
α > 0. We can also use pair ξ and δ. In this case, we find α = δ/(1+2ξ) = τδ/(τ +2η).
So, all stability regions for ξ > 0 and δ > 0 are described, too.

The stability regions of a FDS for nonstationary problem (for example, parabolic,
pseudoparabolic) give necessary conditions for the stability of the such FDS. If the spec-
trum of a corresponding difference operator belongs to the stability region, then the FDS
is stable. Usually, NBCs depend on various parameters (in our case, γ0 and γ1). The
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spectrum of the operator Λ must lie in stability region of the investigated FDS. In general
case, points of the spectrum move in the complex plane when values of the parameters
in the NBCs vary. These points can be complex (problems with NBCs often are not self-
adjoint). The spectrum of the operator Λ with various integral boundary conditions is
investigated in [31]. If we compare results about the spectrum of the operator Λ with the
stability regions for the investigated FDS, then we can find parameters (and domains of
them), such that FDS is stable.

For example, in the case of NBCs (8)–(9), the spectrum of the operator Λ belongs to
[0, 4/h2] when γ0 + γ1 6 2. On the other hand, [0, 4/h2] belongs to stability region for
all values of parameters (for all ξ > 0 and α > 0, the boundary of the stability region
intersects real axis at points λ = 0 and λ = 4/h2). So, the stability of FDS follows.

4 Numerical experiment

We now present some numerical results demonstrating the efficiency of conditionally
consistent explicit scheme. Also, we investigated the dependence of error on parameter η
and time interval T . We consider a model problem (1)–(4) in the case X = 1. The right-
hand side function f , initial and boundary conditions were prescribed to satisfy the given
exact solution

u∗(x, t) = x(x− 1) sin t.

We consider uniform grids with different mesh sizes h and τ and analyse the con-
vergence and accuracy of the computed solution from the present scheme. Difference
problem (6)–(10) approximates differential problem (1)–(4) conditionally with truncation
error

O
(
τ

h2
+ τ2 + h2

)
.

To demonstrate the accuracy of FDS (6)–(9), we calculate the maximum norm of the error
of the numerical solution as

ε = max
i=0,...,M

∣∣UNi − u∗(xi, tN )
∣∣.

The results of the numerical test are listed for γ0 = γ1 = −10.
The dependence of ε versus grid step sizes τ, h and their quotient τ/h2 is presented

in Tables 1–3.

Table 1. The errors for different h, τ (γ0 = γ1 = −10,
η = 1, T = 10).

h τ τ/h2 ε
0.5 4.096 · 10−2 0.164 2.23581 · 10−2

0.25 5.120 · 10−3 0.082 5.95492 · 10−3

0.125 6.400 · 10−4 0.041 1.59542 · 10−3

0.0625 8.000 · 10−5 0.020 4.47834 · 10−4

0.03125 1.000 · 10−5 0.010 1.35981 · 10−4

0.015625 1.250 · 10−6 0.005 4.59697 · 10−5
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Table 2. The errors for different h, τ = h4 (γ0 = γ1 =
−10, η = 1, T = 2).

h τ = h4 τ/h2 ε
0.5 0.06250 0.250 3.7921 · 10−2

0.25 0.00391 0.063 9.5027 · 10−3

0.125 0.00024 0.016 2.3762 · 10−3

0.0625 0.00002 0.004 5.9405 · 10−4

0.03125 9.53674 · 10−7 0.001 1.48514 · 10−4

0.015625 5.96046 · 10−8 0.00025 3.71135 · 10−5

Table 3. The errors for different h, τ (γ0 = γ1 = −10,
η = 1, T = 2).

h τ = h2 τ/h2 ε
1/2 0.25000 1.0 4.83638 · 10−2

1/22 0.06250 1.0 2.49875 · 10−2

1/23 0.01563 1.0 1.93727 · 10−2

1/24 0.00391 1.0 2.13888 · 10−2

· · · · · · · · · · · ·
1/28 1.52588 · 10−5 1.0 2.20605 · 10−2

1/29 3.81470 · 10−6 1.0 2.20625 · 10−2

1/210 9.53674 · 10−7 1.0 2.20629 · 10−2

Table 4. The errors for different T : (a) h = 0.05, τ =
0.0003125, η = 1, γ0 = γ1 = −10; (b) h = 0.03125,
τ = 10−5, η = 1, γ0 = −10, γ1 = 1.

(a) (b)

T ε
1.57 1.98300 · 10−3

6.28 1.91139 · 10−3

9.42 1.91789 · 10−3

12.60 1.91998 · 10−3

T ε
1 7.64456 · 10−4

2 2.21989 · 10−3

5 4.50859 · 10−2

Numerical experiment illustrates the dependence of error on the quotient τ/h2. We
see that the numerical errors decays as the mesh size decrease. If we reduce h twice and
τ eight times, then τ/h2 reduces twice. Hence, the error of the solution also reduces, but
it is difficult to evaluate how fast it reduces (see Table 1). However, this is possible for
special values τ and h. If τ = h4, then truncation error is O(τ/h2 + τ2 + h2) = O(h2).
Therefore, the error of the solution reduces 4 times as h reduces twice. These results are
confirmed by simulation presented in Table 2. Similarly, for τ = h2, truncation error is
O(1), thus the error stays roughly constant as h and τ are reduced (Table 3).

In Fig. 7 we sketch dependence of the absolute maximum errors on η for two different
time intervals (T = 5 and T = 10). The error grows linearly for small η but saturates for
large η and approaches some constant value.

Some of the FDS for the second order parabolic equations with nonlocal integral
conditions have the following property [35, 36]. Calculations show that the scheme is
stable when T = 1, but the error becomes unbounded as T increases. Thus, FDS is not
uniformly stable with respect to t. Results in Table 4(a) are important because the error of
the numerical solution obtained using FDS (6)–(9) do not grow with the interval of time.
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Fig. 7. Errors’ dependence on η (τ = 10−5, h = 0.03125, γ0 = γ1 = −10).

Analogous results are presented in Table 4(b) for model problem (1)–(4) with expo-
nentially growing exact solution given by

u∗(x, t) = x3 exp t.

5 Conclusions and remarks

FDS (6)–(10) based on (5) is only conditionally consistent. It means that it is not sufficient
to reduce step sizes h and τ to improve the accuracy of the solution. It is necessary to re-
duce τ/h2 as well. This is fairly strong restriction. However, our attempts to approximate
derivative utxx better resulted in unstable FDS.

Let us consider another equation rather than difference equation (6)

U j+1
i − U j−1i

2τ
=
η

τ

(
U ji−1 − 2U ji + U ji+1

h2
−
U j−1i−1 − 2U j−1i + U j−1i+1

h2

)
+
U ji−1 − (U j+1

i + U j−1i ) + U ji+1

h2
+ F ji , (xi, tj) ∈ ω. (28)

Difference problem (28), (7)–(10) approximates the differential problem with the error
O(τ + h2 + τ2/h2), provided that the solution of the latter problem is sufficiently differ-
entiable. Let us write equation (20) for the difference problem to obtain δ = 2τ/h2. Since
λ ∈ [0, 4/h2], from Hurwitz criterion (see (24)) follows that 4τ/h2 · 1/(τ + 2η) > 4/h2

is false when η > 0. Hence, the scheme is unstable. Recall that the scheme is absolutely
stable for η = 0. We get stability regions if α = 2τ2/h2 · 1/(τ + 2η) (see Remark 3).

The FDS with equation

U j+1
i − U j−1i

2τ
=
η

τ

(
U ji−1 − 2U ji + U ji+1

h2
−
U j−1i−1 − 2U j−1i + U j−1i+1

h2

)
+

1

2

(
U ji−1 − 2U ji + U ji+1

h2
+
U j−1i−1 − 2U j−1i + U j−1i+1

h2

)
+ F ji ,

(xi, tj) ∈ ω,
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instead of equation (6) is unstable as well. In this case, the truncation error is O(τ + h2).
In order to get a conditionally stable scheme, we can leave the derivative utxx approx-

imated by (5) while two other derivatives ut and uxx are approximated in a different way
than equation (28).

Consider the following equation instead of (6):

U j+1
i − U j−1i

2τ
=
η

τ

(
U ji−1 − 2U j+1

i + U ji+1

h2
−
U j−1i−1 − 2U ji + U j−1i+1

h2

)
+
U ji−1 − 2U ji + U ji+1

h2
+ F ji , (xi, tj) ∈ ω. (29)

In this case, we have equation (20) with δ = 1 + 4η/h2. Hurwitz criterion implies that

τ

h2
6

1

2
. (30)

In fact, condition (30) is not very restrictive because equation (29) has the accuracyO(τ+
h2 + τ/h2). We get stability regions if α = (1 + 4η/h2) · τ/(τ + 2η) (see Remark 3).

It is still an open question whether we can get stable or conditionally stable FDS by
approximating the derivative utxx in a different way than (5).

Numerical experiment allows us to conclude that stable explicit schemes with condi-
tional approximation are useful in practice. Even though step size τ can be fairly small,
it is not a serious problem for modern computers. Explicit methods are very suitable for
parallel computing unlike the implicit schemes.

Let us note another fact about the stability of FDS for pseudoparabolic equations. The
analysis presented in this work is independent on boundary conditions. It is important that
the boundary conditions must be such that eigenvalues of matrix Λ would be nonnegative.
For example, we can take more general boundary conditions with weights

u(0, t) =

X∫
0

α(x)u(x, t) dx+ vl(t), 0 6 t 6 T, (31)

u(X, t) =

X∫
0

β(x)u(x, t) dx+ vr(t), 0 6 t 6 T, (32)

instead of nonlocal conditions (2), (3). Restrictions for coefficients α(x) and β(x) when
Λ will have only positive eigenvalues are investigated in [22, 23, 30, 36]. In the case
of complex eigenvalues, we can investigate the stability using the method described in
Subsection 3.2.
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25. M. Sapagovas, O. Štikonienė, A fourth-order alternating direction method for difference
schemes with nonlocal condition, Lith. Math. J., 49(3):309–317, 2009.
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