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Abstract. This paper presents the Drinfel’d–Sokolov system (shortly D(m,n)) in a detailed
fashion. The Jacobi’s elliptic function method is employed to extract the cnoidal and snoidal wave
solutions. The compacton and solitary pattern solutions are also retrieved. The ansatz method is
applied to extract the topological 1-soliton solutions of the D(m,n) with generalized evolution.
There are a couple of constraint conditions that will fall out in order to exist the topological soliton
solutions.
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1 Introduction

In 1834, Scott Russell discovered the solitary wave phenomena. Researching for solitary
wave solution in nonlinear mathematical physics has been an significant topic. A class
of solitary waves with compact support, called compactons by Rosenau and Hyman [1],
was inspected. Compactons were shown to knock elastically and also disappeared in finite
nuclei of exterior region. In recent years, many powerful methods had been proved such
as the homogeneous balance method [2], the hyperbolic function expansion method [3],
the Jacobi elliptic function method [4], F -expansion method [5], homotopy analysis
method [6], the bifurcation theory method of dynamical system [7] and Weierstrass ellip-
tic function method [8]. In this paper, we consider the nonlinear dispersion D(m,n) [9],

ut + (vm)x = 0,

vt + a(vn)xxx + buxv + cuvx = 0,
(1)
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where a, b, c, m, n are parameters. The nonlinear D(m,n) was exposed as a model
of water waves. Xie and Yan [9] studied system (1) and they obtained many types of
compacton and solitary pattern solutions. Deng et al. [10] obtained more new exact trav-
elling wave solutions of system (1) by using the Weierstrass elliptic function method.
Zhang et al. [11] investigated some smooth and non-smooth travelling wave solutions
of system (1) by using the bifurcation theory of planar dynamical system. Sweet et al.
[12] obtained trigonometric and hyperbolic type solutions to (1) by using the homotopy
analysis method. Sweet et al. [13] worked gDS equation by using a Miura-type transfor-
mation. Wen et al. [14] investigated some explicit expressions of solutions for the classical
Drienfel’d–Sokolov–Wilson equation (DSWE) (1) by using the bifurcation method and
qualitative theory of dynamical system

ut + pvvt = 0,

vt + ruvx + suxv + qvxxx = 0.
(2)

Equation has been studied by [15, 16]. Biswas and Triki [17] worked the 1-soliton
solution of Eq. (1) with power law nonlinearity by using the solitary wave ansatz method.
The paper is organized as follows. In Section 2, a reduction of Eq. (1) is made and the
concrete scheme of the approach for solving the equation is presented. New type Jacobi
elliptic functions solutions, compactons, solitary pattern and travelling wave solutions
of the equation D(m,n) are obtained in Section 3. In Section 4, we get the topological
soliton solution of this system by using the ansatz method. Some conclusions are given in
Section 5.

2 The solutions to the D(m,n) system

We first consider a nonlinear partial differantial equation of the form

F (u, ut, ux, uxx, uxt, . . . ), (3)

where F is a polynomial function with respect to variable changeable or some function
which can be reduced to a polynomial function by using some transformations.

Here the developed Jacobi elliptic function method introduces many new traveling
wave solutions. We set the solutions in the form

u(x, t) = Asnβ(Bξ, `), Acnβ(Bξ, `), Ascβ(Bξ, `), Ancβ(Bξ, `), (4)

where A, B, β are parameters that will be determined, sn , cn , sc, nc are the Jacobi
elliptic functions and ` is the modulus of the Jacobi elliptic functions (0 < ` < 1).

Let

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = k(x− λt), k, λ ∈ R, (5)

where k, λ are constants to be determined.
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Substituting (5) into (1), gives

λU ′ −
(
V m)′ = 0,

−λV ′ + ak2
(
V n
)′
+ bU ′V + cUV ′ = 0,

(6)

where a, b, c, m and n are parameters.
Integrating the first equation of system (6) with respect to ξ, yields

U =
1

λ
V m + C, (7)

where C is a integration constant [9].
Substituting (7) into the second equation of system (6) and integrating once, we get

(cC − λ)V + ak2
(
V n
)′
+

bm+ c

λ(m+ 1)
V m+1 = C0, (8)

where C0 is an integration constant and we accept C0 = 0.
To study compactons of (8), we suppose that (8) has the solution

V (ξ) = Asnβ(Bξ, `), (9)

with the aid of symbolic computation, we have

(cC − λ)Asnβ(Bξ, `) + ak2B2An(nβ − 1)nβsnnβ−2(Bξ, `)

− ak2B2Annβ
[
(nβ − 1)

(
1 + `2

)
+ (`+ 1)

]
snnβ(Bξ, `)

× ak2B2Annβ
[
`2(nβ − 1) + `(`+ 1)

]
snnβ+2(Bξ, `)

+
bm+ c

λ(m+ 1)
Am+1sn(m+1)β(Bξ, `) = 0. (10)

Therefore, we can obtain two possible systems of nonlinear algebraic equations
from (10) as

n = m+ 1, β =
2

n− 1
,

An−1 =
λ(m+ 1)(λ− cC)[(2m+ 1)(1 + `2) +m(1 + `)]

(bm+ c)(m+ 2)
,

k =
m

(m+ 1)B

√
bm+ c

2λa[(2m+ 1)(1 + `2) +m(1 + `)]
,

(11)

n = 1, β = − 2

m
,

A−m =
(bm+ c)[(2 +m)(1 + `2)−m(1 + `)]

λ(λ− cC)(m+ 1)(m+ 2)
,

k =
m

B

√
(cC − λ)

2(m+ 2)(1 + `2)− 2m(1 + `))
.

(12)
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Type 1. If we write (11) into (9), then we get the following new Jacobi elliptic function
solutions for the D(n− 1, n) equation with n > 1:

v1(ξ) =

[
λ(m+1)(λ−cC)[(2m+1)(1+`2)+m(1+`)]

(bm+c)(m+2)

× sn2

(
m

m+1

√
bm+c

2λa[(2m+1)(1+`2) +m(1+`)]
(x−λt), `

)]1/(n−1)
, (13)

u1(ξ) =

[
(m+1)(λ−cC)[(2m+1)(1+`2)+m(1+`)]

(bm+c)(m+2)

× sn2

(
m

m+1

√
bm+c

2λa[(2m+1)(1+`2)+m(1+`)]
(x−λt), `

)]
+ C. (14)

Remark 1. When the modulus ` → 0, solutions (13) and (14) become compacton
solutions

v1,1(ξ) =

[
λ(m+ 1)(λ− cC)(3m+ 1)

(bm+ c)(m+ 2)

× sin2
(

m

m+ 1

√
bm+ c

2λa(3m+ 1)
(x− λt)

)]1/(n−1)
(15)

for 0 6 |m/(m+ 1)
√

(bm+ c)/(2λa(3m+ 1))ξ| 6 π and otherwise v1,1(ξ) = 0,

u1,1(ξ) =

[
(m+ 1)(λ− cC)(3m+ 1)

(bm+ c)(m+ 2)

× sin2
(

m

m+ 1

√
bm+ c

2λa(3m+ 1)
(x− λt)

)]
+ C (16)

for 0 6 |m/(m+ 1)
√

(bm+ c)/(2λa(3m+ 1))ξ| 6 π and otherwise u1,1(ξ) = 0.

Remark 2. When the modulus `→ 1, we obtain the following kink solutions:

v1,2(ξ) =

[
λ(m+ 1)(λ− cC)(6m+ 1)

(bm+ c)(m+ 2)

× tanh2
(

m

m+ 1

√
bm+ c

2λa(6m+ 1)
(x− λt)

)]1/(n−1)
, (17)

u1,2(ξ) =

[
(m+ 1)(λ− cC)(6m+ 1)

(bm+ c)(m+ 2)

× tanh2
(

m

m+ 1

√
bm+ c

2λa(6m+ 1)
(x− λt)

)]
+ C. (18)
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Type 2. If we write (12) into (9), then we obtain other new exact Jacobi elliptic function
solutions for the D(m, 1) with m < 0

v2(ξ) =

[
(bm+ c)[(2 +m)(1 + `2)−m(1 + `)]

λ(λ− cC)(m+ 1)(m+ 2)

× sn2

(
m

√
cC − λ

2[(m+ 2)(1 + `2)−m(1 + `)]
(x− λt), `

)]−1/m
, (19)

u2(ξ) =

[
(bm+ c)[(2 +m)(1 + `2)−m(1 + `)]

λ2(λ− cC)(m+ 1)(m+ 2)

× sn2

(
m

√
cC − λ

2[(m+ 2)(1 + `2)−m(1 + `)]
(x− λt), `

)]
+ C. (20)

Remark 3. If the modulus ` → 0, then we get the solitary wave solutions with compact
support

v2,1(ξ) =

[
2(bm+ c)

λ(λ− cC)(m+ 1)(m+ 2)
sin2

(
m

2

√
(cC − λ)

)
(x− λt)

]−1/m
(21)

for 0 6 |(m/2)
√
(cC − λ)ξ| 6 π and otherwise v2,1(ξ) = 0,

u2,1(ξ) =

[
2(bm+ c)

λ2(λ− cC)(m+ 1)(m+ 2)
sin2

(
m

2

√
(cC − λ)

)
(x− λt)

]
+ C (22)

for 0 6 |(m/2)
√
(cC − λ)ξ| 6 π and otherwise u2,1(ξ) = 0.

Remark 4. When the modulus `→ 1, then we obtain the other kink solutions

v2,2(ξ) =

[
4(bm+ c)

λ(λ− cC)(m+ 1)(m+ 2)
tanh2

(
m

2

√
cC − λ

2

)
(x− λt)

]−1/m
, (23)

u2,2(ξ) =

[
4(bm+ c)

λ2(λ− cC)(m+ 1)(m+ 2)
tanh2

(
m

2

√
cC − λ

2

)
(x− λt)

]
+ C. (24)

Similarly, if we use another transformation for (8),

V (ξ) = Acnβ(Bξ, `), (25)

and substituting (25) into (8) yields

(cC −A)Acnβ(Bξ, `) + ak2B2An(nβ − 1)nβ
(
1− `2

)
cnnβ−2(Bξ, `)

+ ak2B2Annβ
[(
`2 + `− 1

)
+ (nβ − 1)

(
2`2 − 1

)]
cnnβ(Bξ, `)− ak2B2Annβ`

×
[
`(nβ − 1) + `+ 1

]
cnnβ+2(Bξ, `)

bm+ c

λ(m+ 1)
Am+1cn(m+1)β(Bξ, `) = 0. (26)
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So we can obtain two possible systems of nonlinear algebraic equations from (26) as

n = m+ 1, β =
2

n− 1
,

An−1 =
λ(m+ 1)(cC − λ)[m(`2 + `− 1) + (m+ 2)(2`2 − 1)]

(bm+ c)(m+ 2)(1− `2)
,

k =
m

(m+ 1)B

√
− bm+ c

2λa[m(`2 + `− 1) + (m+ 2)(2`2 − 1)]
,

n = 1, β = − 2

m
,

A−m =
(bm+ c)[m(`2 + `− 1) + (m+ 2)(2`2 − 1)]

λ(λ− cC)(m+ 2)(1− `2)
,

k =
m

B

(λ− cC)
2a[m(`2 + `− 1) + (m+ 2)(2`2 − 1)]

.

Type 3. We obtain the following another type Jacobi elliptic function solutions for
D(n− 1, n) equation:

v3(ξ)=

[
λ(m+1)(cC−λ)[m(`2+`−1)+(m+2)(2`2−1)]

(bm+c)(m+2)(1−`2)

×cn2

(
m

m+1

√
−(bm+c)

2λa[m(`2+`−1)+(m+2)(2`2−1)]
(x−λt), `

)]1/(n−1)
, (27)

u3(ξ)=

[
(m+1)(cC−λ)[m(`2+`−1)+(m+2)(2`2−1)]

(bm+c)(m+2)(1−`2)

×cn2

(
m

m+1

√
−(bm+c)

2λa[m(`2+`−1) + (m+2)(2`2−1)]
(x−λt), `

)]
+ C. (28)

Remark 5. If the modulus ` → 0, then the exact compacton solution of D(n − 1, n)
equation is given by

v3,1(ξ) =

[
2λ(m+1)(λ−cC)
(bm+c)(m+2)

cos2
(

m

2(m+1)

√
bm+c

λa(m+1)
(x−λt)

)]1/(n−1)
(29)

for |m/(2(m+ 1))
√
(bm+ c)/(λa(m+ 1))ξ| 6 π/2 and otherwise v3,1(ξ) = 0,

u3,1(ξ) =

[
2(m+1)(λ−cC)
(bm+c)(m+2)

cos2
(

m

2(m+1)

√
bm+c

λa(m+1)
(x−λt)

)]
+ C (30)

for |m/(2(m+ 1))
√
(bm+ c)/(λa(m+ 1))ξ| 6 π/2 and otherwise u3,1(ξ) = 0.
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Type 4. From Eqs. (27) and (28), we obtain the following other type Jacobi elliptic
function solutions for D(m, 1) equation for m < 0:

v4(ξ) =

[
(bm+ c)[m(`2 + `− 1) + (m+ 2)(2`2 − 1)]

λ(λ− cC)(m+ 2)(1− `2)

× cn2

(
m

√
(λ− cC)

2a[m(`2 + `− 1) + (m+ 2)(2`2 − 1)]
(x− λt), `

)]−1/m
, (31)

u4(ξ) =

[
(bm+ c)[m(`2 + `− 1) + (m+ 2)(2`2 − 1)]

λ2(λ− cC)(m+ 2)(1− `2)

× cn2

(
m

√
(λ− cC)

2a[m(`2 + `− 1) + (m+ 2)(2`2 − 1)]
(x− λt), `

)]
+ C. (32)

Remark 6. If the modulus of Jacobi elliptic function `→ 0, then we have the compacton
solutions

v4,1(ξ) =

[
−2(bm+ c)(m+ 1)

λ2(λ− cC)(m+ 2)
× cos2

(
m

2

√
(cC − λ)

a
(x− λt)

)]−1/m
(33)

for |(m/2)
√
(cC − λ)/aξ| 6 π/2 and otherwise v4,1(ξ) = C,

u4,1(ξ) =

[
−2(bm+ c)(m+ 1)

λ2(λ− cC)(m+ 2)
cos2

(
m

2

√
(cC − λ)

a
(x− λt)

)]
+ C (34)

for |(m/2)
√
cC − λ)/aξ| 6 π/2 and otherwise u4,1(ξ) = C.

3 Exact soliton and solitary pattern solutions of nonlinear D(m,n)
equation

To work soliton and solitary pattern solutions of (1), we deal with another transformation

V (ξ) = Ascβ(Bξ, `). (35)

If we substitution (35) into (8), then we have the following solutions.

Type 5. D(n− 1, n) equation has the Jacobi elliptic function solutions for n > 1

v5(ξ) =

[
λ(m+1)(cC−λ)[(m+2)(2−`2) +m(2−`)]

(bm+c)(m+2)

× sc2
(

m

(m+1)

√
−(bm+c)

2λa[(m+2)(2−`2) +m(2−`)]
(x−λt), `

)]1/(n−1)
, (36)
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u5(ξ) =

[
(m+1)(cC−λ)[(m+2)(2−`2)+m(2−`)]

(bm+c)(m+2)

× sc2
(

m

(m+1)

√
−(bm+c)

2λa[(m+2)(2−`2)+m(2−`)]
(x−λt), `

)]
+C. (37)

Remark 7. When the modulus in rows ` → 0 and ` → 1, respectively, we get the
following travelling wave and solitary pattern solutions:

v5,1(ξ) =

[
4λ(m+ 1)2(cC − λ)
(bm+ c)(m+ 2)

× tan2
(

m

2
√
2(m+ 1)

√
− bm+ c

λa(m+ 1)
(x− λt)

)]1/(n−1)
, (38)

u5,1(ξ) =

[
4(m+ 1)2(cC − λ)
(bm+ c)(m+ 2)

× tan2
(

m

2
√
2(m+ 1)

√
− bm+ c

λa(m+ 1)
(x− λt)

)]
+ C, (39)

v5,2(ξ) =

[
2λ(m+ 1)2(cC − λ)
(bm+ c)(m+ 2)

× sinh2
(

m

2(m+ 1)

√
− bm+ c

λa(m+ 1)
(x− λt)

)]1/(n−1)
(40)

for 0 6 |m/(2(m+ 1))
√
−(bm+ c)/(λa(m+ 1))ξ| 6 π and otherwise v5,2(ξ) = 0,

u5,2(ξ) =

[
2(m+ 1)2(cC − λ)
(bm+ c)(m+ 2)

× sinh2
(

m

2(m+ 1)

√
− bm+ c

λa(m+ 1)
(x− λt)

)]
+ C (41)

for 0 6 |m/(2(m+ 1))
√
−(bm+ c)/(λa(m+ 1))ξ| 6 π and otherwise u5,2(ξ) = 0.

Type 6. From the algebraic system, we get the other new type Jacobi elliptic function
solutions for the D(m, 1) equation with m < 0

v6(ξ) =

[
(bm+ c)[(m+ 2)(2− `2)−m(2− `)]

λ(m+ 1)(cC − λ)(m+ 2)

× sc2
(
m

√
λ− cC

2[(m+ 2)(2− `2)−m(2− `)]
(x− λt), `

)]−1/m
, (42)
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u6(ξ) =

[
(bm+ c)[(m+ 2)(2− `2)−m(2− `)]

λ2(m+ 1)(cC − λ)(m+ 2)

× sc2
(
m

√
λ− cC

2[(m+ 2)(2− `2)−m(2− `)]
(x− λt), `

)]
+ C. (43)

Remark 8. In Eqs. (42) and (43), when the modulus of Jacobi elliptic function in rows
`→ 0 and `→ 1, we get soliton and solitary pattern solutions, respectively,

v6,1(ξ) =

[
4(bm+ c)

λ(m+ 1)(cC − λ)(m+ 2)
tan2

(
m

2
√
2

√
(λ− cC)(x− λt)

)]−1/m
, (44)

vu6,1(ξ) =

[
4(bm+ c)

λ2(m+ 1)(cC − λ)(m+ 2)
tan2

(
m

2
√
2

√
(λ− cC)(x− λt)

)]
+ C, (45)

v6,2(ξ) =

[
2(bm+ c)

λ(m+ 1)(cC − λ)(m+ 2)
sinh2

(
m

2

√
(λ− cC)(x− λt)

)]−1/m
(46)

for 0 6 |(m/2)
√
λ− cCξ| 6 π and otherwise u6,2(ξ) = 0,

u6,2(ξ) =

[
2(bm+ c)

λ2(m+ 1)(cC − λ)(m+ 2)
sinh2

(
m

2

√
(λ− cC)(x− λt)

)]
+ C (47)

for 0 6 |(m/2)
√
λ− cCξ| 6 π and otherwise u6,2(ξ) = 0. We deal with last another

transformation

V (ξ) = Ancβ(Bξ, `). (48)

Type 7. From the algebraic system, we obtain the other new type Jacobi elliptic function
solutions for the D(n− 1, n) equation with n > 1

v7(ξ) =

[
λ(m+1)(λ−cC)[2(m+1)(2`2−1)+m(`−`2)]

(bm+c)(m+2)`2

× nc2
(

m

m+1

√
−(bm+c)

2λa[2(m+1)(2`2−1)+m(`−`2)]
(x−λt), `

)]1/(n−1)
, (49)

u7(ξ) =

[
(m+1)(λ−cC)[2(m+1)(2`2−1)+m(`−`2)]

(bm+c)(m+2)`2

× nc2
(

m

m+1

√
−(bm+c)

2λa[2(m+1)(2`2−1)+m(`−`2)]
(x−λt), `

)]
+ C. (50)
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Remark 9. When the modulus `→ 1, so we get new type solitary pattern solutions

v7,2(ξ) =

[
2λ(m+1)2(λ−cC)
(bm+c)(m+2)

cosh2
(

m

2(m+1)

√
−(bm+c)

λa(m+1)
(x−λt)

)]1/(n−1)
(51)

for |(m/(2(m+ 1))
√
−(bm+ c)/(λa(m+ 1))ξ| 6 π/2 and otherwise v7,2(ξ) = 0,

u7,2(ξ) =

[
2(m+1)2(λ−cC)
(bm+c)(m+2)

cosh2
(

m

2(m+1)

√
−(bm+c)

λa(m+1)
(x−λt)

)]
+ C (52)

for |m/(2(m+ 1))
√
−(bm+ c)/(λa(m+ 1))ξ| 6 π/2 and otherwise u7,2(ξ) = C.

Type 8. From the algebraic system, we have the other new type Jacobi elliptic function
solutions for the D(m, 1) equation with m < 0

v8(ξ) =

[
(bm+ c)[2(1− 2`2) +m(`− `2)]
λ(cC − λ)(m+ 1)(m+ 2)`2

× nc2
(
m

√
(cC − λ)

2a[2(1− 2`2) +m(`− `2)]
(x− λt), `

)]−1/m
, (53)

u8(ξ) =

[
(bm+ c)[2(1− 2`2) +m(`− `2)]
λ2(cC − λ)(m+ 1)(m+ 2)`2

× nc2
(
m

√
(cC − λ)

2a[2(1− 2`2) +m(`− `2)]
(x− λt), `

)]
+ C. (54)

Remark 10. If the modulus of Jacobi elliptic function in row `→ 1, then we have

v8,2(ξ) =

[
−2(bm+ c)

λ(cC − λ)(m+ 2)(m+ 1)
cosh2

(m
2

√
(λ− cC)

λa
(x− λt)

)]−1/m
(55)

for |(m/2)
√
−(λ− cC)/(λa)ξ| 6 π/2 and otherwise v8,2(ξ) = 0,

u8,2(ξ) =

[
−2(bm+ c)

λ2(cC − λ)(m+ 2)(m+ 1)
cosh2

(
m

2

√
(λ− cC)

λa
(x− λt)

)]
+ C (56)

for |(m/2)
√
−(λ− cC)/(λa)ξ| 6 π/2 and otherwise u8,2(ξ) = 0.

Corollary 1. (i) When n > 1, the obtained solutions (23) and (24) are full agreement
with the results (2.11a) and (2.11b) described in [9].

(ii) When m < 0, the obtained solutions (21), (33) and (46) agree well with the results
(29), (34) and (30) in [10], respectively.

(iii) Many solutions that obtained by Xie and Yan [9] by using sine-cosine method are
gotten by Jacobi elliptic function method which we have present in this study.
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4 Topological 1-soliton solution of the D(m,n) equation

The D(m,n) equation with generalized evolution studied in this section is given by [17](
ql
)
t
+ k
(
rm
)
x
= 0, (57)(

rl
)
t
+ a
(
rn
)
xxx

+ bqxr + cqrx = 0, (58)

where k, a, b and c are constants while the parameters l, m and n are all positive integers.
If setting l = 1, Eqs. (57) and (58) collapse to the commonly known D(m,n) equation
studied in [18–20].

Note that the first term in Eq. (57), represents the generalized evolution term while
the second term is the dispersive term. In Eq. (58), the first term is again the generalized
evolution term while the second term is the nonlinear dispersion and the last two terms
are the nonlinear coupling terms.

In this section, we interest to find the topological 1-soliton solution to the D(m,n)
equation given by Eqs. (57) and (58) as it appears, namely, for general values of l, m
and n. Note that it is not possible to integrate Eqs. (57) and (58) for any general values of
l,m and n by the classical method of integration. However, a solitary wave ansatz method
leads to a closed form soliton solution to this model equation.

To start off, the hypothesis is given by [21, 22]

q(x, t) = A1 tanh
p1 τ (59)

and
r(x, t) = A2 tanh

p2 τ, (60)

where
τ = B(x− vt), (61)

A1 and A2 and B are free parameters while v is the velocity of the solitons in (59)–(61).
The unknown exponents p1 > 0 and p2 > 0 will be determined as a function of l,m
and n.

From (59) it is possible to obtain(
ql
)
t
= p1lvA

l
1B
(
tanhlp1+1τ − tanhlp1−1τ

)
, (62)

qx = p1A1B
(
tanhp1−1τ − tanhp1+1τ

)
, (63)

and, similarly, from (60) we get(
rl
)
t
= p2lvA

l
2B
(
tanhlp2+1τ − tanhlp2−1τ

)
, (64)

rx = p2A2B
(
tanhp2−1τ − tanhp2+1τ

)
, (65)(

rm)x = mp2A
m
2 B
(
tanhmp2−1τ − tanhmp2+1τ

)
, (66)(

rn
)
xxx

= np2A
n
2B

3
[
(np2 − 1)(np2 − 2) tanhnp2−3τ

− 2p22n
2 +(np2 − 1)(np2 − 2) tanhnp2−1τ

+ 2p22n
2 +(np2 + 1)(np2 + 2) tanhnp2+1τ

− (np2 + 1)(np2 + 2) tanhnp2+3τ
]
. (67)
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Substituting (62)–(67) into (57) and (58), respectively, yields

p1lvA
l
1B
(
tanhlp1+1 τ − tanhlp1−1 τ

)
+ kmp2A

m
2 B
(
tanhmp2−1 τ − tanhmp2+1 τ

)
= 0 (68)

and
p2lvA

l
2B
(
tanhlp2+1 τ − tanhlp2−1 τ

)
+ anp2A

n
2B

3
[
(np2 − 1)(np2 − 2) tanhnp2−3 τ

−
{
2p22n

2 + (np2 − 1)(np2 − 2)
}
tanhnp2−1 τ

+
{
2p22n

2 + (np2 + 1)(np2 + 2)
}
tanhnp2+1 τ

− (np2 + 1)(np2 + 2) tanhnp2+3 τ
]

+ (bp1 + cp2)A1A2B
(
tanhp1+p2−1 τ − tanhp1+p2+1 τ

)
= 0. (69)

Now, from (68), matching the exponents of tanhlp1+1 τ and tanhmp2+1 τ , gives

lp1 = mp2, (70)

which is also obtained by equating the exponents of tanhlp1−1 τ and tanhmp2−1 τ . Set-
ting their respective coefficients to zero, yields

lp1vA
l
1 = kmp2A

m
2 . (71)

Also, from (69), equating the exponent pairs of tanhnp2+3 τ , tanhp1+p2+1 τ and
tanhlp2+1 τ , tanhnp2+1 τ , respectively, yields

np2 + 2 = p1 + p2 (72)
and

np2 = lp2. (73)

The latter gives
n = l. (74)

By inserting (70) and (74) into (72), we obtain

p2 =
2n

m− n(n− 1)
. (75)

Substituting (75) into (70), we get

p1 =
2m

m− n(n− 1)
. (76)

It should be remarked that the soliton solutions (59) and (60) exist only when p1 > 0 and
p2 > 0. These conditions imply that m > n(n− 1) in Eqs. (75) and (76).

Also the substitution of (75) and (76) into (71) gives

v =
kAm2
Al1

, (77)
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which determine the velocity of the soliton. Again, from (69), the linearly independent
functions are tanhp2+j τ for j = ±1,±3. Therefore, setting their respective coefficients
to zero, yields the following parametric equations:

p2lvA
l
2B + anp2A

n
2B

3
{
2p22n

2 + (np2 + 1)(np2 + 2)
}

+ (bp1 + cp2)A1A2B = 0, (78)

anp2A
n
2B

3(np2 + 1)(np2 + 2) + (bp1 + cp2)A1A2B = 0, (79)

p2lvA
l
2B + anp2A

n
2B

3
{
2p22n

2 + (np2 − 1)(np2 − 2)
}
= 0, (80)

anp2A
n
2B

3(np2 − 1)(np2 − 2) = 0. (81)

To solve (81), we have considered the two cases.

Case 1: np2 − 1 = 0. This yields

p2 =
1

n
. (82)

Further substitution of (82) into (75) and (78)–(80), respectively, gives

m+ n = 3n2, (83)

p1 =
m

n2
, (84)

B =

√
− (mb+ nc)A1

6an2An−12

, (85)

v = −2aB2. (86)

Equating the two values of the velocity v from (77) and (85), gives

B =

√
− kA

m
2

2aAl1
, (87)

which implies that it is necessary to have

ak < 0 (88)

for solitons to exist.
Besides, Eq. (85) shows that the solitons exist for

a(mb+ c) < 0. (89)

Further, equating the two values of the free parameter B from (85) and (87), gives

3kn2Am+n−1
2 = (mb+ nc)Al+1

1 . (90)

Case 2: np2 − 2 = 0. From it, we get

p2 =
2

n
. (91)
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By substituting (91) into (75) and (78)–(80), respectively, we obtain

m+ n = 2n2, (92)

p1 =
2m

n2
, (93)

B =

√
− (mb+ nc)A1

12an2An−12

, (94)

v = −8aB2. (95)

Equating the two values of the velocity v from (77) and (95), gives

B =

√
− kA

m
2

8aAl1
, (96)

which implies that it is necessary to have

ak < 0 (97)

for existing solitons.
Besides, Eq. (94) shows that the solitons exist for

a(mb+ c) < 0. (98)

Further, equating the two values of the free parameter B from (94) and (96), gives

3kn2Am+n−1
2 = 2(mb+ nc)Al+1

1 . (99)

Lastly, we can determine the dark soliton solutions for the D(m,n) equation with gener-
alized evolution (57) and (58) when we substitute (77), (82), (84) and (85) or (87) in (59)
and (60) with the respective constraints (83) and (90) for the first case of solution or we
substitute (77), (91), (93) and (94) or (96) in (59) and (60) with the respective constraints
(92) and (99) for the second case of solution as

q(x, t) = A1 tanh
2m/(m−n(n−1))[B(x− vt)

]
, (100)

r(x, t) = A2 tanh
2n/(m−n(n−1))[B(x− vt)

]
, (101)

which provided that a(mb+ nc) < 0 and ak < 0.

5 Conclusions

We presented the various form of the Drinfel’d–Sokolov equation in this paper. Its gen-
eralized version D(m,n) equation was also addressed. A furthermore generalized version
of this manuscript was studied, where the generalized evolution was taken into consider-
ation. The Jacobi’s elliptic function method was applied and several forms of solutions
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including the cnoidal and snoidal wave solutions were obtained. The compacton, solitary
pattern, periodic wave solutions were also obtained. Finally, the topological 1-soliton
solution was also retrieved for the D(m,n) equation with genreralized evolution. In this
case a couple of constraint conditions fell out during the course of derivation of the soliton
solution that must hold in order to exist the solution.
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