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Identification of fast-changing signals by means
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Abstract. The adaptive approach of strongly non-linear fast-changing signals identification is
discussed. The approach is devised by adaptive sampling based on chaotic mapping “in yourself”
of a signal. Presented sampling way may be utilized online in the automatic control of chemical
reactor (throughout identification of concentrations and temperature oscillations in real-time), in
medicine (throughout identification of ECG and EEG signals in real-time), etc. In this paper, we
presented it to identify the Weierstrass function and ECG signal.
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1 Introduction

One of fundamental problems in signals analyses and transformation is their identifica-
tion, most often by means of sampling. The selection of an appropriate sampling method
has been widely discussed in publications. The basic way of sampling was presented
by Shannon [1], where the reconstruction of a signal is achieved on the basis of evenly
collected samples. In accordance with Nyquist–Shannon theorem, the signal should be
sampled with the frequency that is at least twice as big as the boundary frequency of its
spectrum. However, the determination of the boundary frequency is not always possible
in practice, especially in the case of fast-changing signals.

Under such circumstances sampling should be performed at uneven time intervals,
for example: by adaptive sampling, in which the actual sampling moment depends on the
previous sample value. Uneven and adaptive sampling methods were described in [2–15].

The scope of this paper is the adaptive sampling approach that is much easier than
the so far described approaches. It is based on uneven adaptive sampling with the use of
the chaotic representation of the tested signal. Unlike other popular methods, it does not
require any additional analyses of the signal, such as, for example: Fourier’s method, or
determination of the frequency spectrum. As a result, the transformed signal is derived
with good accuracy.
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Notations: a, b – Weierstrass function parameters, E – information entropy, N – number
of samples, observations horizon, p – probability, t – time, λ – Lyapunov’s exponent,
w(t) – function generating nonlinear oscillations.

2 Sampling method

A fundamental problem encountered at identifying signal w(t) is an appropriate selection
of the sampling rate. This is essential especially in the case of strongly non-linear fast-
changing signals, for example: in a chemical reactor with recycle [16, 17] or in EEG
signals [18], when even small time intervals between successive samples do not guarantee
the detection of all signal changes.

Such inconvenience may be evaded by using the mapping “in yourself” of the signal
involving the adaptive sampling at time intervals tk, designating the values of the samples,
in accordance with the following recursive equation:

tk+1 = w(tk). (1)

The condition for the use of this method is that the sequence generated by Eq. (1)
is chaotic. Then the derived information about the investigated signal is the best, as
confirmed by the information entropy of the information of sequence (1)

E = −
N∑

k=1

pk log2 pk = log2N, (2)

where N is the observation horizon, whereas pk is the probability of designating moment
tk, at which the sample should be collected. Due to the uniqueness of the elements of
sequence (1), particular probabilities are the same, equal to pi = 1/N . For the infinitely
long observation horizon, the entropy has an infinite value, which may be directly inferred
from Eq. (2). Accordingly, a complete reconstruction of function w(t) is derived.

3 Example w(t) as Weierstrass function

A good example for the application of the discussed approach is the identification of the
signal, where the right-hand side of Eq. (1) is the Weierstrass function [19–21]

w(t) =
∞∑
i=0

ai cos
(
πbit

)
, (3)

where 0 < a < 1, whereas b is an odd number fulfilling condition ab > 1 + 1.5π, as the
signal is infinitely fast-changing, which means that there is a significant change of its value
at each moment of time. In consequence, the derivative of the signal in relation to time:
dw/dt has an infinitely big value at each time moment t. Thus, under such circumstances
it is not possible to select a sampling range that would guarantee the accurate identification
of the function. An exemplary graph of function w(t) is shown in Fig. 1.
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Fig. 1. Graph of the Weierstrass function generated
from Eq. (3) (a = 0.5, b = 571).

Fig. 2. Discrete time series of sampling distribution of
Weierstrass function. Visible high sensitivity to initial
conditions: the two graphs (continuous and dotted
line) starts from two nearby initial t0 values.

In accordance with (1), the recursive transformation for the Weierstrass function (3)
assumes the following form:

tk+1 =

∞∑
i=0

ai cos
(
πbitk

)
. (4)

As shown in the above analysis, the identification of signal w(t) is relevant only
if Eq. (4) generates a chaotic sequence of the elements tk. Thus, a possibility of the
occurrence of such sequence should be checked, for example, by determining the sign of
Lyapunov’s exponent concerning transformation (4). In view of the nature of the Weier-
strass function derivative, Lyapunov’s exponent

λ = lim
n→∞

1

n

n−1∑
k=0

ln

∣∣∣∣dw(t)dt

∣∣∣∣
t=tk

(5)

has always an infinitely big positive value. Accordingly, the sequence generated by trans-
formation (4) is chaotic. Exemplary distribution of the samples of function w(tk) derived
from transformation (4) is shown in Fig. 2, where the successive samples are marked on
the horizontal axis. Figure 2 also reflects the phenomenon of infinite sensitivity of the
recursive process to the change of the initial conditions. Such great sensitivity results
from an infinitely big value of Lyapunov’s exponent (5). In Fig. 2, variables t0 differ at
moment k = 0 with the value equal only to 10−16. Despite such small difference at the
beginning, the values the variables are significantly different even after the first step. The
nature of Lyapunov’s exponent for 100 elements the Weierstrass sequence is shown in
Fig. 3. It should also be noted that although the solutions of Eq. (4) are chaotic, the graph
of Lyapunov’s exponent as in Fig. 3 does not have a fractal nature.

To illustrate the discussed identification method, exemplary detection of signal w(t)
for a = 0.5 was performed – see Fig. 4, which is very consistent with the graph derived
from Eq. (1) (Fig. 1). It should also be stressed that the graph in Fig. 4 is, at the same
time, a strange attractor of transformation (4).
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Fig. 3. Graph of Lyapunov’s exponent (b = 571). Fig. 4. Graph of the Weierstrass function generated
from Eq. (4) (a = 0.5, b = 571).

4 Example w(t) as ECG signal

Presented in this paper sampling approach may be also utilized in medicine for identifi-
cation of ECG signals in real-time. It can be used in particular to accurately determine
the actual amplitude and frequency of the measured signals. This allows the doctor or the
automatic control device to react in time and in the right way.

Further analysis we have relied on sample ECG results available in [22] (thin line in
Fig. 5). Therefore the right-hand side of Eq. (1) is not now a continuous function as before,
but a discrete set of measurement results. The part of the ECG signal was reconstructed
using an identification procedure (1) (large dots in Fig. 5). In practice, the method is best
for a on-line continuous signal.

Fig. 5. ECG signal identification. Thin line – actual ECG signal; dots – identification result.

5 Concluding remarks

The discussed method of signal identification by means of uneven adaptive sampling
based on recursive chaotic transformation may be applied, first and foremost, for the iden-
tification of strongly non-linear fast-changing signals. An exemplary use of the method
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was shown for the identification of the signal generated by the Weierstrass function. The
method may also be utilized in the automatic control process based on the observation of
the fast-changing signal in real-time. Unlike other popular approaches, it does not require
additional analyses of the identified signal, or Fourier’s analysis, or determination of the
frequency spectrum. The method is easy in practical application and renders accurate
representation of the original signal.
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