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Abstract. Dimensionality reduction is a very important tool in data mining. An intrinsic
dimensionality of a data set is a key parameter in many dimensionality reduction algorithms. When
the intrinsic dimensionality of a data set is known, it is possible to reduce the dimensionality of
the data without losing much information. To this end, it is reasonable to find out the intrinsic
dimensionality of the data. In this paper, one of the global estimators of intrinsic dimensionality,
the packing numbers estimator (PNE), is explored experimentally. We propose the modification
of the PNE method that uses geodesic distances in order to improve the estimates of the intrinsic
dimensionality by the PNE method.

Keywords: multidimensional data, intrinsic dimensionality, packing numbers estimator, manifold,
degrees of freedom, image understanding, motion.

1 Introduction

In the real applications, we confront with data that are of a very high dimensionality. For
example, in the image analysis each image is described by a large number of pixels of
different colour. Another application, that produces data of a very high dimensionality,
is analysis of DNA microarray data [1]. The analysis of high-dimensional data is usually
challenging. The dimensionality reduction or visualization methods are recent techniques
to discover knowledge hidden in multidimensional data sets [2]. Although data are con-
sidered in a high-dimensional space, in fact they are often either points of a nonlinear
manifold of some lower dimensionality or the points close to that manifold. Thus, one of
the major problems is to find the exact dimensionality of the manifold. Afterwards, it is
reasonable to transfer the data points that lie on or near to this manifold into the space,
the dimensionality of which is coincident with the manifold dimensionality. As a result,
the dimensionality of the data set will be reduced to that of a manifold. Therefore, the
problem is to disclose the manifold dimensionality, i.e. the intrinsic dimensionality (ID)
of the analysed data.

The intrinsic dimensionality of a data set is usually defined as the minimal number
of parameters or latent variables necessary to describe the data [3]. Latent variables are
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still often called as degrees of freedom of a data set [3, 4]. Let the dimensionality of the
analysed data be n. High-dimensional data sets can have meaningful low-dimensional
structures hidden in the observation space, i.e. the data are of a low intrinsic dimension-
ality d (d� n).

Recently, a lot of manifold learning methods have been proposed to solve the problem
of nonlinear dimensionality reduction. Important manifold learning algorithms include
isometric feature mapping (ISOMAP) [4], locally linear embedding (LLE) [5, 6], Lapla-
cian eigenmaps (LE) [7], Hessian LLE [8] etc. They all assume data to distribute on an
intrinsically low-dimensional manifold and reduce the dimensionality of data by investi-
gating the intrinsic structure of data. However, all manifold learning algorithms require
the intrinsic dimensionality of the data as a key parameter for implementation. In recent
years, ISOMAP and LLE have drawn great interests. They avoid nonlinear optimization
and are simple to implement. However, both ISOMAP and LLE methods need the precise
information of both the input parameters k for the neighbourhood identification and the
intrinsic dimensionality d of the data set. The ways to select the value of the parameter k
are proposed and investigated in [9–12]. If the intrinsic dimensionality d is set larger than
what it really is, much redundant information will also be preserved; if it is set smaller,
useful information of the data could be lost during the dimensionality reduction [13].

Due to the increased interest in dimensionality reduction and manifold learning, a lot
of techniques have been proposed in order to estimate the intrinsic dimensionality of
a data set [14–19] etc. Techniques for intrinsic dimensionality estimation can be divided
into two main groups [20]: (1) estimators based on the analysis of local properties of the
data (the correlation dimension estimator [21], the nearest neighbour dimension estimator
[22–24], and the maximum likelihood estimator (MLE) [19]), and (2) estimators based
on the analysis of global properties of the data (the eigenvalue-based estimator [23, 25],
the packing numbers estimator (PNE) [18], and the geodesic minimum spanning tree
estimator [17]). Local intrinsic dimensionality estimators are based on the idea that the
number of data points, that are covered by a hypersphere of some radius r̃ around a given
data point, grows in proportion to r̃d, where d is the intrinsic dimensionality of the data
manifold around that point. As a result, the intrinsic dimensionality d can be estimated
by measuring the number of data points, covered by a hypersphere with a growing radius
r̃. While the local estimators of the intrinsic dimensionality compute the average over
the local estimates of intrinsic dimensionality, the global estimators consider the data as
a whole when estimating the intrinsic dimensionality.

The packing number estimator (PNE) [18] has drawn great interests in the literature.
Huge number of references may be found. However, to our knowledge, no further devel-
opment of this estimator is done. Our research improves the quality of the estimates using
packing numbers.

In this paper, we propose the modification of the PNE method that uses geodesic
distances. We compare the application of both Euclidean and geodesic distances between
data points in the PNE algorithm. The application of the geodesic distances in the intrinsic
dimensionality estimation using packing numbers is grounded via the large experimental
investigation.
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2 Packing numbers estimator of the intrinsic dimensionality

Packing numbers estimator [18] is one of the global estimators of the intrinsic dimension-
ality.

At first, several definitions are given for clarity.

1. Given a metric space Rn with the distance metrics d(·, ·), a set X ⊂ Rn is said to
be r-separated, if d(Xi, Xj) > r for all distinct Xi, Xj ∈ X . In [18], r is called as
a resolution.

2. The r-packing number M(r) of a set X ⊂ Rn is defined as the maximum cardinality
of an r-separated subset of X [18].

In [18], the intrinsic dimensionality of a set X has been suggested to be found by
evaluating the limit

d = − lim
r→0

logM(r)

log r
. (1)

For a finite set, the zero limit cannot be achieved. Therefore, Kégl [18] suggests to
redefine the intrinsic dimensionality in a scale-dependent manner. Let the analysed data
set X consists of m n-dimensional points Xi = (xi1, . . . , xin), i = 1,m (Xi ∈ Rn).
Then the intrinsic dimensionality of the finite data set X is estimated by the formula

d̂ = − logM(r2)− logM(r1)

log r2 − log r1
. (2)

In order to find the r-packing number M(r) for a finite data set X = {X1, . . . , Xm},
Kégl [18] applies the following approximation algorithm. Given a data set X , the algo-
rithm starts with an empty set of centers C, and in an iteration over X it adds to C the
data points that are at a distance of at least r from all the centers in C (lines 4 to 8 in
Algorithm 1).

Algorithm 1. The PNE algorithm for the estimate d̂ of the intrinsic dimensionality of the data set X [18].

Input: X , m, r1, r2, ε
Output: d̂

1: for l←− 1,∞ do
2: Permute X randomly
3: for k ←− 1, 2 do
4: C ←− ∅
5: for i←− 1,m do
6: for j ←− 1, |C| do
7: if d(X [i] , C [j]) < rk then j ←− m+ 1

8: if j < m+ 1 then C ←− C ∪ {X [i]}
9: M̂k [l]←− log |C|

10: d̂←− −(µ(M̂2)− µ(M̂1))/(log r2 − log r1)

11: if l > 10 and 1.65

√
σ2(M̂1) + σ2(M̂2)/(

√
l (log r2 − log r1)) < d̂(1− ε)/2 then return d̂
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The estimate M̂(r) is the cardinality of C after each point in X has been visited
(line 9). According to Kégl, a good estimate for d̂ can be obtained by using M̂(r) instead
of M(r). Because of the dependence of M̂(r) on the order of the data points at which
they are visited, the variance of M̂(r) can distort the dimension estimate d̂. To eliminate
this variance, the procedure is repeated several times with random permutations of the
data (lines 1, 2), and the estimate d̂ is computed by using the average µ(·) of logarithms
of the packing numbers (line 10). The number of repetitions depends on r1, r2, and
a preset parameter ε that determines the accuracy of the final estimate (set to 99% in
all experiments). The complete algorithm is given formally in Algorithm 1.

3 Data sets

The following data sets were used in the experiments:

• 1000 three-dimensional data points (m = 1000, n = 3) that lie on a nonlinear
two-dimensional S-shaped manifold (Fig. 1a).

• 1000 three-dimensional data points (m = 1000, n = 3) that lie on a nonlinear two-
dimensional 8-shaped manifold (Fig. 1b). The components (x1, x2, x3) of these
data are calculated by the parametric equations below:

x1 = cos(v),

x2 = sin(v) cos(v),

x3 = u,

where v ∈ [2π/m; 2/π], u ∈ (0; 5), m is the number of data points.

• 1000 three-dimensional data points (m = 1000, n = 3) that lie on a nonlinear one-
dimensional manifold, i.e. a helix (Fig. 1c). The components (x1, x2, x3) of these
data are calculated by the parametric equations below:

x1 =
(
2 + cos(8t)

)
cos(t),

x2 =
(
2 + cos(8t)

)
sin(t),

x3 = sin(8t),

where t ∈ [2π/m; 2π], m is the number of data points.

• 1801 three-dimensional data points (m = 1801, n = 3) that lie on a nonlinear
one-dimensional manifold, i.e. a spiral (Fig. 1d). The components (x1, x2, x3) of
these data are calculated by the parametric equations below:

x1 = 100 cos(t),

x2 = 100 sin(t),

x3 = t,

where t ∈ [0; 10π].
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Fig. 1. Data sets of manifolds.

• A data set of uncoloured (greyscale) pictures of a rotated duckling [26] (samples
of pictures are shown in Fig. 1e). The data are comprised of uncolored pictures of
the same object (a duckling), obtained by a gradually rotated duckling at the 360◦

angle. The number of pictures (data points) is m = 72. The images have 128 ×
128 greyscale pixels, therefore the dimensionality of points, characterizing each
picture in a multidimensional space, is n = 16384, and the colour value is from the
interval [0, 255]. Source database: http://www.cs.columbia.edu/CAVE/
software/softlib/coil-20.php.

• A data set of uncoloured (greyscale) images of a person’s face [4] (samples of
images are shown in Fig. 1f). The data consist of many photos of the same per-
son face observed in different poses (left-and-right pose, up-and-down pose) and
lighting conditions, in no particular order. The number of photos (data points) is
m = 698. The images have 64× 64 greyscale pixels, therefore the dimensionality
of points that characterize each photo in a multidimensional space is n = 4096.
Source database: http://isomap.stanford.edu/datasets.html.
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4 Experimental exploration of the packing numbers estimator (PNE)

In this section, the PNE method is investigated experimentally with various artificial and
real data sets. The data points lie on manifolds, the dimensionality of which is known
in advance. Therefore, we will be able to establish precisely, whether the estimate of the
intrinsic data dimensionality, obtained by the PNE, is true. The aim of these investigations
is to find out, which distances (Euclidean or geodesic) are better to be used in the PNE
algorithm, while estimating the similarity between data points.

The geodesic distance is the length of the shortest path between two points along
the surface of a manifold. Here the Euclidean distances are used when calculating the
length of the shortest path. In order to compute the geodesic distances between the points
X1, X2, . . . , Xm, it is necessary to set some number of the nearest points (neighbours) of
each point Xi. The search for the neighbours of each point Xi can be organized in two
ways: (1) by the fixed number kgeod of the nearest points from Xi, (2) by all the points
within some fixed radius of a hypershere, the center of which is the point Xi. When the
neighbours are defined, a weighted graph over the points is constructed: each point Xi is
connected with its neighbours; the weights of edges are Euclidean distances between the
point Xi and its neighbours. Using one of the algorithms for the shortest path distance in
the graph, the shortest path lengths between the pairs of all points are computed. These
lengths are estimates of the geodesic distances between the points.

In [18], the dimensionality estimate d̂ is measured on consecutive pairs of a sequence
r1, . . . , rs of resolutions, and the estimate is plotted halfway between the two parameters,
i.e. d̂(ri, ri+1) is plotted at (ri + ri+1)/2. In our paper, the values of r1 and r2 (r1 < r2)
are chosen in another way: the minimum distance and the maximum distance between all
the data points are found; then all the cases of r1 and r2 from the minimum distance to the
maximum one with a step equal to (maximum distance-minimum distance)/10 are fixed.
In this case, the total number of combinations of r1 and r2 (r1 < r2) is equal to 55 (11×
(11 − 1)/2 = 55). The PNE algorithm is explored by evaluating two types of distances:
Euclidean and geodesic. In both cases, the PNE values d̂, defined by formula (2), are
calculated with all the combinations of r1 and r2. In such a way, dependences of the
estimate of intrinsic dimensionality of the data on the parameters r1 and r2 are obtained.
As the estimate of the intrinsic dimensionality, we choose such a PNE value d̂ that remains
the same in the largest area of the values of parameters r1 and r2. Further this area will
be called by a dominant area and the value of d̂ in this area will be called by a dominant
value. Let the numbers of combinations of r1 and r2, that fall in the dominant area in the
case of Euclidean and geodesic distances, be denoted as ve and vg, respectively.

The first investigation is performed with the points of the two-dimensional S-shaped
manifold (m = 1000, n = 3), see Fig. 1a. We can see from Fig. 2 that the dominant
value is equal to the true intrinsic dimensionality, i.e. d̂ = 2, when both Euclidean and
geodesic distances are used. However, the dominant area is a bit larger when using the
geodesic distances in the PNE algorithm: ve = 27 and vg = 31. The next investigation
is performed with the points of the two-dimensional 8-shaped manifold (m = 1000,
n = 3), see Fig. 1b. At first sight, it is difficult to say which area is dominant when the
Euclidean distances are used (Fig. 3a). However, ve = 24 as d̂ = 2 and ve = 19 as
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Fig. 2. Estimate d̂ of the intrinsic dimensionality depending on distances: (a) Euclidean, (b) geodesic. Data set:
the S-shaped manifold.
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Fig. 3. Estimate d̂ of the intrinsic dimensionality depending on distances: (a) Euclidean, (b) geodesic. Data set:
the 8-shaped manifold.

d̂ = 1. It leads to the conclusion that the dominant value is d̂ = 2. In the case of geodesic
distances, it is obvious that the dominant value is d̂ = 2 (vg = 33). The investigations
performed with the two-dimensional S-shaped and 8-shaped manifolds show that the
dominant values of the estimate of the intrinsic dimensionality are coincident with the
true intrinsic dimensionality of these data in the case of both distances, i.e. d̂ = d = 2.

After investigating a helix (m = 1000, n = 3, Fig. 1c) that is the one-dimensional
manifold, it became clear that it is reasonable to evaluate geodesic distances instead of
Euclidean ones in the PNE algorithm in order to get the true estimates of the intrinsic
dimensionality d of the data. Figure 4 indicates that the dominant value is d̂ = 2 6= d in
the case of Euclidean distances (ve = 25), and the dominant value is d̂ = 1 = d, in the
case of geodesic distances (vg = 49).

Next, a spiral (Fig. 1d) which is the one-dimensional manifold (m = 1801, n = 3)
was investigated. In this case, the difference between the use of the Euclidean and
geodesic distances in the PNE algorithm is not considerable (Fig. 5). In both cases, the
dominant value of the estimate of the intrinsic dimensionality is d̂ = 1 which is coincident
with the true intrinsic dimensionality of these data, i.e. d̂ = d = 1. However, the dominant
area is a bit larger when the geodesic distances are used, i.e. vg = 54 and ve = 49.

One of the practical fields, where high-dimensional data appear, is the analysis of
images. Let us have a set of images of some moving object. There are many investigations
of such sets [4, 27, 28] etc. Each image is described by the number of pixels of different
colour. The dimensionality of such a data set is equal to the number of pixels in the
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Fig. 4. Estimate d̂ of the intrinsic dimensionality depending on distances: (a) Euclidean, (b) geodesic. Data set:
the helix.
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Fig. 5. Estimate d̂ of the intrinsic dimensionality depending on distances: (a) Euclidean, (b) geodesic. Data set:
the spiral.

greyscale case or even it is three times larger than the number of pixels in the coloured
case. So, the dimensionality of these data is very large. Since the intrinsic dimensionality
of a data set is defined as the minimal number of latent variables or features, necessary
to describe the data [3], we hypothesize that there are latent variables or features that
characterize the motion of the object in the images and their number is the same as the
number of degrees of freedom of a possible motion of the object. Therefore, the minimal
possible intrinsic dimensionality of a data set of images should be equal to the number of
degrees of freedom of a possible motion of the object.

The high-dimensional data, obtained from the set of images (greyscale pictures of
a rotated duckling and photos of the same person face observed in different poses), are
investigated. Since a duckling was gradually rotated at a certain angle on the same plane,
i.e. without turning the object itself, these data have only one degree of freedom, i.e. the
minimal intrinsic dimensionality of these data may be equal even to 1. The person’s face
analysed in [4] has two directions of motion (two poses): left-and-right pose and up-and-
down pose. Therefore, the high-dimensional data, corresponding to these pictures, have
two degrees of freedom, i.e. the minimal possible intrinsic dimensionality of these data
should be equal to 2.

The results of investigation with the high-dimensional data points, corresponding to
real pictures of a rotated duckling (m = 72, n = 16384, Fig. 1e), are given in Fig. 6.
Taking into consideration that the duckling in the pictures has only one degree of freedom,
an assumption can be made that the intrinsic dimensionality of these data is 1. In this case,
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Fig. 6. Estimate d̂ of the intrinsic dimensionality depending on distances: (a) Euclidean, (b) geodesic. Data set:
pictures of the rotated duckling.
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Fig. 7. Estimate d̂ of the intrinsic dimensionality depending on distances: (a) Euclidean, (b) geodesic. Data set:
photos of a face.

we notice the advantage of the geodesic distances. If the Euclidean distances are used,
the dominant value d̂ is false, i.e. d̂ = 2, ve = 23. However, the intrinsic dimensionality
of these data is evaluated truly by PNE, if the geodesic distances between the data points
are used, i.e. d̂ = 1, vg = 49.

The last investigation is performed with the high-dimensional data points (m = 698,
n = 4096), corresponding to the photos of the face of the same person observed in
different poses from different lighting direction (Fig. 1f). We can see the results in Fig. 7a.
If the Euclidean distances are used, the dominant value is d̂ = 4, ve = 27. However, d̂ = 2
dominates (vg = 33) if the geodesic distances are used in the PNE method. Referring to
the hypothesis that the minimal intrinsic dimensionality of these data is 2, we see the
advantage of the geodesic distance again.

The intrinsic dimensionality of the face data set [4] is analysed in several papers. It is
shown in [4] that the intrinsic dimensionality of this data set is 3. Levina and Bickel [19]
state that the estimated dimensionality of about 4 is very reasonable. In [27], the estimated
dimensionality is equal to 2, when geodesic distances are used in the MLE algorithm, and
it is equal to 4 or 5, when Euclidean distances are used in MLE. The question arises which
estimated dimensionality can be taken as the true intrinsic dimensionality?

In order to answer this question and verify whether our hypothesis on the minimal
intrinsic dimensionality is true in this case, let us analyse the face database [4] in detail.
At first, the 4096-dimensional data points are projected on the 5-dimensional space by the
ISOMAP method [4]. ISOMAP is used in the investigation, because recently it is one of
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the most popular manifold learning methods. So we get a matrix of size [698 x 5]. The
rows of this matrix correspond to the objects Y1, Y2, . . . , Ym, m = 698, and the columns
correspond to the features y1, y2, . . . , yn∗ , n∗ = 5, that characterize the objects. Then the
covariance matrix C of the features is obtained:

C =


1538.8 0 0 0 0

0 419.3 0 0 0
0 0 276.3 0 0
0 0 0 86.8 0
0 0 0 0 79.1

 . (3)

It is obvious from this covariance matrix that all the 5 features yk and yl are not
correlated, because their covariance coefficient is equal to zero: ckl = clk = 0, k 6= l.
The covariance coefficient ckk, k = 1, n∗, is the variance of features yk. So, we see
from (3) that the variances of the first three features are much larger than others. The
variances of the fourth and fifth features are the least ones and differ very little from each
other. It means that three features are the main ones. A question arises which features
from y1, y2, y3 correspond to the left-and-right pose, the up-and-down pose, and to the
lighting direction. In order to answer this question, we visualized these features pairwise
on the plane (see Figs. 8–10). Figures 8–10 show that the feature y1 corresponds to the
left-and-right pose, the feature y2 corresponds to the up-and-down pose, and the feature
y3 corresponds to the lighting direction. Summarizing everything, it is obvious that the

Left−and−right pose

U
p

−
a
n

d
−

d
o

w
n

 p
o

se

Fig. 8. Projections of the high-dimensional data points corresponding to the photos of a face on a plane: left-
and-right pose, up-and-down pose.
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Fig. 9. Projections of the high-dimensional data points corresponding to the photos of a face on a plane: left-
and-right pose, lighting direction.
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Fig. 10. Projections of the high-dimensional data points corresponding to the photos of a face on a plane:
up-and-down pose, lighting direction.
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first two features, i.e. both poses – left-and-right and up-and-down – are more essential
than the third feature regarding the lighting direction.

Since the face database consists of images of an artificial face under three changing
conditions: vertical and horizontal orientation and illumination (lighting direction), it is
possible to assume that the intrinsic dimensionality of this data set should be 3. However,
the person’s face has two directions of motion (two poses): left-and-right pose and up-
and-down pose. So the minimal intrinsic dimensionality of these data can be assigned
to 2, if we assume that the intrinsic dimensionality of the data set of images were equal to
the number of degrees of freedom of a possible motion of the object in the image.

So, after such a discussion, we dare say, that in the last investigation, a false result
is obtained by PNE, if the Euclidean distances are used. However, the minimal intrinsic
dimensionality of these data is evaluated well, if the geodesic distances between the data
points are calculated.

5 Conclusions

Real-life data are often hardly understandable because of their high dimensionality. While
analysing these data, we often have to reduce their dimensionality so that to preserve as
much information on the analysed data set as possible. To this end, it is reasonable to find
out the intrinsic dimensionality of the data. Several methods for estimating the intrinsic
dimensionality are proposed in the literature.

In this paper, we have analysed one of the global estimators for intrinsic dimension-
ality – the packing numbers estimator (PNE). We have shown that, in order to get true
estimates by PNE, it is necessary to evaluate the geodesic distances between data points
in this algorithm. If the Euclidean distances are used in PNE, we can get false estimates of
the intrinsic dimensionality. In this paper, in the experiments, no false results are obtained
in the PNE modification that uses the geodesic distances.

The efficiency of PNE is disclosed in the images analysis. The experiments with the
sets of images of the moving object showed that there are latent variables or features that
characterize the motion of the object in the images and their number is the same as the
number of degrees of freedom of a possible motion of the object. It is shown in this paper
that the minimal possible intrinsic dimensionality of a data set of images is equal to the
number of degrees of freedom of a possible motion of the object.
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natural head motion compensation, Informatica, 23(1):105–124, 2012.

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 4, 578–591


	Introduction
	Packing numbers estimator of the intrinsic dimensionality
	Data sets
	Experimental exploration of the packing numbers estimator (PNE)
	Conclusions

