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Abstract. This paper deals with a generalized KdV–mKdV equation with time delay. By employing
the geometrical singular perturbation theory and the linear chain trick, we establish the existence
result of solitary wave solutions when the average delay is sufficiently small, for a special
convolution kernel.
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1 Introduction

In the past three decades, traveling wave solutions to the Korteweg–de Vries equation have
been studied extensively and a large number of theoretical issues concerning the KdV
equation have received considerable attention. These wave solutions when they exist can
enable us to well understand the mechanism of the complicated physical phenomena and
dynamical processes modeled by these nonlinear evolution equations. One can easily find
abundant reports about it, such as [1–7]. And many powerful methods to construct exact
solutions of KdV have been established and developed. Among these methods we mainly
cite, for example, the bifurcation method of dynamical systems [8], (G′/G)-expansion
method [9–11] and the sub-ODE method [12], Lie group theoretical methods [13] and so
on. In this paper, we will use the geometrical singular perturbation theory and the linear
chain trick to investigate solitary wave solutions of the generalized KdV–mKdV equation.

Let us consider a generalized Korteweg–de Vries–modified Korteweg–de Vries (KdV–
mKdV) equation

Ut +
(
α+ βUp + γU2p

)
Ux + Uxxx = 0, (1)
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where p > 0, α, β and γ 6= 0 are real constants. It is necessary to point out that, when the
parameters are taken as different values, some celebrated equations can be derived from
Eq. (1), such as when p = 1, α = 0, β = ±6 and γ = 0, Eq. (1) becomes the KdV
equation [14, 15]

Ut ± 6UUx + Uxxx = 0.

When p = 1, α = 0, β = 6 and γ = ±6, Eq. (1) becomes the combined KdV and mKdV
equation [16]

Ut + 6UUx ± 6U2Ux + Uxxx = 0.

When α = 0, β 6= 0 and γ = 0, Eq. (1) becomes the higher-order KdV equation [17]

Ut + βUpUx + Uxxx = 0.

When p ∈ Z+, α 6= 0, β 6= 0 and γ = 0, Eq. (1) becomes the generalized KdV–mKdV
equation

Ut + αUx + βUpUx + Uxxx = 0. (2)

The generalized KdV–mKdV equation with time delay has more actual significance.
It is natural to ask weather the generalized KdV–mKdV equation with the delay possesses
traveling wave solution. Zhao and Xu [18,19] discussed generalized KdV equations with
time delay and established existence results of solitary waves solutions.

Our purpose is to apply the geometric singular perturbation theorem to establish the
existence of solitary wave solutions of Eq. (2) with time delay, such as

Ut + αUx + β(f ∗ U)Up−1Ux + Uxxx + τUxx = 0, (3)

where τ is time delay, Uxxx represents the dispersion effect and Uxx means the backward
diffusion, when τ is small, which also is the perturbation, the convolution f ∗U is denoted
by

(f ∗ U)(x, t) =

t∫
−∞

f(t− s)U(x, s) ds,

where the kernel f : [0,+∞) → [0,+∞) satisfies the following normalization assump-
tion:

f(t) > 0 for all t > 0 and

+∞∫
0

f(t) dt = 1, tf(t) ∈ L1
(
(0,+∞), R

)
.

The average delay for the distributed delay kernel f(t) is defined as

τ =

+∞∫
0

tf(t) dt.

Here we consider the average delay τ is small. Note that equations of various types can
be derived from Eq. (3) by taking different delay kernels. For instance, when we take the
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kernel to be f(t) = δ(t), where δ denotes Dirac’s delta function, Eq. (3) becomes the
corresponding undelayed perturbed mKdV equation

Ut + αUx + βUpUx + Uxxx + τUxx = 0. (4)

While taking f(t) = δ(t−τ), Eq. (3) becomes the following equation with discrete delay:

Ut + αUx + βU(x, t− τ)Up−1Ux + Uxxx + τUxx = 0.

We usually use the gamma distribution delay kernel (see [20])

f(t) =
αntn−1e−αt

(n− 1)!
, n = 1, 2, . . . ,

where α > 0 is a constant, n is a integer, with average delay τ = n/α > 0. Two special
cases

f(t) =
1

τ
e−t/τ (n = 1) and f(t) =

t

τ2
e−t/τ (n = 2) (5)

are called weak generic kernel and strong generic kernel, respectively.
A solitary wave for Eq. (3) is a special traveling wave solution U(x, t) = ϕ(ξ) =

ϕ(x − ct), where c > 0 is speed and ϕ(ξ) satisfies the following functional differential
equation:

− (c− α)ϕ′ + β(f ∗ ϕ)ϕp−1ϕ′ + ϕ′′′ + τϕ′′ = 0 (6)

with

(f ∗ ϕ)(ξ) =

+∞∫
0

f(s)ϕ(ξ + cs) ds, (7)

here ′ = d/dξ and limξ→±∞ ϕ(ξ) = 0.
Taking the translation u = ϕ/ p

√
c− α and (i) = di/dzi, i = 1, 2, 3, z =

√
c− αξ,

Eq. (6) with Eq. (7) could be rewritten as

− u(1) + β(f ∗ u)up−1u(1) + u(3) +
τ√
c− α

u(2) = 0 (8)

with

(f ∗ u)(z) =

+∞∫
0

f(w)u

(
z√
c− α

+ cw

)
dw.

If we find a solitary solution (u, τ, c, z) to Eq. (8), then the corresponding (ϕ, τ, c, ξ) is
our solitary wave solution to Eq. (6) and, therefore, to the original Eq. (3).

Under the assumption that the distributed delay kernel f(t) is the weak generic kernel,
our main idea is to change the existence problem for the functional differential Eq. (8)
into the existence of a homoclinic in two-dimensional invariant manifold.

By using the linear chain trick, Eq. (6) with the weak generic delay can be trans-
formed into a nondelay three-dimensional ordinary differential system. When the delay τ

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 4, 551–564



554 Z. Du et al.

is sufficiently small, the three-dimensional ordinary differential system is a standard sin-
gularly perturbed system. The rest part of this paper is organized as follows. At first, we
briefly introduce some basic lemmas. And we will use these lemmas to establish results
on solitary wave for nondelay Eq. (6). At last, by employing the geometrical singular
perturbation theory, we will prove there exist a solitary wave solution for Eq. (6) with the
weak generic delay and τ is sufficiently small for a particular wave speed.

2 Preliminaries

For convenience, we present some results in the paper [9, 21] and establish a lemma,
which will be employed in the proof of our main theorem.

Lemma 1 (Geometric singular perturbation theorem). For the system

x′(t) = f(x, y, ε),

y′(t) = εg(x, y, ε),
(9)

where x ∈ Rn, y ∈ Rl and ε is a real parameter, f , g are C∞ on the set V × I ,
where V ∈ Rn+l and I is an open interval, containing 0. If when ε = 0, the system has
a compact, normally hyperbolic manifold of critical points M0, which is contained in the
set {f(x, y, 0) = 0}. Then for any 0 < r < +∞, if ε > 0, but sufficiently small, there
exists a manifold Mε:

(i) which is locally invariant under the flow of (9);
(ii) which is Cr in x, y and ε;

(iii) Mε = {(x, y): x = hε(y)} for some Cr function hε(y) and y in some compact K;
(iv) there exist locally invariant stable and unstable manifolds W s(Mε) and Wu(Mε)

that lie within O(ε), and are diffeomorphic to W s(M0) and Wu(M0).

Then it will be useful for referencing to know what the corresponding results are in the
nondelay case. Because the questions, that we will address are the questions of persistence
of solitary waves when the delay is small.

In traveling wave form, with U(x, t) = ϕ(ξ), ξ = x − ct and c > 0, the nondelay
equation (that is, Eq. (4) with f(t) = δ(t), τ = 0, i.e., generalized KdV equation (6))
reads

− (c− α)ϕ′ + βϕpϕ′ + ϕ′′′ = 0, (10)

where ′ = d/dξ. Using the boundary condition at ±∞ and integrating Eq. (10) once, we
yield to the equation

−(c− α)ϕ+
β

p+ 1
ϕp+1 + ϕ′′ = 0.

Taking u = ϕ/ p
√
c− α, z =

√
c− αξ and α < c, we have

−u+
β

p+ 1
up+1 + ü = 0,
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where · = d/dz. We get an equivalent form

u̇ = v,

v̇ = u− β

p+ 1
up+1.

(11)

We are now in a position to yield the existence of a solitary wave solution of the
nondelay equation.

Lemma 2. In the (u, v) phase plane, Eq. (11) has a homoclinic orbit to the critical point
(0, 0). This connection is confined to u > 0.

Proof. It is easily to see that Eq. (11) has two critical points O(0, 0), N( p
√
p+ 1/β, 0).

The origin is always a saddle and N( p
√
p+ 1/β, 0) is center. Notice that Eq. (11) is

a Hamiltonian system with the Hamiltonian function

H(u, v) =
1

2
v2 − 1

2
u2 +

β

p2 + 3p+ 2
up+2.

Consider a level curve of the form H = k in the region {u > 0}, and when k = 0 it
includes a homoclinic orbit to (0, 0), i.e., (u,±

√
1− 2βup/(p2 + 3p+ 2)), 0 < u 6√

(p2 + 3p+ 2)/(2β), which is a 1-soliton solution to mBKdV equation. So there is
a homoclinic orbit to (0, 0).

3 Existence of solitary waves

In this section, we shall mainly analyze Eq. (8) for solitary waves, which in the particular
case when the kernel f is the first case of the two in Eq. (5), the weak generic delay case.
The corresponding calculations for the strong kernel are similar but a little complicated
and will be omitted. Recall that the parameter τ measures the delay and u(2) means
perturbation. The main result can be stated as follow.

Theorem 1. For any τ > 0 sufficiently small and constant β > 0, there exists speed
c > α such that system Eq. (8) has solitary wave, then Eq. (3) has solitary wave solution.

Proof. According to (5), we take the function f(t) as

f(t) =
1

τ
e−t/τ , τ > 0,

and we define w by

w(z) = (f ∗ u)(z) =

+∞∫
0

1

τ
e−t/τu

(
z√
c− α

+ ct

)
dt.

Differentiating with respect to z, we can obtain that

dw

dz
=

1

c
√
c− ατ

(w − u).
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Using the boundary condition at−∞, Eq. (8) can be integrated once to yield the equation

u′′ +
τ√
c− α

u′ − u+ βF = 0,

where

F (z) =

z∫
−∞

(f ∗ u)up−1u′ dξ =

z∫
−∞

up−1u′w dξ. (12)

If we further denote u′ = v, v′ = w, then Eq. (8) with the kernel given above can be
replaced by the system

u′ = v,

v′ = u− τ√
c− α

v − βF,

c
√
c− ατw′ = w − u.

(13)

From system (12) and Eq. (13), one has

∂F

∂u
=

dF

dz

dz

du
=
up−1u′w

u′
= up−1w,

∂F

∂w
=

dF

dz

dz

dw
=
up−1u′w

w′
= c
√
c− ατ u

p−1vw

w − u
,

∂F

∂v
=

dF

dz

dz

dv
=

unvw

u− τ/
√
c− α− βF

with the boundary condition F (−∞) = 0 implies that F (z) = F (u, v, w, τ).
Note that if τ = 0, then

F (u, v, w, 0) =

z∫
−∞

upu′ dξ =
up+1

p+ 1
.

System (13) reduces to the following ordinary differential equation:

u′′ = u− βF = u− βup+1

p+ 1
.

For τ > 0, system (13) defines a system of ODEs whose solutions evolve in the
three-dimensional (u, v, w) phase space. In this phase space, there are critical points at

O(0, 0, 0), B

(
p

√
p+ 1

β
, 0, p

√
p+ 1

β

)
.

The linearized matrix of (13) at critical point O(0, 0, 0) is

J(u, v, w) =

 0 1 0
1 −τ/

√
c− α 0

−1/(c
√
c− ατ) 0 1/(c

√
c− ατ)

 .
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The eigenvalues λ of this matrix satisfy

τc
√
c− αλ3 +

(
cτ2 − 1

)
λ2 −

(
cτ
√
c− α+

τ√
c− α

)
λ+ 1 = 0.

This equation has two real positive roots 1/(c
√
c− ατ), (

√
τ2 + 4(c− α) − τ)/

(2
√
c− α) and one negative root −(

√
τ2 + 4(c− α) − τ)/(2

√
c− α). A solitary wave

solution of the original equation will exist if among the solutions of system (13), there
exists a homoclinic orbit to the critical point O(0, 0, 0).

We want to show that for τ > 0 but very small, the positive branch of the one-
dimensional stable manifold of O(0, 0, 0) for system (13), W s

τ (O), connect to the origin.
When τ = 0, system (13) does not define a dynamical system in R3. By introducing

a new independent variable η defined by z = τη, the flow system (13) becomes the
following fast system:

u̇ = τv,

v̇ = τ

(
u− τ√

c− α
v − βF

)
,

c
√
c− αẇ = w − u,

(14)

since the time scale z is slow and η is fast, where · = d/dη. If τ > 0 and sufficiently
small, flow system (13) and fast system (14) are equivalent.

Consider the slow system (13), for τ = 0, then the flow of that system is confined to
the set

M0 =
{

(u, v, w) ∈ R3: w = u
}
,

which is, therefore, a two-dimensional invariant manifold for system (13). If M0 is nor-
mally hyperbolic, then for sufficiently small τ > 0, Lemma 1 provides us with a two-
dimensional invariant manifold Mτ for system (13), studying the system (13) reduced to
this manifold, the dimensionality is reduced back to 2 and the existence of the homoclinic
orbit we are seeking can be established.

In order to check that the invariant manifold M0 is a normally hyperbolic in the
sense of Fenichel [9, 21], we need to check that the linearization of the fast system (14),
restricted to M0, has precisely dimM0 eigenvalues on the imaginary axis, with the re-
mainder of the spectrum being hyperbolic. The linearization of Eq. (14) restricted to M0

is given by the following matrix: 0 0 0
0 0 0

−1/(c
√
c− α) 0 1/(c

√
c− α)

 ,

which has three eigenvalues 0, 0, 1/(c
√
c− α). Thus M0 is normally hyperbolic.

According to geometric singular perturbation theory, there exist a locally invariant
two-dimensional manifold Mτ with τ > 0 but sufficiently small, under the flow of
system (13), which can be written in the form

Mτ = {(u, v, w) ∈ R3: w = u+ g(u, v, τ)},
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where the function g is a smooth function defined on a compact domain, and it satisfies
g(u, v, 0) = 0.

By substituting into slow system (13), g must satisfy

c
√
c− ατ

[
v +

∂g

∂u
v +

∂g

∂v

(
u− τ√

c− α
v − βF

)]
= g. (15)

Since τ is small, we attempt solutions of this partial differential equation in the form of
regular perturbation series in τ . From Eq. (15), we can see when τ = 0, g is zero, then
let g be

g(u, v, τ) = τg1(u, v) + τ2g2(u, v) + · · · . (16)

Substituting Eq. (16) into Eq. (15) and comparing powers of τ yields, which implies

g1(u, v) = c
√
c− αv, g2(u, v) = c2(c− α)

(
u− up+1

p+ 1

)
.

We would study the flow of system (13) restricted toMτ and show that it has a solitary
solution. The slow system (13) restricted to Mτ is, therefore, given by

u′ = v,

v′ = u− β

p+ 1
up+1 − τ

(
v√
c− α

+ βc
√
c− αG

)
+O

(
τ2
)
,

(17)

where G(z) =
∫ z
−∞ up−1v2 dξ, by the same way, we have G(z) = G(u, v, τ). It is easily

verified that for τ > 0, system (17) still has critical point (u, v) = (0, 0).
For convenience, we consider delay parameter τ and wave speed c as variables, then

system (17) is equivalent to

u′ = v,

v′ = u− β

p+ 1
up+1 − τ

(
v√
c− α

+ βc
√
c− αG

)
+O

(
τ2
)
,

τ ′ = 0,

c′ = 0.

(18)

So we can study the flow in (u, v, τ, c) ∈ R4. We seek homoclinic orbits for sys-
tem (18) with small τ . The critical point 0 can, in reference to system (18), be construed
as a surface of critical point, say S, parameterized by c, τ , i.e., critical point (u, v) =
(u(c, τ), v(c, τ)) = (0, 0). This in turn spawns an unstable manifold Wu

τ (S) and stable
manifold W s

τ (S) which meet in the curve at τ = 0, namely, the homoclinic orbit found
already in Lemma 2. Furthermore, by Lemma 1, Wu

τ (S) and W s
τ (S) must still cross

hyperplane v = 0. In the set v = 0, we parameterize Wu and W s, respectively, near the
intersection away from the critical point 0 as u = h−(c, τ) and u = h+(c, τ).

We next define
d(c, τ) = h−(c, τ)− h+(c, τ),
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and observe that zeroes of d render homoclinic orbits. From Lemma 2, there are homo-
clinic orbits independently of c when τ = 0, we have that d(c, 0) = 0, and thus let
d(c, τ) = τ d̄(c, τ). Then we have

d̄(c, 0) = M(c) :=

(
∂h−

∂τ
− ∂h+

∂τ

)∣∣∣∣
τ=0

.

If there exists a (unique) value of c = c(τ) for τ small, near to c = c(0), such that
d̄(c, τ) = 0, that means if at c = c(0),

M(c) = 0, M ′(c) 6= 0 (19)

hold, then it is a simple application of the Implication function theorem to see that there
is a curve of homoclinic orbits exists.

Now we consider the Eq. (17), for which an intersection of Wu(S) and W s(S) is
sought. We need to establish the existence of M(c) defined in (19).

In fact the variational equation for system (18), the differential form with τ = 0 can
be calculated as

du′ = dv,

dv′ = du− βupdu−
(

v√
c− α

+ βc
√
c− αG

)
dτ,

dτ ′ = 0,

dc′ = 0.

For the tangent spaces Π±(0) of the invariant manifold Wu
τ (S) and W s

τ (S), there are
three tangent vectors toWu andW s at z = 0 that are easily found (when τ = 0, v(0) = 0)

η1 =

(
∂h±

∂τ
, 0, 1, 0

)
,

η2 =

(
v, u− β

p+ 1
up+1, 0, 0

)
= (v, δ, 0, 0),

η3 = (0, 0, 0, 1),

where the u of η2 satisfies u > p
√

(p+ 1)/β, i.e., δ < 0. It can be checked that

du ∧ dv ∧ dc(η1, η2, η3) =
∑
π

(−1)sgnπ du(ηπ(1)) dv(ηπ(2)) dc(ηπ(3)) = δ
∂h±

∂τ
,

where π is a permutation of (1, 2, 3). Then we can see that the equation for the form
du ∧ dv ∧ dc can be calculated as (τ = 0)

(du ∧ dv ∧ dc)′ = du′ ∧ dv ∧ dc+ du ∧ dv′ ∧ dc+ du ∧ dv ∧ dc′

= du ∧ dv′ ∧ dc

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 4, 551–564
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= du ∧
[
du− βupdu−

(
v√
c− α

+ βc
√
c− αG

)
dτ

]
∧ dc

= −
(

v√
c− α

+ βc
√
c− αG

)
du ∧ dτ ∧ dc.

Similarly, the form du ∧ dv ∧ dc , when applied to the tangent space Π±(z) at ηiz,
i = 1, 2, 3, can actually be calculated. Since

η1z = (∗, ∗, 1, 0),

η2z =

(
v, u− β

p+ 1
up+1, 0, 0

)
,

η3z = (∗, ∗, 0, 1),

we can get du ∧ dτ ∧ dc(η1z, η2z, η3z) = −v. It follows that

(du ∧ dv ∧ dc)′ = βc
√
c− αGv +

1√
c− α

v2.

So letting p±(z) = du ∧ dv ∧ dc(Π±(z), we obtain

(p±)′ = βc
√
c− αGv +

1√
c− α

v2. (20)

It is easy to check that p± → 0 as z → ±∞. Eq. (20) can then be easily solved to render

p± =

z∫
±∞

(
βc
√
c− αGv +

1√
c− α

v2
)

dξ,

which shows that p±(0) = δ(∂h±/∂τ). Then we get

δ
∂h−

∂τ
=

0∫
−∞

(
βc
√
c− αGv +

1√
c− α

v2
)

dξ (21)

and

δ
∂h+

∂τ
= −

+∞∫
0

(
βc
√
c− αGv +

1√
c− α

v2
)

dξ. (22)

From Eq. (21) and Eq. (22), we obtain that

δM(c) = δ
∂h−

∂τ
− δ ∂h

+

∂τ
=

+∞∫
−∞

(
βc
√
c− αGv +

1√
c− α

v2
)

dξ. (23)
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Substituting G(z) =
∫ z
−∞ up−1v2 dξ into Eq. (23), we get

δM(c) = βc
√
c− α

+∞∫
−∞

v

( z∫
−∞

up−1v2 dξ

)
dξ +

1√
c− α

+∞∫
−∞

v2 dξ

= βc
√
c− α

+∞∫
−∞

( z∫
−∞

up−1v2 dξ

)
du+

1√
c− α

+∞∫
−∞

v2 dξ

= βc
√
c− α

(
u

z∫
−∞

up−1v2 dξ

∣∣∣∣+∞
−∞
−

+∞∫
−∞

upv2 dξ

)
+

1√
c− α

+∞∫
−∞

v2 dξ

= βc
√
c− α

(
−

+∞∫
−∞

upu̇2 dξ

)
+

1√
c− α

+∞∫
−∞

u̇2 dξ

= βc
√
c− α

[ +∞∫
−∞

(1− up)u̇u̇dξ −
+∞∫
−∞

u̇2 dξ

]
+

1√
c− α

+∞∫
−∞

u̇2 dξ

= βc
√
c− α

[ +∞∫
−∞

u̇d

(
u− up+1

p+ 1

)]
+

(
1√
c− α

− βc
√
c− α

) +∞∫
−∞

u̇2 dξ

= βc
√
c− α

[(
u− up+1

p+ 1

)
u̇

∣∣∣∣+∞
−∞
−

+∞∫
−∞

(
u− up+1

p+ 1

)
üdξ

]

+

(
1√
c− α

− βc
√
c− α

) +∞∫
−∞

u̇2 dξ

= βc
√
c− α

[(
1

βc(c− α)
− 1

) +∞∫
−∞

u̇2 dξ −
+∞∫
−∞

ü2 dξ

]
,

where u comes from the underlying, already known, homoclinic orbit of Lemma 2, and
δ 6= 0, we obtain that

M(c) =
1

δ
βc
√
c− α

[(
1

βc(c− α)
− 1

) +∞∫
−∞

u̇2 dξ −
+∞∫
−∞

ü2 dξ

]
.

It is clear then that Eq. (19) at a unique value of c.

Remark 1. The perturbation term uxx is necessary in Eq. (3) for the existence of ho-
moclinic. Otherwise if Eq. (3) does not have the perturbation term uxx, the equation
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corresponding to Eq. (8) would be

−u(1) + β(f ∗ u)up−1u(1) + u(3) = 0,

which is equivalent to

u′ = v,

v′ = u− βF,
c
√
c− ατw′ = w − u,

where F (z) =
∫ z
−∞ up−1u′w dξ. The M(c) function is

M(c) = −1

δ
βc
√
c− α

[ +∞∫
−∞

u̇2 dξ +

+∞∫
−∞

ü2 dξ

]
.

Then homoclinic cannot exist in this case, so the perturbation term uxx is necessary.

Remark 2. We extended the results in [18] since Eqs. (2) and (3) are more generalized.
In fact, choosing α = 0, β = 1, p = n+ 1, where n ∈ Z+ ∪ {0}, then Eq. (2) would be

Ut + Un+1Ux + Uxxx = 0,

and the corresponding to Eq. (3) would be

Ut + (f ∗ U)UnUx + Uxxx + τUxx = 0,

which was the equations discussed in [18]. Obviously, the results given in [18] is not
available to our following example.

Example. Taking α = −1, β = 6, p = n+ 1, Eq. (3) would be

Ut − Ux + 6(f ∗ U)UnUx + Uxxx + τUxx = 0, (24)

and the corresponding to Eq. (8) would be

−u(1) + 6(f ∗ u)unu(1) + u(3) +
τ√
c+ 1

u(2) = 0,

which is equivalent to

u̇ = v,

v̇ = u− τ√
c+ 1

v − F,

c
√
c+ 1τẇ = w − u,

where F (z) =
∫ z
−∞ uu̇w dξ. The M(c) function is

M(c) =
1

δ
c
√
c+ 1

[(
1

6c(c+ 1)
− 1

) +∞∫
−∞

u̇2 dξ −
+∞∫
−∞

ü2 dξ

]
.

From Theorem 1, Eq. (24) exists the homoclinic orbit, i.e., Eq. (24) has solitary wave
solution.
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4 Conclusion

In this work, we establish the existence result of solitary wave solutions for a generalized
KdV–mKdV equation with time delay under assumption that the distributed delay kernel
f(t) is the weak generic kernel. We could obtain the similar result for the strong generic
kernel. Our methods are geometrical singular perturbation theory and the linear chain
trick. Furthermore, we investigate the traveling wave solutions for the generalized KdV–
mKdV equation by using (G′/G)-expansion method. We will leave this for future work.

Acknowledgment. The authors wish to express their thanks to the referees for their
very valuable suggestions and careful corrections.
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