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Abstract. Under certain conditions, solutions of the boundary value problem, y(n) = f(x, y, y′,
. . . , y(n−1)), a < x < b, y(i−1)(x1) = yi, i = 1, . . . , n−1, y(x2)−

∑m
i=1 γi

∫ ηi
ξi
y(x) dx = yn,

a < x1 < ξ1 < η1 < ξ2 < η2 < · · · < ξm < ηm < x2 < b, are differentiated with respect to the
boundary conditions.

Keywords: nth order ordinary differential equation, multi-strip integral boundary conditions,
smooth dependence, boundary data.

1 Introduction

In this paper, we will be concerned with differentiating solutions of boundary value
problems with respect to boundary data for the nth order ordinary differential equation,

y(n) = f
(
x, y, y′, . . . , y(n−1)

)
, a < x < b, (1)

satisfying the Dirichlet and multi-strip integral boundary conditions,

y(i−1)(x1) = yi, i = 1, . . . , n− 1, y(x2)−
m∑
i=1

γi

ηi∫
ξi

y(x) dx = yn, (2)

where a < x1 < ξ1 < η1 < ξ2 < η2 < · · · < ξm < ηm < x2 < b, γi ∈ R, i = 1, . . . ,m,
and y1, . . . , yn ∈ R, and where we assume:

(i) f(x, s1, s2, . . . , sn) : (a, b)× Rn → R is continuous,
(ii) ∂f/∂si(x, s1, s2, . . . , sn) : (a, b)× Rn → R is continuous, i = 1, 2, . . . , n, and

(iii) Solutions of initial value problems for (1) extend to (a, b).
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Condition (iii) is not necessary for the results of this paper, yet, by assuming (iii), we
avoid continually making statements in terms of solutions’ maximal intervals of exis-
tence.

Under uniqueness assumptions on solutions of (1), (2), we will establish analogues of
a result that Hartman [1] attributes to Peano concerning differentiation of solutions of (1)
with respect to initial conditions. For our differentiation with respect to boundary condi-
tions results, given a solution y(x) of (1), we will give much attention to the variational
equation for (1) along y(x), which is defined by

z(n) =

n∑
i=1

∂f

∂si

(
x, y(x), y′(x), . . . , y(n−1)(x)

)
z(i−1). (3)

Interest in nonlocal boundary value problems for differential equations involving in-
tegral boundary conditions has been ongoing for several years. To see only few of these
papers, we refer the reader to the papers [2–9]. And very recently, Ahmad and Ntouyas
[10] initiated research regarding multipoint nonlocal integral boundary conditions such
as seen in (2). In describing such boundary conditions, they coined the term “multi-
strip integral boundary conditions.” Such boundary conditions can be interpreted in the
sense that a controller at the right end of the interval under consideration is influenced by
a discrete distribution of finite many sensors (or strips) of arbitrary length expressed in
terms of integral boundary conditions. Subsequent to that paper, Ahmad and Ntouyas
have put forth a couple of additional papers devoted to solutions of boundary value
problems involving multi-strip integral boundary conditions for both fractional differ-
ential equations and fractional differential inclusions; see [11, 12]. It can also be pointed
out that, under suitable measures, the boundary conditions can be considered in
the form of Stieltjes integrals; readers can find of interest the papers, [13–15] and
[16–18].

In the same way, there have been many papers devoted to smoothness of solutions
of boundary value problems in regard to smoothness of the differential equation’s non-
linearity, as well as in regard to the smoothness of the boundary conditions. For a view
of how this work has evolved, involving not only boundary value problems for ordinary
differential equations, but also discrete versions, we suggest the manifold results in the
classical papers [19–28] and [8, 9, 29–34], as well as the more current papers [35, 36]
and [37–39].

The theorem for which we seek an analogue and attributed to Peano by Hartman can
be stated in the context of (1) as follows:

Theorem 1 (Peano). Assume that with respect of (1), conditions (i)–(iii) are satisfied.
Let x0 ∈ (a, b) and y(x) := y(x, x0, c1, . . . , cn) denote the solution of (1) satisfying the
initial conditions y(i−1)(x0) = ci, i = 1, . . . , n. Then,

(a) For j = 1, . . . , n, αj := ∂y/∂cj exists on (a, b), is the solution of the variational
equation (3) along y(x), and satisfies the initial conditions,

α
(i−1)
j (x0) = δij , i = 1, . . . , n.
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(b) ∂y/∂x0 exists on (a, b), and β := ∂y/∂x0 is the solution of the variational equa-
tion (3) along y(x) satisfying the initial conditions,

β(i−1)(x0) = −y(i)(x0), i = 1, . . . , n.

(c) ∂y/∂x0(x) = −
∑n
j=1 y

(j)(x0)∂y/∂cj(x).

In addition, our analogue of Theorem 1 depends on uniqueness of solutions of (1), (2),
a condition we list as an assumption:

(iv) Given a < x1 < ξ1 < η1 < ξ2 < η2 < · · · < ξm < ηm < x2 < b, if
y(i−1)(x1) = z(i−1)(x1), i = 1, . . . , n − 1, and y(x2) −

∑m
i=1 γi

∫ ηi
ξi
y(x) dx =

z(x2)−
∑m
i=1 γi

∫ ηi
ξi
z(x) dx, where y(x) and z(x) are solutions of (1), then y(x) ≡

z(x).

We will also make extensive use of a similar uniqueness condition on (3) along solutions
y(x) of (1).

(v) Given a < x1 < ξ1 < η1 < ξ2 < η2 < · · · < ξm < ηm < x2 < b and a solution
y(x) of (1), if u(i−1)(x1)=0, i=1, . . . , n−1, and u(x2)−

∑m
i=1 γi

∫ ηi
ξi
u(x) dx=0,

where u(x) is a solution of (3) along y(x), then u(x) ≡ 0.

Remark 1. We observe that, if (v) is assumed, then for αn(x) in Theorem 1,

αn(x2)−
m∑
i=1

γi

ηi∫
ξi

αn(x) dx 6= 0. (4)

2 An analogue of Peano’s theorem for (1), (2)

In this section, we state and prove our analogue of Theorem 1 for boundary value
problem (1), (2). Continuous dependence of solutions on boundary conditions plays a fun-
damental role for such a differentiation result. Proof of continuous dependence usually
makes application of the Brouwer theorem on invariance of domain. The spirit of such
arguments can be found in [36] or [38]; we state the continuity result here, but we omit
the details.

Theorem 2. Assume (i)–(iv) are satisfied with respect to (1). Let u(x) be a solution of (1)
on (a, b), and let a < c < x1 < ξ1 < η1 < ξ2 < η2 < · · · < ξm < ηm < x2 <
d < b be given. Then, there exists a δ > 0 such that, for |xj − tj | < δ, j = 1, 2,
|ξi − ρi| < δ and |ηi − σi| < δ, i = 1, . . . ,m, |u(j−1)(x1)− yj | < δ, j = 1, . . . , n− 1,
|u(x2) −

∑m
i=1 γi

∫ ηi
ξi
u(x) dx − yn| < δ, and |γk − ζk| < δ, k = 1, . . . ,m, there

exists a unique solution uδ(x) of (1) such that u(j−1)δ (t1) = yj , j = 1, . . . , n − 1,
uδ(t2) −

∑m
i=1 ζi

∫ σi

ρi
uδ(x) dx = yn, and {u(j)δ (x)} converges uniformly to u(j)(x), as

δ → 0, on [c, d], for j = 0, 1, . . . , n− 1.

We now present the result of this paper.
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Theorem 3. Assume conditions (i)–(v) are satisfied. Let u(x) be a solution of (1) on
(a, b). Let a < x1 < ξ1 < η1 < ξ2 < η2 < · · · < ξm < ηm < x2 < b be
given, so that u(x) = u(x, x1, x2, ξ1, η1, . . . , ξm, ηm, u1, . . . , un, γ1, . . . , γm), where
u(j−1)(x1) = uj , j = 1, . . . , n− 1, and u(x2)−

∑m
i=1 γi

∫ ηi
ξi
u(x) dx = un. Then,

(a) For j = 1, . . . , n−1, rj := ∂u/∂uj exists on (a, b), is the solution of the variational
equation (3) along u(x), and satisfies the boundary conditions,

r
(i−1)
j (x1) = δij , i = 1, . . . , n− 1, rj(x2)−

m∑
i=1

γi

ηi∫
ξ1

rj(x) dx = 0.

(b) rn := ∂u/∂un exists on (a, b), is the solution of (3) along u(x), and satisfies the
boundary conditions,

r(i−1)n (x1) = 0, i = 1, . . . , n− 1, rn(x2)−
m∑
i=1

γi

ηi∫
ξ1

rn(x) dx = 1.

(c) z1 := ∂u/∂x1 and z2 := ∂u/∂x2 exist on (a, b), are solutions of (3) along u(x),
and satisfy the respective boundary conditions,

z
(i−1)
1 (x1) = −u(i)(x1), i = 1, . . . , n− 1, z1(x2)−

m∑
i=1

γi

ηi∫
ξi

z1(x) dx = 0,

z
(i−1)
2 (x1) = 0, i = 1, . . . , n− 1, z2(x2)−

m∑
i=1

γi

ηi∫
ξi

z2(x) dx = −u′(x2).

(d) For each j = 1, . . . ,m, wj := ∂u/∂ξj exists on (a, b), is the solution of (3) along
u(x), and satisfies the boundary conditions,

w
(i−1)
j (x1) = 0, i = 1, . . . , n−1, wj(x2)−

m∑
i=1

γi

ηi∫
ξi

wj(x) dx = −γju(ξj).

(e) For each j = 1, . . . ,m, qj := ∂u/∂ηj exists on (a, b), is the solution of (3) along
u(x), and satisfies the boundary conditions,

q
(i−1)
j (x1) = 0, i = 1, . . . , n− 1, qj(x2)−

m∑
i=1

γi

ηi∫
ξi

qj(x) dx = γju(ηj).

(f) For each j = 1, . . . ,m, pj := ∂u/∂γj exists on (a, b), is the solution of (3) along
u(x), and satisfies the boundary conditions,

p
(i−1)
j (x1) = 0, i = 1, . . . , n−1, pj(x2)−

m∑
i=1

γi

ηi∫
ξi

pj(x) dx =

ηj∫
ξj

u(x) dx.
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(g) The partial derivatives satisfy,

∂u

∂x1
(x) = −

n−1∑
j=1

u(j)(x1)
∂u

∂uj
(x),

∂u

∂x2
(x) = −u′(x2)

∂u

∂un
(x),

∂u

∂ξj
(x) = −γju(ξj)

∂u

∂un
(x),

∂u

∂ηj
(x) = γju(ηj)

∂u

∂un
(x),

∂u

∂γj
(x) =

ηj∫
ξj

u(x) dx
∂u

∂un
(x).

Proof. With u(x) = u(x, x1, x2, ξ1, η1, . . . , ξm, ηm, u1, . . . , un, γ1, . . . , γm), as given in
the statement of the theorem, many of the results will be established by considering u(x)
as a solution of an initial value problem for (1). In particular, from the boundary value
notation, u(i−1)(x1) = ui, i = 1, . . . , n− 1, and we will let

βn = u(n−1)(x1). (5)

Then, using the notation of Theorem 1 for solutions of initial value problems for (1) and
viewing u(x) as a solution of an initial value problem, we will frequently interchange
notation by using,

u(x) = u(x, x1, x2, ξ1, η1, . . . , ξm, ηm, u1, . . . , un, γ1, . . . , γm)

= y(x, x1, u1, . . . , un−1, βn).

For part (a), we fix j = 1, . . . , n − 1, and for notational shorthand purposes, we denote
u(x) by u(x, ·, uj). Let δ > 0 be as in Theorem 2. Let 0 < |h| < δ be given and define

rjh(x) =
1

h

[
u(x, ·, uj + h)− u(x, ·, uj)

]
.

Then, for every h 6= 0,

r
(j−1)
jh (x1) =

1

h
[uj + h− uj ] = 1,

r
(i−1)
jh (x1) =

1

h
[ui − ui] = 0, i ∈ {1, . . . , n− 1} \ {j},

and

rjh(x2)−
m∑
i=1

γi

ηi∫
ξi

rjh(x) dx

=
1

h

[
u(x2, ·, uj + h)− u(x2, ·, uj)

]
− 1

h

m∑
i=1

γi

ηi∫
ξi

[
u(x, ·, uj + h)− u(x, ·, uj)

]
dx

=
1

h
[un − un] = 0.
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With βn as defined in (5), let

εn = εn(h) = u(n−1)(x1, ·, u1 + h)− βn.

By Theorem 2, εn = εn(h)→ 0, as h→ 0. Using the notation of Theorem 1 for solutions
of initial value problems for (1) and viewing the solutions u as solutions of initial value
problems, we have

rjh(x) =
1

h

[
y(x, x1, u1, u2, . . . , uj + h, . . . , un−1, βn + εn)

− y(x, x1, u1, u2, . . . , uj , . . . , un−1, βn)
]
.

Then, by utilizing a telescoping sum, we have

rjh(x) =
1

h

[{
y(x, x1, u1, u2, . . . , uj + h, . . . , un−1, βn + εn)

− y(x, x1, u1, u2, . . . , uj , . . . , un−1, βn + εn)
}

+
{
y(x, x1, u1, u2, . . . , uj , . . . , un−1, βn + εn)

− y(x, x1, u1, u2, . . . , uj , . . . , un−1, βn)
}]
.

By Theorem 1 and the Mean Value theorem, we obtain

rjh(x) =
1

h
αj
(
x, y(x, x1, u1, . . . , uj + h̄, . . . , un−1, βn + εn)

)
(uj + h− uj)

+
1

h
αn
(
x, y(x, x1, u1, . . . , un−1, βn + ε̄n)

)
(βn + εn − βn),

where αj(x, y(·)) is the solution of the variational equation (3) along y(·) and satisfies

α
(i−1)
j (x1) = δji, i = 1, . . . , n,

and αn(x, y(·)) is the solution of the variational equation (3) along y(·) and satisfies

α(i−1)
n (x1) = δni, i = 1, . . . , n.

Furthermore, uj + h̄ is between uj and uj + h, and βn + ε̄n is between βn and βn + εn.
Now simplifying,

rjh(x) = αj
(
x, y(x, x1, u1, . . . , uj + h̄, . . . , un−1, βn + εn)

)
+
εn
h
αn
(
x, y(x, x1, u1, . . . , un−1, βn + ε̄n)

)
.

Thus, to show limh→0 rjh(x) exists, it suffices to show limh→0 εn/h exists.
Now, by Remark 1,

αn
(
x2, y(·)

)
−

m∑
i=1

γi

ηi∫
ξi

αn
(
x, y(·)

)
dx 6= 0.
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However, we derived above that rjh(x2) −
∑m
i=1 γi

∫ ηi
ξi
rjh(x) dx = 0, from which we

obtain

εn
h

=
−αj(x2, y(x, x1, ·, uj+h̄, ·, βn+εn))

αn(x2, y(x, x1, u1, ·, βn+ε̄n))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, y(x, x1, u1, ·, βn+ε̄n)) dx

+

∑m
i=1 γi

∫ ηi
ξi
αj(x, y(x, x1, ·, uj + h̄, ·, βn + εn)) dx

αn(x2, y(x, x1, u1, ·, βn+ε̄n))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, y(x, x1, u1, ·, βn+ε̄n)) dx

.

As a consequence of continuous dependence, we can let h→ 0, so that

lim
h→0

εn
h

=
−αj(x2, y(x, x1, u1, ·, βn)) +

∑m
i=1 γi

∫ ηi
ξi
αj(x, y(x, x1, u1, ·, βn)) dx

αn(x2, y(x, x1, u1, ·, βn))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, y(x, x1, u1, ·, βn)) dx

=
−αj(x2, u(x)) +

∑m
i=1 γi

∫ ηi
ξi
αj(x, u(x)) dx

αn(x2, u(x))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, u(x)) dx

:= A.

Let rj(x) = limh→0 rjh(x), and note by construction of rjh(x),

rj(x) =
∂u

∂uj
(x, x1, x2, ξ1, η1, . . . , ξm, ηm, u1, . . . , un, γ1, . . . , γm).

Furthermore,

rj(x) = lim
h→0

rjh(x) = αj
(
x, y(x, x1, u1, ·, βn)

)
+Aα2

(
x, y(x, x1, u1, ·, βn)

)
= α1

(
x, u(x)

)
+Aα2

(
x, u(x)

)
,

which is a solution of the variational equation (3) along u(x). In addition because of the
boundary conditions satisfied by rjh(x), we also have,

r
(i−1)
j (x1) = δji, i = 1, . . . , n− 1, and rj(x2)−

m∑
i=1

γi

ηi∫
ξi

rj(x) dx = 0.

This completes the argument for ∂u/∂uj .

For part (b), there are similarities with the previous argument, yet there are signifi-
cant enough differences for us to include the details concerning the characterization of
∂u/∂un. For this consideration, we denote u(x) by u(x, ·, un). Again, let δ > 0 be as in
Theorem 2. Let 0 < |h| < δ be given and define

rnh(x) =
1

h

[
u(x, ·, un + h)− u(x, ·, un)

]
.

This time, for h 6= 0,

r
(i−1)
nh (x1) =

1

h
[ui − ui] = 0, i = 1, . . . , n− 1,
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and

rnh(x2)−
m∑
i=1

γi

ηi∫
ξi

rnh(x) dx

=
1

h

[
u(x2, ·, un + h)− u(x2, ·, un)

]
− 1

h

m∑
i=1

γi

ηi∫
ξi

[
u(x, ·, un + h)− u(x, ·, un)

]
dx

=
1

h
[un + h− un] = 1.

Again with βn defined in (5), let

εn = εn(h) = u(n−1)(x1, ·, un + h)− βn.

As before, εn = εn(h) → 0, as h → 0. Employing the notation of Theorem 1 for
solutions of initial value problems for (1) and viewing the solutions u as solutions of
initial value problems, we have

rnh(x) =
1

h

[
y(x, x1, u1, . . . , un−1, βn + εn)− y(x, x1, u1, . . . , un−1, βn)

]
.

By Theorem 1 and the Mean Value theorem, we obtain

rnh(x) =
1

h
αn
(
x, y(x, x1, u1, . . . , un−1, βn + ε̄n)

)
(βn + εn − βn)

=
εn
h
αn
(
x, y(x, x1, u1, . . . , un−1, βn + ε̄n)

)
,

where βn+ ε̄n is between βn and βn+εn, and αn(x, y(·)) is the solution of the variational
equation (3) along y(·) and satisfies,

α(i−1)
n (x1) = δni, i = 1, . . . , n.

Thus, to show limh→0 rnh(x) exists, it suffices to show limh→0 εn/h exists.
By Remark 1,

αn
(
x2, y(·)

)
−

m∑
i=1

γi

ηi∫
ξi

αn
(
x, y(·)

)
dx 6= 0,

and we also have above that rnh(x2)−
∑m
i=1 γi

∫ ηi
ξi
rnh(x) dx = 1, from which we obtain

εn
h

=
1

αn(x2, y(x, x1, u1, ·, βn+ε̄n))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, y(x, x1, u1, ·, βn+ε̄n)) dx

.
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By continuous dependence, we can let h→ 0, so that

lim
h→0

εn
h

=
1

αn(x2, y(x, x1, u1, ·, βn))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, y(x, x1, u1, ·, β2)) dx

=
1

αn(x2, u(x))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, u(x)) dx

= B.

Let rn(x) = limh→0 rnh(x), and then by construction of rnh(x),

rn(x) =
∂u

∂un
(x, x1, x2, ξ1, η1, . . . , ξm, ηm, u1, . . . , un, γ1, . . . , γm).

Moreover,

rn(x) = lim
h→0

rnh(x) = Bαn
(
x, y(x, x1, u1, ·, un−1, βn)

)
= Bαn

(
x, u(x)

)
,

which is a solution of the variational equation (3) along u(x). Because of the boundary
conditions satisfied by rnh(x), we also have,

r(i−1)n (x1) = 0, i = 1, . . . , n− 1, and rn(x2)−
m∑
i=1

γi

ηi∫
ξi

rn(x) dx = 1.

And this completes the argument for ∂u/∂un.

For part (c) of the theorem, we will produce the details for ∂u/∂x2, with the arguments
for ∂u/∂x1 being somewhat along the same lines. For this case, we denote u(x) by
u(x, x2, ·). With δ > 0 as in Theorem 2, let 0 < |h| < δ be given, and define

z2h(x) =
1

h

[
u(x, x2 + h, ·)− u(x, x2, ·)

]
.

First, we consider boundary conditions. We have

z
(i−1)
2h (x1) =

1

h
[ui − ui] = 0, i = 1, . . . , n− 1.

Next, by employing the Mean Value theorem,

z2h(x2)−
m∑
i=1

γi

ηi∫
ξi

z2h(x) dx

=
1

h

[
u(x2, x2 + h, ·)−

m∑
i=1

γi

ηi∫
ξi

u(x, x2 + h, ·) dx

]

− 1

h

[
u(x2, x2, ·)−

m∑
i=1

γi

ηi∫
ξi

u(x, x2, ·) dx

]
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=
1

h

[
u(x2 + h, x2 + h, ·)−

m∑
i=1

γi

ηi∫
ξi

u(x, x2 + h, ·) dx

]

− 1

h

[
u(x2, x2, ·)−

m∑
i=1

γi

ηi∫
ξi

u(x, x2, ·) dx

]

− 1

h

[
u(x2 + h, x2 + h, ·)− u(x2, x2 + h, ·)

]
=

1

h
[un − un]− 1

h
u′(νh, x2 + h, ·)h = −u′(νh, x2 + h, ·),

where νh is between x2 and x2 + h. In passing to the limit, we have

lim
h→0

{
z2h(x2)−

m∑
i=1

γi

ηi∫
ξi

z2h(x) dx

}
= −u′(x2, x2, ·) = −u′(x2).

Next, we deal with the existence of limh→0 z2h(x). With βn as defined in (5), this
time we let

εn = εn(h) = u(n−1)(x1, x2 + h, ·)− βn,

and by Theorem 2, εn = εn(h)→ 0, as h→ 0. As in parts (a) and (b), we use the notation
of Theorem 1 for solutions of initial value problems for (1) and viewing the solutions u
as solutions of initial value problems, we have

z2h(x) =
1

h

[
u(x, x2 + h, ·)− u(x, x2, ·)

]
=

1

h

[
y(x, x1, u1, . . . , un−1, βn + εn)− y(x, x1, u1, . . . , un−1, βn)

]
=

1

h
αn
(
x, y(x, x1, u1, . . . , un−1, βn + ε̄n)

)
· εn

=
εn
h
αn
(
x, y(x, x1, u1, . . . , un−1, βn + ε̄n)

)
,

where αn(x, y(·)) is the solution of (3) along y(·) and satisfies

α(i−1)
n (x1) = δni, i = 1, . . . , n,

and βn + ε̄n lies between βn and βn + εn. As before, to show limh→0 z2h(x) exists, it
suffices to show limh→0 εn/h exists.

Now, recalling from above that z2h(x2) −
∑m
i=1 γi

∫ ηi
ξi
z2h(x) dx = −u′(νh, x2 +

h, ·), it follows from Remark 1 that,

εn
h

=
−u′(νh, x2+h, ·)

αn(x2, y(x, x1, u1, ·, βn+ε̄n))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, y(x, x1, u1, ·, βn+ε̄n)) dx

.

Nonlinear Anal. Model. Control, 2014, Vol. 19, No. 3, 396–412



406 J. Henderson

And passing to the limit due to continuous dependence, we have,

lim
h→0

εn
h

=
−u′(x2)

αn(x2, u(x))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, u(x)) dx

:= C.

From above,

z2h(x) =
εn
h
αn
(
x, y(x, x1, u1, . . . , βn + ε̄n)

)
,

from which we can evaluate the limit as h→ 0, and if we let z2(x) = limh→0 z2h(x), we
have z2(x) = ∂u/∂x2. That is, we obtain

z2(x) =
∂u

∂x2
(x, x1, x2, ξ1, η1, . . . , ξm, ηm, u1, . . . , un, γ1, . . . , γm)

= lim
h→0

z2h(x) = Cαn
(
x, u(x)

)
,

which is a solution of (3) along u(x). In addition, from above computations, z2(x) satis-
fies the boundary conditions,

z
(i−1)
2 (x1) = lim

h→0
z
(i−1)
2h (x1) = 0, i = 1, . . . , n− 1,

z2(x2)−
m∑
i=1

γi

ηi∫
ξi

z2(x) dx = lim
h→0

[
z2h(x2)−

m∑
i=1

γi

ηi∫
ξi

z2h(x) dx

]
= −u′(x2).

This completes the proof of part (c).

For part (d), fix j ∈ {1, . . . ,m}, and define

J := {1, . . . ,m} \ {j}.

In dealing with characterization of ∂u/∂ξj , we denote u(x) by u(x, ·, ξj). Let δ > 0 as
in Theorem 2 and let 0 < |h| < δ be given. Define

wjh(x) =
1

h

[
u(x, ·, ξj + h)− u(x, ·, ξj)

]
.

We first look at boundary conditions satisfied by wjh(x). To begin with,

w
(i−1)
jh (x1) =

1

h

[
u(i−1)(x1, ·, ξj + h)− u(i−1)(x1, ·, ξj)

]
=

1

h
[ui − ui] = 0, i = 1, . . . , n− 1.
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Next, by employing the Mean Value theorem for integrals,

wjh(x2)−
m∑
i=1

γi

ηi∫
ξi

wjh(x) dx

=
1

h

[
−γj

ξj+h∫
ξj

u(x, ·, ξj + h) dx+

{
u(x2, ·, ξj + h)−

∑
i∈J

γi

ηi∫
ξi

u(x, ·, ξj + h) dx

− γj

ηj∫
ξj+h

u(x, ·, ξj + h) dx

}
−

{
u(x2, ·, ξj)−

m∑
i=1

γi

ηi∫
ξi

u(x, ·, ξj) dx

}]

=
1

h

[
−γj

ξj+h∫
ξj

u(x, ·, ξj + h) dx+ un − un

]

= − 1

h
γju(ch, ·, ξj + h) · h = −γju(ch, ·, ξj + h),

for some ch inclusively between ξj and ξj + h. By Theorem 2, we can compute the limit,

lim
h→0

[
wjh(x2)−

m∑
i=1

γi

ηi∫
ξi

wjh(x) dx

]
= −γju(ξj).

Now, we deal with the existence of limh→0 wjh(x). Let βn be as in (5), and set

εn = u(n−1)(x1, ·, ξj + h)− βn.

By Theorem 2, εn → 0, as h→ 0, and upon employing initial value solutions notation,

wjh(x) =
1

h

[
y(x, x1, u1, . . . , un−1, βn + εn)− y(x, x1, u1, . . . , un−1, βn)

]
=
εn
h
αn
(
x, y(x, x1, u1, . . . , un−1, βn + ε̄n)

)
,

where βn + ε̄n lies between βn and βn + εn, and αn(x, y(·)) is as in the cases above.
From Remark 1, we can solve for

εn
h

=
wjh(x2)−

∑m
i=1 γi

∫ ηi
ξi
wjh(x) dx

αn(x2, y(·))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, y(·)) dx

,

from which, using the above limit, we can calculate,

lim
h→0

εn
h

=
−γju(ξj)

αn(x2, u(x))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, u(x)) dx

:= D.
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As as consequence, limh→0 wjh(x) exists, and we define wj(x) := limh→0 wjh(x). In
particular,

wj(x) =
∂u

∂ξj
(x, x1, x2, ξ1, η1, . . . , ξm, ηm, u1, . . . , un, γ1, . . . , γm)

= lim
h→0

wjh(x) = Dαn
(
x, u(x)

)
,

which is a solution of (3) along u(x). In addition,wj(x) satisfies the boundary conditions,

w
(i−1)
j (x1) = lim

h→0
w

(i−1)
jh (x1) = 0, i = 1, . . . , n− 1,

wj(x2)−
m∑
i=1

γi

ηi∫
ξi

wj(x) dx = lim
h→0

[
wjh(x2)−

m∑
i=1

γi

ηi∫
ξi

wjh(x) dx

]
= −γju(ξj).

The proof of part (d) is complete.

For part (e), the arguments are completely analogous to those just given for part (d).

For part (f), fix j ∈ {1, . . . ,m}, and let J be as defined in the proof of part (d). In
characterizing ∂u/∂γj , we will designate u(x) by u(x, ·, γj). With δ > 0 and 0 < |h| < δ
given as usual, define

pjh(x) =
1

h

[
u(x, ·, γj + h)− u(x, ·, γj)

]
.

As in the previous cases, we first consider boundary conditions satisfied by pjh(x). To
begin with,

p
(i−1)
jh (x1) =

1

h

[
u(i−1)(x1, ·, γj + h)− u(i−1)(x1, ·, γj)

]
=

1

h

[
ui − ui

]
= 0, i = 1, . . . , n− 1,

and

pjh(x2)−
m∑
i=1

γi

ηi∫
ξi

pjh(x) dx

=
1

h

[
h

ηj∫
ξj

u(x, ·, γj + h) dx+ u(x2, ·, γj + h)− (γj + h)

ηj∫
ξj

u(x, ·, γj + h) dx

−
∑
i∈J

γi

ηi∫
ξi

u(x, ·, γj + h) dx−

{
u(x2, ·, γj)−

m∑
i=1

γi

ηi∫
ξi

u(x, ·, γj) dx

}]

=
1

h

[
h

ηj∫
ξj

u(x, ·, γj + h) dx+ un − un

]
=

ηj∫
ξj

u(x, ·, γj + h) dx,

www.mii.lt/NA



Smoothness of solutions with respect to multi-strip integral BC 409

from which we can take the limit,

lim
h→0

[
pjh(x2)−

m∑
i=1

γi

ηi∫
ξi

pjh(x) dx

]
=

ηj∫
ξj

u(x) dx.

Finally, in considering the existence of limh→0 pjh(x), let βn be as in (5), and again,
define

εn = u(n−1)(x1, ·, γj + h)− βn,
for which by continuous dependence εn → 0, as h → 0. Using initial value solutions
notation, we have

pjh(x) =
1

h

[
y(x, x1, u1, . . . , un−1, βn + εn)− y(x, x1, u1, . . . , un−1, βn)

]
=
εn
h
α2

(
x, y(x, x1, u1, . . . , un−1, βn + ε̄n)

)
,

with βn + ε̄n between βn and βn + εn, and αn(x, y(·)) as usual. In view of Remark 1,
we can solve for

εn
h

=
pjh(x2)−

∑m
i=1 γi

∫ ηi
ξi
pjh(x) dx

αn(x2, y(·))−
∑m
i=1 γi

ηi∫
ξi

αn(x, y(·)) dx

.

Using the last above limit, we can calculate,

lim
h→0

εn
h

=

∫ ηj
ξj
u(x) dx

αn(x2, u(x))−
∑m
i=1 γi

∫ ηi
ξi
αn(x, u(x)) dx

:= E.

It follows that pj(x) := limh→0 pjh(x) exists, and

pj(x) =
∂u

∂γj
(x, x1, x2, ξ1, η1, . . . , ξm, ηm, u1, . . . , un, γ1, . . . , γm)

= Eαn
(
x, u(x)

)
,

is a solution of (3) along u(x). And pj(x) satisfies the boundary conditions,

p
(i−1)
j (x1) = 0, i = 1, . . . , n− 1, and pj(x2)−

m∑
i=1

γi

ηi∫
ξi

pj(x) dx =

ηj∫
ξj

u(x) dx.

This completes the proof of part (f).

Part (g) of the theorem is immediate by verifying that each side of the respective equa-
tions are solutions of (3) along u(x) and satisfy the same boundary conditions, and then
assumption (v) establishes the equalities.

The proof is complete.
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