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1 Introduction

In the theory of differential equations, the basic concepts have been formulated studying
the problems of classical mathematical physics. However, the modern problems motivate
to formulate and investigate the new ones, for example, a class of nonlocal problems.
Nonlocal conditions arise when we cannot measure data directly at the boundary. In this
case, the problem is formulated, where the value of the solution and/or a derivative is
linked to a few points or the whole interval.

A review on differential equations with more general boundary conditions (BC) in-
volving also Stieltjes measures has been written by Whyburn [232]. In 1963, Cannon [26]
formulated new problem with BCs, which are now called nonlocal. The term “nonlocal
boundary value problem” most likely to have been used by Beals in 1964 [12, 13]. He in-
vestigated elliptic type differential equations with nonclassical BCs. A parabolic problem
with integral boundary condition

x3(t)∫
x1(t)

g(x, t)u(x, t) dt = E(t) (1)
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was investigated by Kamynin in 1964 [109]. Samarskii and Bitsadze investigated nonlocal
problem for general elliptic equation and, in the case of rectangular space domain and
Laplace operator, applying methods of the theory of integral equations. They proved the
existence and uniqueness of solution in 1969 [19]. Now some one-dimensional nonlocal
boundary conditions (NBC)

u(0) = γ0u(ξ0) or u(1) = γ1u(ξ1) (2)

are called as Bitsadze–Samarskii type NBCs. Differential equations (for example, ordi-
nary, elliptic, parabolic etc.) with various types of nonlocal conditions were investigated
by many scientists. Two-points NBCs we can find in [90]. Il’in [78] and Moiseev
[80, 81] investigated multi-points NBCs (the study of multi-point BCs was initiated by
Picone [159])

u(0) =

m∑
i=1

γiu(ξi), u(1) =

m∑
i=1

δiu(ξi). (3)

Ionkin [87] considered parabolic problem with

u(0, t) = ν(t),

1∫
0

u(1, t) = µ(t). (4)

In [91], he investigate stability FDS for a parabolic equation with NBCs

u(0, t) = 0, ux(1, t) = ux(0, t) (5)

(Samarskii–Ionkin type NBCs).
Day investigated the heat equation subject to linear thermoelasticity with integral BCs

[43, 44]

u(0, t) = γ0

1∫
−1

α0(x)u(x, t) dx, u(1, t) = γ1

1∫
−1

α1(x)u(x, t) dx. (6)

Henderson proved existence theorems for BVPs for nth-order nonlinear difference equa-
tions [72]. A survey of numerical methods for the one-dimensional parabolic equation
subject to nonlocal conditions was done by Dehghan [45]. Webb [229, 230], Infante [85,
86] investigated quasilinear problems with Bitsadze–Samarskii type NBCs and had proved
results about the properties of positive solutions. We can find more results on the exis-
tence and multiplicity of solutions of nonlocal BVP involving the second-order ordinary
differential equations in surveys of Ma [125] and Ntouyas [144]. In 2011, special issue
for Nonlocal Boundary Conditions (27 articles) was published in the journal Boundary
Value Problems [52]. Articles in this special issue deal with BVPs with NCs for ordinary,
discrete, impulsive, neutral, parabolic, fractional and time scales equations. Existence,
nonexistence, multiplicity, asymptotic behavior and approximation of solutions are inves-
tigated by using several methods as fixed point theorems, fixed point index, variational
methods, iterative techniques, bifurcation theory, lower and upper solutions.
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One of the objectives of this study is to describe the results of Lithuanian mathemati-
cians in the field of differential and numerical problems with NBCs. Prof. M. Sapagovas
was not only a pioneer in the study of such problems, but also the founder of the scientific
school in Vilnius. The first problem with NBCs came from the applications, and it was
the investigation of a mercury droplet in electric contact, given the droplet volume [174–
176, 178–180]. Difference scheme for two-dimensional elliptic problem with an integral
condition was constructed in [177]. Scientific supervisor of Sapagovas (Kiev, 1963–1965)
Prof. V. Makarov also began investigating problems with NBCs [127–129]. Sapagovas
and his doctoral student (Vilnius, 1982–1985) Čiegis investigated elliptic and parabolic
problems with integral and Bitsadze–Samarskii type NBCs and finite-difference schemes
for them [31, 181, 182]. They published some new results about numerical solutions for
problems with NBCs in [32, 183, 190, 191].

Sturm–Liouville Problem (SLP) is very important for investigation of existence and
uniqueness of solutions for classical stationary problems. This problem is very compli-
cated because problem with NBCs are not self-adjoint and spectrum for such problems
may be not positive (or real). Ionkin and Valikova investigated SLP with NBCs [92]

u(0) = u(1), ux(1) = 0. (7)

Gulin et al. [56,60] considered two-dimentional parabolic equation with Samarskii–Ionkin
type NBCs in one spatial direction. They investigated a spectrum for one-dimensional
SLPs and proved stability for FDS. Gulin, Morozova and Udovichenko investigated par-
abolic problems with two parameters in NBCs [54, 55, 57, 59, 61–66]

u(0, t) = αu(1, t), ux(1, t) = γux(0, t). (8)

Gulin and Mokin have similar results for NBCs [58, 138]

u(0, t) = 0, ux(1, t) = ux(0, t) + αu(1, t). (9)

Stability of a family of difference schemes for the Samarskii–Ionkin problem with vari-
able coefficient is obtained in [139].

Sapagovas with co-authors began to investigate eigenvalues for Bitsadze–Samarskii
type

u(0) = 0, u(1) = γu(ξ), 0 < ξ < 1, (10)

and integral type NBCs [41, 184, 185, 197]

u(0) = γ0

1∫
0

α0(x)u(x) dx, u(1) = γ1

1∫
0

α1(x)u(x) dx. (11)

They showed that there exists eigenvalues, which do not depend on parameters γ0 or
γ1 in boundary conditions (see Eqs. (2) and (6)) and complex eigenvalues may exist.
Sapagovas with co-authors investigated the spectrum of discrete SLP, too. These results
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can be applied to prove stability of Finite-Difference Schemes (FDS) for nonstation-
ary problems and convergence of iterative methods. Numerical methods were proposed
for parabolic and iterative methods for solving two-dimensional elliptic equation with
Bitsadze–Samarskii or integral type NBCs: Alternating Direction Method (ADM) for
a two-dimensional parabolic equation with a NBC [194, co-authors: Kairytė, Štikonienė,
Štikonas], FDS of increased order of accuracy for the Poisson equation with NCs [188],
FDS for two-dimensional elliptic equation with a NC [101, co-authors: Jakubėlienė, Čiu-
paila], a fourth-order ADM for difference schemes with NC [198, co-author: Štikonienė]
ADM for the Poisson equation with variable weight coefficients in an integral condition
[196, co-authors: Štikonienė, Štikonas]; ADM for a mildly nonlinear elliptic equation
with integral type NCs [199, co-author: Štikonienė], FDS for nonlinear elliptic equation
with NC [40, co-authors: Čiupaila, Štikonienė]. Spectral analysis was applied for two-
and three-layer FDS for parabolic equations with NBCs: FDS for one-dimensional dif-
ferential operator with integral type NCs [171, co-author: Sajavičius], [195, co-authors:
Ivanauskas, Meškauskas], [189]. Stability analysis was done for FDS in the case of one-
and two-dimensional parabolic equation with NBCs [187], [93, co-authors: Ivanauskas,
Meškauskas]. In [38] and in doctoral dissertation of Tumanova (scientific supervisor
Čiegis) [223], the one-dimensional parabolic equation with three types of integral NBCs
was approximated by the implicit Euler FDS and stability analysis was done. Some new
results published by doctoral students (scientific supervisor Sapagovas): Jesevičiūtė (Jok-
šienė) investigate stability of the FDS for parabolic equations subject to integral con-
ditions with applications for thermoelasticity [106, 107], Jakubėlienė investigates two-
dimensional problems with double integral in BC [100, 102, 193], Jachimavičienė in-
vestigates pseudo-parabolic equation with NBCs and FDS [96, 97, 99]. The stability of
explicit three-layer FDS for pseudo-parabolic problems were investigated in papers [98,
co-authors: Jachimavičienė, Štikonienė, Štikonas], [39, Čiegis, Tumanova]. Analogues of
results for hyperbolic equation with NBCs are in [94, co-authors: Ivanauskas, Novickij].
A computational experiment for stability analysis of FDS with NBCs is decribed in [192,
co-authors: Čiupaila, Jokšienė, Meškauskas]. Sapagovas wrote a textbook on differential
problems with NBCs and numerical methods for such problems [186]. Many of the results
above are included in this handbook.

In this survey, we present recent results on stationary problems (Section 2), Green’s
functions (Section 3) and spectrum of SLP with NBCs (Section 4) and selected problems
with NBCs (Section 5). Some of them were obtained by Sapagovas scientists or scientific
school, which he created.

2 Stationary problem with nonlocal boundary conditions and char-
acteristic curve

One of the directions of Sapagovas scientific school is the development of a general theory
for problems with NBCs. The various linear NBCs (1)–(11) can be written as linear
functional (for classical BC, see [42]). The first results in this direction were obtained
in [35]. In this paper, the second-order linear stationary equation with nonlocal boundary
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conditions was investigated

lu := −
(
p(x)u′

)′
+ q(x)u = f, x ∈ (0, 1), (12)

u(0) = γ0〈k0, u〉+ f0, γ0 > 0, (13)

u(1) = γ1〈k1, u〉+ f1, γ1 > 0, (14)

where k0 and k1 are linear functionals:

〈k0, u〉 := α0u(a0) +

1∫
0

β0(x)u(x) dx, (15)

〈k1, u〉 := α1u(a1) +

1∫
0

β1(x)u(x) dx. (16)

Note that given expressions are examples of functionals and the results were proved in a
general case. For a parabolic equation (in the case α0 = α1 = 0), Ekolin [49] proved the
convergence of the forward and backward Euler methods. The integrals in the nonlocal
boundary conditions were approximated by the trapezoidal rule. The convergence of these
methods is proved under the assumption that

γ0
(
|β0|, 1

)
< 1, γ1

(
|β1|, 1

)
< 1, (17)

where (·, ·) denotes the standard inner product (f, g) =
∫ 1

0
f(x)g(x) dx. For the Crank–

Nicolson method, the convergence is proved under the assumption that

γ0‖β0‖+ γ1‖β1‖ <
√
3

2
, (18)

where ‖f‖ :=
√

(f, f). Using Galerkin method, Fairweather and Lopez-Marcos [51]
solved semilinear parabolic problem with integral boundary conditions under the assump-
tions

γ0‖β0‖ < 1, γ1‖β1‖ < 1. (19)

In papers [35, 36], analogous results for FDS

LU := −δ(PδU) +QU = F in ωh, (20)

U |i=0 = γ0〈K0, U〉+ f0, γ0 > 0, (21)

U |i=n = γ1〈K1, U〉+ f1, γ1 > 0 (22)

and for implicit FDS for parabolic equation were established. In papers [35, 36] and
in Suboč doctoral dissertation (scientific supervisor Čiegis) [220], the dependence of
solution on parameters γ0 and γ1 was investigated. The main result of these papers is
that the solution for differential problem with NBCs (15)–(16) or solution for FDS with
NBC (21)–(22) exists and is unique for all γ0 > 0 and γ1 > 0 except points on hyperbola
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or line(s). So, sufficient and necessary conditions for existence of unique solution for
stationary problem were found. In [36], the stability region in the plane of parameters
was found and the stability of FDS stationary problem and implicit FDS for a parabolic
equation with NBCs were proved. These results used for investigation of FDS for nonlin-
ear parabolic equation [34].

In [38], the one dimensional parabolic equation with three types of integral nonlocal
boundary conditions is approximated by the implicit Euler finite difference scheme. Sta-
bility analysis is done in the maximum norm and it is proved that the radius of the stability
region depends on the signs of coefficients in the nonlocal boundary condition.

The analysis of stationary problem with one classical boundary condition (γ0 = 0) and
another NBC [197,214,218] and investigation of auxiliary stationary problems [107,187,
198] shows that restrictions γ0 > 0 and γ1 > 0 are not necessary, and, in general case, we
can take γ0, γ1 ∈ R. The main research tools in [35,36] were the maximum principle and
comparison theorems. Existence and uniqueness of a solution for the stationary problem
is equivalent to existence of zero eigenvalue. So, we formulate SLP with two nonlocal
boundary conditions (as functional conditions):

Lu := −(p(x)u′)′ + q(x)u = 0, (23)
〈k0, u〉 = γ0〈n0, u〉, γ0 ∈ R, (24)
〈k1, u〉 = γ1〈n1, u〉, γ1 ∈ R. (25)

We can write many problems with NBC in this form, where 〈ki, u〉 is a classical part and
〈ni, u〉, i = 0, 1, is a nonlocal part of boundary conditions. For example, the functionals
ni, i = 0, 1, can describe the multi-point or integral NBCs and the functional ki, i = 0, 1,
can describe the local (classical) boundary conditions. If γ0 = γ1 = 0, then problem
(23)–(25) becomes classical.

The example of NBCs is

u(0) = γ0

1∫
0

α(x)u(x) dx, u(1) = γ1

1∫
0

β(x)u(x) dx. (26)

Sometimes instead of NBCs (26), the following conditions (one or both) are used for SLP:

1∫
0

α(x)u(x) dx = 0,

1∫
0

β(x)u(x) dx = 0. (27)

Formally, we can say that such cases are realized for γ0 = ∞ or γ1 = ∞. More general
problem will be if we consider NBCs

1∫
0

α(x)u(x) dx = γ̃0u(0),

1∫
0

β(x)u(x) dx = γ̃1u(1). (28)

Now left-hand side of these BC is “classical” and right-hand side “nonlocal”.
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The condition for existence of zero eigenvalue is

D(n0, n1)[u]γ0γ1 −D(n0, k1)[u]γ0 −D(k0, n1)[u]γ1 +D(k0, k1)[u] = 0, (29)

where u = [u0, u1] is any fundamental system of stationary equation (23) and

D(f)[w] = D(f1, f2)[w1, w2] :=

∣∣∣∣〈f1, w1〉 〈f2, w1〉
〈f1, w2〉 〈f2, w2〉

∣∣∣∣ .
We call the solution of equation (29) a characteristic curve for problem (23)–(25) and
denote a set of it’s points in plane R2

γ0,γ1 by the letter C.
Let denote matrix

A =

(
a00 a01
a10 a11

)
:=

(
D(n0, n1) D(n0, k1)
D(k0, n1) D(k0, k1)

)
. (30)

The two main results on characteristic curve are the following lemmas [215].

Lemma 1. A characteristic curve for problem (23)–(25) in the plane R2 can be one of
the following five types:

(i) If D(n0, n1) = D(k0, k1) = D(n0, k1) = D(k0, n1) = 0, then the curve is whole
plane;

(ii) If D(n0, n1) = D(n0, k1) = D(k0, n1) = 0, D(k0, k1) 6= 0, then the curve is
empty set;

(iii) If D(n0, n1) = 0, D(n0, k1) 6= 0 or D(n0, n1) = 0, D(k0, n1) 6= 0, then the curve
is line;

(iv) If D(n0, n1) 6= 0 and detA = 0, then the curve is union of vertical and horizontal
lines;

(v) If D(n0, n1) 6= 0 and detA 6= 0, then the curve is hyperbola.

Lemma 2. On torus, Characteristic Curve for problem (23)–(25) can be one of the
following three types:

(i) If A ∈ GL2(R), then the curve is homeomorphic to a circle, and this curve winds
around the torus one time (one time in one direction and one in the other direction);

(ii) If O 6= A /∈ GL2(R), then the curve is the union of two circles (strictly “latitudi-
nal” and strictly “longitudinal”) with one common point;

(iii) Otherwise (i.e., A = O), the curve is whole torus.

These lemmas are valid for the discrete SLP

LhUh := −δ
(
PhδUh

)
+QhUh = 0 in ωh, (31)〈

Kh
0 , U

h
〉
= γ0

〈
Nh

0 , U
h
〉
,

〈
Kh

1 , U
h
〉
= γ1

〈
Nh

1 , U
h
〉
, (32)

where (γ0, γ1) ∈ T2.
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3 Green’s functions for problems with nonlocal boundary conditions

Green’s functions for problems with classical boundary conditions were described by
Stakgold [212, 213], Duffy [47]. We can find Green’s functions for problems with dif-
ference operator in the books of Samarskii and Nikolaev [172, 173] and the textbook of
Bahvalov, Zhidkov and Kobel’kov [9]. The investigation of the semilinear problems with
NBCs and the existence of positive solutions are based on the investigation of Green’s
function for the linear problems with NBCs. Green’s functions for the second- and higher-
order boundary problems with various NCs were constructed by Anderson [3, 4], Webb
and Infante [82,83,85,86,226,227], Ma and An [121,124,126], Sun [221], Truong, Ngoc
and Long [222], Yang [236], Zhao [240,241], Xie, Liu and Bai [233] and other scientists.
In their works, authors considered the existence and multiplicity of solutions by apply-
ing various methods: lower and upper solution method, Leggett–Williams fixed-point
theorem, Guo–Krasnoselskii fixed-point theorem, Leray–Schauder continuation princi-
ple, Avery–Peterson fixed-point theorem. Henderson and Ntouyas [77], Guo, Sun and
Zhao [67], Liu and O’Regan [117] have considered the third- and higher-order differential
equations with various NBCs and investigate the existence of solutions. Bai [10] proved
the existence of one or two positive solutions for the nonlocal fourth-order BVP

u(4) + βu′′ = λf(t, u, u′′),

u(0) = u(1) =

1∫
0

p(s)u(s) ds, u′′(0) = u′′(1) =

1∫
0

p(s)u(s) ds.
(33)

L. Kong and Q. Kong [113] considered nonlinear BVP with nonhomogeneous multi-point
BCs. Hao, Liu, Wub and Sun [69] considered nth-order singular nonlocal BVP

u(n) + λa(t)f(t, u) = 0, u(0) = · · · = u(n−2)(0), u(1) =

1∫
0

u(s) dA(s) (34)

with Riemann–Stieltjes integral in one BC and proved existence of positive solutions.
Zhao et al. [239] investigated the second-order BVP with four-point BC. The existence
results of multiple monotone and convex positive solutions for some fourth-order multi-
point BVP was established by Liu, Weiguo and Chunfang in [118]. Ma [122] studied the
existence and nonexistence of positive solutions of nonlinear periodic BVP and Green’s
function for corresponding linear problem. Henderson and Luca in [74, 75] presented
some results for positive solutions of a system of nonlinear the second-order ODEs subject
to multi-point BCs. Wang and An [224] investigated the existence, multiplicity, and
nonexistence of positive solutions for nonhomogeneous m-point BVP with two parame-
ters. Under conditions weaker than those used by Ma, Zhang and Ge [238] established var-
ious results on the existence and nonexistence of symmetric positive solutions to fourth-
order BVP with integral BC. By using a fixed point theorem in a cone and the nonlocal
third-order BVP Green’s function, the existence of at least one positive solution for the
third-order BVP with the integral BC was considered by Guo and Yang in [68]. A class of
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second-order three-point integral BVP at resonance was investigated in [116] by Liu and
Ouyang. Jankowski established the existence of at least three nonnegative solutions of
some nonlocal BVP to third-order differential equations with advanced arguments [103].
He considered nonlocal BVP for systems of second-order differential equations with
dependence on the first-order derivatives and deviating arguments [104]. In these papers,
nonlinear differential equations has nonlinearity in the right-hand side only (see (33)–(34)
as examples). Green’s functions were constructed for simple linear differential operator.
They were used for investigation of properties of solutions nonlinear differential equa-
tions.

The investigations of Green’s functions and relations between them there were one of
the main task of the group of researchers in Vilnius university. Linear NBCs can be written
in the form (24)–(25). The first results were obtained for the second-order differential
problem in [165, 166]. These results were generalised in [216] for BVP

−
(
p(x)u′

)′
+ q(x)u = f(x), (35)

〈L1, u〉 = g1, 〈L2, u〉 = g2. (36)

In this paper, the second-order linear differential equation with two additional conditions
was investigated and Green’s function was constructed. The relation between two Green’s
functions for two such problems with different additional conditions was derived and
general formulae were applied to a stationary problem with NBCs (24)–(25). Green’s
function for a problem with NBCs can be expressed per Green’s function for a problem
with classical BCs. The differential equation (35) can be approximated by the difference
equation

Lu := a2iui+2 + a1iui+1 + a0iui = fi, (37)

where a2, a0 6= 0. Let S be a two-dimensional linear space of solutions for Eq. (35) or
Eq. (37). Then the following lemma is valid for the differential problem [216] and discrete
problem [168] with two additional conditions (36).

Lemma 3. Let {u1, u2} be the basis of the linear space S. Then the following proposi-
tions are equivalent:

(i) The functionals L1, L2 are linearly independent;
(ii) D(L)[u] 6= 0.

Green’s function for problem (37) with homogeneous conditions 〈L1, u〉 = 0,
〈L2, u〉 = 0, where the functionals L1 and L2 are linearly independent, is

Gij =
D(L, δi)[u, G

c
·,j ]

D(L)[u]
.

For the theoretical investigation of problems with NBCs, the next result about the relations
between Green’s functions Guij and Gvij of two nonhomogeneous discrete problems{

Lu = f,

〈lm, u〉 = 0, m = 1, 2,

{
Lv = f,

〈Lm, v〉 = 0, m = 1, 2,

is useful [168].
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Theorem 1. If Green’s function Gu exists and functionals L1 and L2 are linearly inde-
pendent, then

Gvij =
D(L, δi)[u, G

u
·,j ]

D(L)[u]
.

Let us investigate Green’s function for the problem with nonlocal boundary conditions

〈L1, u〉 := 〈κ1, u〉 − γ1〈κ1, u〉 = 0, (38)
〈L2, u〉 := 〈κ2, u〉 − γ2〈κ2, u〉 = 0. (39)

If γ1, γ2 = 0, then problem (38)–(39) becomes classical. Suppose that there exists Green’s
function Gcl

ij for the classical case. If ϑ := D(L)[u] 6= 0, then Green’s function exists for
problem (37)–(39). The following formula is valid:

ϑ = D(κ1 · κ2)[u]− γ1D(κ1 · κ2)[u]− γ2D(κ1 · κ2)[u] + γ1γ2D(κ1 · κ2)[u]

(θ = 0 is equation of the characteristic curve) and

Gij = Gcl
ij + γ1

〈
κk1 , Gcl

kj

〉D(δi, L2)

ϑ
+ γ2

〈
κk2 , Gcl

kj

〉D(L1, δi)

ϑ
.

Analogous results are valid in differential case [216] and for the third-order linear differ-
ential equation with three additional conditions [167]. In the case ofmth-order differential
equation with m additional conditions

u(m) + am−1(x)u(m−1) + · · ·+ a1(x)u′ + a0(x)u = f(x),

〈Li, u〉 = fi, i = 1, . . . ,m,

or discrete mth-order problem

ami ui+m + · · ·+ a2iui+2 + a1iui+1 + a0iui = fi,

〈L1, u〉 = g1, . . . , 〈Lm, u〉 = gm,

formulae for Green’s functions were derived in [164, 217]. These results are summarized
in Roman doctoral dissertation [163].

3.1 Generalized Green’s functions

In the caseD[L](u) = 0, Green’s function do not exist. For investigation of solutions, we
can construct generalized Green’s function [14]. Most authors have developed a theory
of generalized Green’s matrix for systems of differential equations with two-points BCs.
Brown used generalized Green’s functions and generalized inverses for linear differential
systems with Stieltjes BCs [23,24]. Locker investigated the generalized Green’s function
for nth-order linear differential operator and k linearly independent boundary values as
a kernel of the Moore–Penrose inverse that describes the minimum norm least squares
solution for compatible BVP [119, 120].
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Now we will review recent articles related to generalized Green’s function for dif-
ferential equations and some applications. In [20], linear Fredholm’s BVPs for systems
of ODE with constant coefficients and a single delay were investigated, assuming that
these solutions satisfy the initial and boundary conditions. A method of pseudoinverse
by Moore–Penrose matrices led to an explicit and analytical form of a criterion for the
existence of solutions. Some commonly used interpolation algorithms were analysed
in [46]. Among all of the methods, biharmonic spline interpolation was considered, which
is based on Green’s function. In [135], a new class of generalized inverses on semigroups
was introduced by means of Green’s relations. The classical generalized inverses (group
inverse, Drazin inverse and Moore–Penrose inverse) belong to this class. In [1], Abu-
Saman reviews the mathematical considerations behind the generalized inverse of a ma-
trix. Simple derivations for the determination of different types of generalized inverses
of a matrix are presented. These include results of the generalized inverse of singular and
rectangular matrices. It also includes applications of the generalized inverse to solution
of a set of linearly dependent equations. In [115], Li and Zhang extend and generalize
the standard spectral graph theory on undirected graphs to digraphs. In particular, they
introduce and define a normalized digraph Laplacian for digraphs, and prove that its
Moore–Penrose pseudoinverse is the discrete Green’s function of the Diplacian matrix as
an operator on digraphs. Xu and Yau proved an explicit formula of Chung–Yau’s discrete
Green’s functions as well as hitting times of random walks on graphs [234]. Maroncelli
and Rodríguez investigated least squares solutions for a linear nonhomogeneous BVP
with impulses [132]. The analysis of least squares solution of minimal norm is directly
related to generalized inverses and generalized Green’s functions for current BVP. The
explicit formula of least squares solution is given.

Paukštaitė investigated a generalized Green’s function that describes the minimum
norm least squares solution of every second-order discrete problem with two nonlocal
conditions. In [149–151], properties of generalized Green’s function that are analogous
to properties of ordinary Green’s function were proved. She investigated the nullity of
discrete problem and presented its classifications. Null spaces of discrete problem and its
adjoint problem were also analysed, explicit formulas of bases of null spaces were found.
Moreover, the necessary and sufficient existence conditions of exact solutions were given.

4 Sturm–Liouville problem

An eigenvalue problem for the second-order ordinary differential operator with nonlocal
condition was formulated and analysed by Ionkin [88, 89] and by Cahlon, Kulkarni,
Shi [25]. In these works, eigenvalue problem is associated with the stability of differ-
ence schemes for one-dimensional parabolic equations. In Sapagovas article [185], the
eigenvalue problem is associated with iterative methods for finite-difference schemes for
problems with NBCs. Shkalikov [204] investigated the properties of eigenfunctions. We
describe the results of Gulin with co-authors in Section 1. Note that the eigenvalue for
problems with NBCs is the separate part of the general nonselfadjoint operator theory
(see the article of Il’in [79] and the book of Mennicken and Möller [136]).
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The structure of spectrum remains uncertain for problems with nonlocal boundary
conditions and variable coefficients. However, even for the simplest operator −d2/ dx2

interesting results on the spectrum were obtained. Čiupaila, Jesevičiūtė and Sapagovas
[41] investigated eigenvalue problem

−u′′ = λu, x ∈ (0, 1), (40)
u(0) = 0, (41)

u(1) = γ

1∫
0

u(x) dx. (42)

For this problem, real eigenvalues exist only in the following cases: if γ < 2, then all
eigenvalues are positive; if γ > 2, then all eigenvalues are positive, except one negative
eigenvalue (γ > 2) or zero eigenvalue (γ = 2). The same result is valid for NBCs

u(0) = γ0

1∫
0

u(x) dx, u(1) = γ1

1∫
0

u(x) dx

with γ = γ0+γ1. Ionkin and Valikova [92] for NBCs (7) prove that all nonzero eigenval-
ues are not simple, i.e., for each such eigenvalue, there exist eigenfunction and generalized
eigenfunction. Such (multiply) eigenvalues (see [41]) exist for NBCs

u(0) = 0, u(1) = γ

3/4∫
1/4

u(x) dx, (43)

too. In [197], Sapagovas and Štikonas investigate the eigenvalue problem with one
Bitsadze–Samarskii type NBC

u(0) = 0, u(1) = γu(ξ), ξ ∈ (0, 1). (44)

They found that some eigenvalues do not depend on parameter γ and for some γ complex
eigenvalues exist. More results about real eigenvalues for this problem are in [214].

SLP (40)–(41) with one of the two cases of integral type NBCs

u(1) = γ0

ξ∫
0

u(x) dx, u(1) = γ1

1∫
ξ

u(x) dx, γ ∈ R, ξ ∈ [0, 1], (45)

were investigated in [156, 157]. All eigenvalues (countable set) of problem (40)–(41),
(45b) are real and simple. If γ = 1/(1− ξ2), then the minimal eigenvalue is zero. If γ >
1/(1−ξ2), then there exist one negative eigenvalue. In the case of the boundary condition
(45a), multiple and complex eigenvalues may exist for some values of parameter γ. SLP
(40)–(41) with one of the three cases of two-point NBCs

u′(1) = γu(ξ), u′(1) = γu′(ξ), u(1) = γu′(ξ), γ ∈ R, ξ ∈ [0, 1], (46)
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were investigated in [153]. In the case of boundary (46c), two negative eigenvalues may
exist for some values of parameter γ. Properties of eigenfunctions for such problems were
obtained in [154]. These results are part of doctoral dissertation of Pečiulytė [152]. The
properties of negative eigenvalues and negative critical points of a characteristic function
for such problems were investigated in [158]. Some results about all critical points are
described in [155].

In [218], the characteristic function method for investigation of the spectrum for the
problem (40), (41), (44) were used. This paper presents some new results on a spec-
trum in a complex plane for the second-order stationary differential equation with one
Bitsadze–Samarskii type NBC. Some new results on characteristic functions are proved.
A definition of constant eigenvalues and the characteristic function is introduced for the
SLP with general NBCs. This method of the characteristic function used for investigation
of complex eigenvalues and their qualitative behaviour (dynamics) if parameters γ and
ξ in NBC (45) are changed [205]. The dynamics of complex eigenvalues for analogues
discrete problems is shown in [207] (NBC (45) are approximated by the trapezoidal rule
or by Simpson’s rule) and in [207] (two-points NBCs). In [206], for SLP (40), (41) with
NBC

u(1) = γ

1−ξ∫
ξ

u(x) dx, γ ∈ R, ξ ∈ [0, 1/2], (47)

characteristic functions in the neighbourhood constant eigenvalue point and in the neigh-
bourhood of the critical point of the second order were investigated. For NBC

u(ξ) = γu(1− ξ), γ ∈ R, ξ ∈ [0, 1], (48)

analogous investigation was done in [208].
The paper of Bandyrskii, Lazurchak, Makarov and Sapagovas [11] deals with numer-

ical methods for eigenvalue problem for the second-order ordinary differential operator
with variable coefficient

u′′ +
(
λ− q(x)

)
u = 0, x ∈ (0, 1),

subject to NBC (43). FD method (functional-discrete method) is derived and analysed
for calculating of eigenvalues, particularly complex eigenvalues. Jesevičiūtė and Sapago-
vas [107] investigated the stability of FDS for parabolic equation with integral type NBCs
with variable weight functions

u(−l, t) = γ0

l∫
−l

α0(x)u(x, t) dx, u(l, t) = γ1

l∫
−l

α1(x)u(x, t) dx

and analysed discrete SLP in the case of various weights α0 and α1 (for approximation
integrals the trapezoidal rule was used). In [105], an eigenvalue problem for a differential
operator with nonlocal integral conditions, when variable coefficients arise in nonlocal
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integral conditions, was investigated and was found how eigenvalues depend on the pa-
rameters occurring in the nonlocal boundary conditions. Discrete SLP

−Ui−1 − 2Ui + Ui+1

h2
= λUi, i = 1 . . . N − 1, (49)

U0 + UN
2

+

N−1∑
i=1

Ui = 0,
UN
2

+

N−1∑
i=1

Uiih = 0 (50)

was analysed by Jachimavičienė, Jesevičiūtė and Sapagovas [99]. These results are part
of doctoral dissertation of Jesevičiūtė (Jokšienė) [106]. Instead BC (50), Jachimavičienė
obtained few new results [95, 96] about spectrum for NBCs

U0 = γ0h

(
U0 + UN

2
+

N−1∑
i=1

Ui

)
= 0, (51)

UN = γ1h

(
U0 + UN

2
+

N−1∑
i=1

Ui

)
= 0. (52)

Jakubėlienė analysed an eigenvalue problem for the system

−u′′i = λui, i = 1, . . . , N − 1,

with boundary conditions

ui(0) = 0, ui(1) = γih

N−1∑
k=1

1∫
0

uk(x) dx, i = 1, . . . , N − 1, Nh = 1,

and analogous discrete SLP

−Ui−1,j − 2Uij + Ui+1,j

h2
= λUi, j, i, j = 1 . . . N − 1, (53)

Ui0 = 0, uiN = γih
2
N−1∑
k=1

(
UkN
2

+

N−1∑
j=1

Ukj

)
(54)

in [100,102]. The spectrum and eigenfunctions for SLP (49), (51)–(52) were investigated
for all values of parameters γ1 and γ2 in [143]. For this problem:

1) all eigenvalues are simple and real;
2) if γ < 2, then λ ∈ (0, 4/h2];
3) if γ ↗ 2/h, then λ1 → −∞;
4) if γ = 2/h, then boundary conditions (51)–(52) are not linearly independent;
5) if γ ↘ 2/h, then λ1 → +∞;
6) if γ > 2/h, then all the eigenvalues λ are positive.
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Chanane [30] used the regularized sampling method introduced recently to compute
the eigenvalues of Sturm–Liouville problems

−u′′ + q(x)u = λu

with NBCs
1∫

0

u(x) dψ0(x) + u′(x) dψ0(x) = 0,

1∫
0

u(x) dϕ0(x) + u′(x) dϕ0(x) = 0.

In [108], the second-order singular Sturm–Liouville integral boundary value problem was
concerned and the existence of at least one positive solution was proved by Jiang, Liu,
Wub. Ma and An [123] considered the nonlinear eigenvalue problems

−u′′ = λh(t)f(u), t ∈ (0, 1), u(0) = 0, u(1) =

1∫
0

u(s) dA(s).

They investigated the global structure of positive solutions by using global bifurcation
techniques. Hao, Liu, Wub, Sun [70] similar n-order problem considered under some
conditions concerning the first eigenvalue corresponding to the relevant linear operator.
The existence of positive solutions is obtained by means of the fixed point index theory in
cones. Hao, Liu, Wub, Xu in [71] considered a class of singular n-order nonlocal BVPs in
Banach spaces. The existence of multiple positive solutions for the problem was obtained
by using the fixed point index theory of strict set contraction operators. Karulina [111]
considered the Sturm–Liouville problem with symmetric boundary conditions and an
integral condition and estimated the first eigenvalue of this problem for different values of
the parameters. Nizhnik solved the inverse spectral problem for a class of Sturm–Liouville
operators with singular nonlocal potentials and NBCs on a star graph [142]. By employing
known Guo–Krasnoselskii fixed point theorem, Wang, Liu and Zhang investigated the
eigenvalue interval for the existence and non existence of at least one positive solution
of nonlinear fractional differential equation with integral boundary conditions [225]. Yan
determined the principal eigenvalue of the linear and nonlinear fourth-order eigenvalue
problems with integral type NBCs [235].

5 Some other recent differential and discrete problems with NBCs

Note that many of such articles are connected with various applications when NBCs have
clear physical or mechanical meaning [27–29, 237]. In this section, we mention some
articles on BVP with NCs.

Hyperbolic problems with integral type NBCs were investigated in [147] by Pane-
jah and Panejah. Various hyperbolic equations with NBCs were investigated by a lot
of authors: Duzheva considered BVP with integral BC of the first order [48]; Khaleel
and Khtan in [112] used numerical method for solving the initial value problem that
consists of the multi-dimensional hyperbolic equation with nonlinear integral NBCs. This
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method depends on Crank–Nikolson FDS and Taylor’s expansion; Martín-Vaquero and
Wade [134] derived a new family of high-order stable three-level algorithms to solve the
wave equation. Pulkina analysed BVPs for a hyperbolic equation with NBCs of the first
and the second kind [160, 161]. The unique existence of classical solution of initial-
boundary value problem for wave equation with a special integral NBC is proved in
the work of Korzyuk [114]. Ashyralyev and Prenov studied FDS for initial-boundary
value problem for a hyperbolic system with NBCs [8], Ashyralyev and Ozdemir analysed
FDS for hyperbolic-parabolic equations with multi-point NBCs [7]. In [33] Cheniguel
presented new technique for solving wave equation with NBCs.

Pao and Wang considered a class of fourth-order nonlinear elliptic equation with
multi-point NBCs in [148]. They considered a second-order elliptic equation with NBC
and the usual multi-point boundary problem in ODEs, too. The aim of the paper was
to show the existence of maximal and minimal solutions, the uniqueness of a positive
solution, and the method of construction for these solutions. The monotone iterative
schemes can be developed into computational algorithms for numerical solutions of the
problem by either the FDM or the FEM. The paper of D. Gordeziani, E. Gordeziani,
Davitashvili and Meladze [53] deals with the formulation and analysis of a generalized
nonlocal problem for the elliptic equations with variable coefficients. Berikelashvili and
Khomeriki in [15,16] considered a nonlocal BVP for the Poisson equation in a rectangular
domain. Dirichlet and Neumann conditions are posed on a pair of adjacent sides of
a rectangle, and integral constraints are given instead of BCs on the other pair. The
corresponding difference scheme is constructed and investigated.

Rassias and Karimov investigated some BVPs with nonlocal initial condition for
model and degenerate parabolic equations with parameter [162]. Karatay, Bayramoglu,
Yildiz and Kokluce study matrix stability of the first-order and the second-order FDS for
parabolic BVPs with NBCs [110]. Pseudo-parabolic equation and FDS for this equation
with NBCs was investigated by Mamedov [131] (Bitsadze–Samarskii and Samarskii–
Ionkin type NBCs), Beshtokov [18].

In paper [211], the existence was proved for a solution of the nonlocal problem with
integral conditions for linear PDE of the third order by Sopuev and Arkabaev. Moldojarov
used the method of integral equations and the contraction mapping was used for proof
unique solvability of nonlocal problem with integral conditions for a nonlinear PDE
of the third order [140]. Smirnov investigated the third-order nonlinear BVP with two-
point NBC [209, 210]. An estimation of the number of solutions to BVP and their nodal
structure are established.

Mokin considered the eigenvalue problem for a nonselfadjoint difference operator
with nonconstant coefficient [137]. Multiplicity of eigenvalues is discussed and a region,
where all eigenvalues reside is defined. Stability and convergence of FDS approximating
a two-parameter nonlocal BVP for time-fractional diffusion equation were studied by
Alikhanov [2]. El-Shahed and Shammakh investigated the nonlinear fractional nonlocal
BVP [50]. They obtain the results on the existence of one and two positive solution
by utilizing the results of Webb and Lan [231] involving comparison with the princi-
pal characteristic value of a related linear problem to the fractional case. We then use
the theory worked out by Webb and Infante in [228, 229] to study the general NBCs.
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Henderson and Luca [76] investigated the existence of positive solutions for systems of
singular nonlinear higher-order differential equations subject to multi-point BCs. Bolojan-
Nica, Infante and Pietramala [21] studied the existence of solutions for nonlinear first-
order impulsive systems with NBCs. Bolojan-Nica, Infante and Precup in [22] were
developed an existence theory for first-order differential systems with coupled NCs given
by Stieltjes integrals. The approach was based on the fixed point theorems of Perov,
Schauder and Schaefer and on a vector method for treating systems, which uses matrices
having spectral radius less than one.

Green’s functionals and reproducing kernel method was used for BVP with NBCs in
the articles of Niu [141], Özen and Oruçoğlu [145,146]. Sergejeva investigated Fučìk type
problem with Bitsadze–Samarskii type NBC [201] and with a damping term and integral
type NBC [203]. Sajavičius in his doctoral dissertation [170] analysed numerical solution
of PDEs with nonlocal conditions (stability of FDS, radial basis function method).

Numerical analysis for boundary value problems with nonlocal
conditions

This Special Issue contains a variety of contributions within this area of research. The
following articles deal with BVPs with NBCs for ordinary, discrete, impulsive, elliptic,
parabolic, pseudo-parabolic, hyperbolic and nonlinear equations.

Ashyralyev and Agirseven investigate the inverse problem of a delay parabolic equa-
tion with NBCs [5]. The stability estimates are established.

Ashyralyev and Ashyralyyev study the BVP of determining the parameter of an ellip-
tic equation in an arbitrary Banach space [6].

Berikelashvili and Khomeriki consider the Poisson equation in a rectangular domain
with an integral constraints [17]. The corresponding FDS scheme is constructed.

Čiegis, Suboč and Bugajev investigate three-dimensional parabolic and pseudo-para-
bolic equations with classical, periodic and NBCs [37]. Equations are approximated by
the full approximation backward Euler method, locally one dimensional and Douglas ADI
splitting schemes.

Henderson is concerned with differentiating solutions of BVPs with respect to bound-
ary data for the nth-order ordinary differential equation, satisfying the Dirichlet and multi-
strip integral boundary conditions [73].

Infante and Pietramala study the existence of nonnegative solutions for a system of
impulsive differential equations subject to nonlinear, NBCs [84]. The system has a cou-
pling in the differential equations and in the boundary conditions.

Makarov, Sytnyk and Vasylyk study a nonlocal-in-time evolutional problem for the
first-order differential equation in Banach space [130]. It results in the necessary and
sufficient conditions for the existence of a generalized solution to the given nonlocal
problem.

Martín-Vaquero numerically study polynomial-based mean weighted residuals meth-
ods for the solution of elliptic problems with NBCs in rectangular domains [133].
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Novickij and Štikonas consider the stability of a weighted FDS for a linear hyperbolic
equation with integral NBCs [143].

Rutkauskas studies Dirichlet type problem in a bounded domain for the system of
linear elliptic equations of the second order, which degenerate into the first-order system
at a line crossing the domain [169]. The existence and uniqueness of a solution are proved
without any additional condition at line of degeneracy.

Serbina considers the nonlocal initial and BVP for Lavrentiev–Bitsadze equation [200].
This problem models the nonstationary one-dimensional motion of a groundwater with
horizontal stopping.

Sergejeva considers the Fučík spectrum for the second-order BVP with NBC [202].
The explicit formulas for the spectrum of this problem are given.

Štikonienė, Sapagovas and Čiupaila consider convergence of iterative processes for
elliptic differential problem with nonlocal conditions [219].
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for a parabolic problem with nonlocal conditions, Differ. Equ., 38(7):1027–1037, 2002,
http://dx.doi.org/10.1023/A:1021167932414.
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95. J. Jachimavičienė, The finite-difference method for a third-order pseudoparabolic equation
with integral conditions, in: V. Kleiza, S. Rutkauskas, A. Štikonas (Eds.), Proceedings of
the International Conference on Differential Equations and Their Applications (Panevėžys,
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2009), Technologija, Kaunas, 2009, pp. 49–58.
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152. S. Pečiulytė, Investigation and Numerical Analysis of Boundary Poblems with Various Types
Nonlocal Conditions, PhD thesis, Institute of Mathematics and Informatics, Vilnius, 2007,
http:/www.mii.lt/files/mii_dis_2007_peciulyte.pdf.
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