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Abstract. Finding reaction rate constants in a complex chemical mechanism is a complicated
problem. These complications can be attributed mainly to the nonlinearity of such systems, where
the least squares optimization procedure fail when experimental data are being fitted. Here we
analyze two cases: analytical and numerical. From analytical case possible issues of optimization
are found and methods to cope with them are derived. The complex case shows how an exhaustive
search fitting approach works. Our results indicate that certain properties of systems can be found
only by running grid search on entire rate constant set and minima found have practical value only
if the properties of entire fitting score surface are known.
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1 Introduction

The task of the reaction rate constants determination from the experimental data is a rou-
tine procedure within the field of chemical and biochemical research. The question how
a reaction mechanism is affected by varying reaction rate constants, and how to relate the
experimental data with a certain reaction mechanism is not trivial. There are many known
practical frameworks and applications to fit experimental data [2, 5].

Traditionally, chemical rate constants of a reaction mechanism are determined from
the initial rate or from an integral equation fitting (in simple cases, when an integral
equation is known). Alternatively, it can be done by direct fitting of the rate constants
using the least squares method, which involves numerical evaluation of the ordinary
differential equations those describe the reaction mechanism.

Possible choices for least square fitting are KinFitSim, which allows to fit more than
one curve at the same time, but all of those curves must come from observations of
different reaction constituents of same reaction with same initial concentrations [16].
KINFIT II is designed to analyze ligand binding data with the possibility to use data of
more than one experiment [14] and DynaFit, which can fit data of a single experiment at
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a time [8]. All these methods suffer from some drawbacks. Initial rate approximation
method (initial reaction rate dependence on initial reagents concentrations) uses only
minor experimental curve information to determine one or two reaction rate constants
(or alternatively – Michaelis and reaction rate constants). This approach requires experi-
mental design effort in order to be able to calculate rate constants for limiting mechanism
step from steady state approximation [2].

On the other hand, the methods that employ least squares optimization can use (in
principle) all the information in experimental data about the reaction rate constants (due
to existence and uniqueness of differential equations system solutions [3]), but typically
suffer from stalling somewhere if the initial rate constants are too far from the actual pa-
rameters’ set. Traditionally, the user of those fitting programs is expected to provide good
initial constants set in order to get a good fit after optimization. There is little research
done on what causes this ill behavior. This article analyzes the main causes that make the
fitting procedure fail and offers a heuristic method to provide good initial rate constants.

2 Methods

Most fitting problems start with well known least squares method, which is formulated as

least squares score
def
=

n∑
i=1

(xi,exp − xi,calc)2, (1)

where xi,exp designates experimental data point, xi,calc – calculated data point, n –
number of experimental points. This formulation is adequate only for datasets, which
are not affected by data array length or initial experiment conditions. Such an example
would be a single experimental curve.

When the least squares method is used on a small number of datasets from experi-
ments with different initial concentrations and different number of data points, the formula
is requires a simple modification to make fitting score independent on the number of data
points. Coefficient 1/n in the formula below transforms the least squares sum to statistical
data set property variance as defined in [11]:

σ2 def
=

1

n

n∑
i=1

(xi,exp − xi,calc)2. (2)

Variance can be used to optimize one experiment data in same fashion as plain least
squares method (see Eq. (1)). In case of more than one experimental dataset, we define
fitting score as sum of experimental datasets variances

fitting score =

m∑
i=1

σ2
i , (3)

where m is number of experimental curves with different initial concentrations. This
definition is valid only in cases when noise level is approximately constant at range of
measured experimental values.
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All numerical integrations were performed with LSODA numerical integration pack-
age [12] integrated into PYTHON SCIPY library. LSODA automatically selects Adams
method for non-stiff equations and Gear method for stiff equations. All equations prior
passing to LSODA were dedimesionalized due to stability and robustness reasons. The
dimension of the rate constant is s−1 and L mol−1s−1 for the first and the second order
reaction, respectively. The dimension of the concentration is mol L−1. The equilibrium
constant is dimensionless.

Final optimization of fitting score was performed with Powell optimization algorithm
[13], which is also integrated in the same SCIPY library. Integrations and optimizations
performed with numerical tolerances set to 10−8. All constants optimizations were per-
formed in exponential form with replacement rule k → 10k

′
.

3 Exponential case

Actually, there is no interest in complicated fitting of simple first order reaction

A
k→ B

dA

dt
= −kA, dB

dt
= kB. (4)

This mechanism has clear and simple solution A(t) = A0e−kt. All experimental data
can be fitted in this formula by obvious logarithmization. But this system has a fundamen-
tal virtue – our solutions of interest can be derived analytically.

Starting with the least squares approach and assuming experimentally measured con-
centration dependence on time for reagent A, which the initial concentration is 1, rate
constant is k and the parameter to optimize – r, the fit score metric in least squares
framework (see Eq. (1)) can be written as

ffitting score =

T∫
0

(
e−kt − e−rt

)2
dt. (5)

Integration boundaries in Eq. (5) are replaced assuming that concentration of A is
measured until it drops bellow 1/100 of initial A (T = ln 100/k). After integration, the
fitting score is an analytical function with two variables k and r

ffitting score =

ln 100/k∫
0

(
e−kt − e−rt

)2
dt

=
1

2

(
1− 100e−2

k
+

1− 100e−2r/k

r
+

4(−1 + 100e−(k+r)/k)

k + r

)
, (6)

where k is a constant to fit and r a is fitting parameter.
Exponential nature of the solution implies the use of logarithmic scale for parameters.

Such simple transformation contracts curve parameters domain from range 1 ÷ 108 to
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Fig. 1. Fitting score deppendence on fitting parameter r (in logarithmic scale) with k = 105.

range 0÷8. Such a modification offers several advantages – ability to maintain the sign of
optimized constants naturally and smoothly in the optimization procedure; also enhances
the numerical stability of optimization (rises gradient values).

The solution of Eq. (6) and its derivative are plotted against r with arbitrary selected
rate constant k = 105 in Fig. 1. Simple replacement r = k yields 0. Graph of fitting
score with k = 105 clearly shows minimum at the trial parameter. There is a more
mathematically rigorous solution, which can be found by taking limit T → ∞ (meaning
infinitely large observation time):

lim
T→∞

1

2

(
4(eT (−k−r) − 1)

k + r
+

1− e−2kT

k
+

1− e−2rT

r

)
=

(k − r)2

2kr(k + r)
. (7)

Taking derivative and equaling it to zero:

− (k − r)2

2kr(k + r)2
+

k − r
kr(k + r)

− (k − r)2

2k2r(k + r)
= 0. (8)

There are two solutions: r1 = −3k and r2 = k. The first one can be ignored as
physically meaningless.

At ranges of chemical interest this fit score function is continuous and has only one
minimum. The most interesting feature is its flatness at sufficiently large distance from
minima. This flatness is clearly responsible on small changes of gradient and it is main
reason, why an optimization algorithm will fail at certain distance from actual solution
– it just stalls on the flat surface with no directions where to move further. Practically,
in this case, optimization problem is reduced to Easom function optimization [9]. The
second cause of optimization failures is numerical errors. One can evaluate a gradient of
fitting score in two points (with k = 105), let us say, r1 = 10, r2 = 102 and will get
gradient values respectively f ′(r1) = −3.8614 · 10−9 and f ′(r2) = −3.83865 · 10−9.
Differences of these values are on the edge of numerical precision.

This example resolves fitting question of system, which by itself is not complicated,
and allows easy determination of constants from experimental data. But the main reason
clearly seen from it is that the least square optimization for more complex systems can
fail.
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An exhaustive search approach for chemical kinetics experimental data fitting 149

As the main reason of fitting failures could be the flat optimization surface of fitting
score, a better method should be used to estimate the initial parameter for fitting. While
those parameters can come from experiments or from intuition, we expect that rate con-
stants could be more rigorously found by this procedure:
• Evaluation of fitting score on logarithmic rate constants grid with some arbitrary

selected step size (an exhaustive search approach – well known general method for
solving various problems).

• Selection of some set of grid points with best fitting score as initial guesses for
optimization procedure.

• Optimization of selected initial guesses.
• Analysis of possible fitted rate constants values.

This approach is used in the next case.

4 Complex case

There is a vast range for selection of a test example. But we have a research interest in
mediator driven enzymatic reactions. Due to limited enzymatic substrate specificity, it is
impossible to use some enzymes directly, particularly, oxidoreductases to drive commer-
cially and scientifically interesting reactions. However, this obstacle can be overcome with
mediators – small molecules that can perform an intermediate function between enzyme
and substrate of interest [10].

One of simplest cases of mediator driven enzymatic reactions can be represented as
a system of three coupled equations (simplified mechanism from [7])

Eox + S
k1


k−1

Ered + P,

Ered +Mox

k2


k−2

Eox +Mred,

Fox +Mred

k3


k−3

Fred +Mox.

In this scheme, we denote enzyme forms as Eox and Ered, substrate for enzyme regenera-
tion as S and its product as P . Substrate of interest and mediator as F andM , respectively.
This case have no complications except reversibility in the third reaction. For the sake
of simplicity, let us assume that the first two enzymatic reactions are bimolecular and
nonreversible. These assumptions lead to the system of ordinary differential equations

d[Eox]

dt
= −k1[Eox][S] + k2[Ered][Mox],

d[Ered]

dt
= k1[Eox][S]− k2[Ered[Mox],

d[Fox]

dt
= k−3[Fred][Mox]− k3[Fox][Mred],

d[Fred]

dt
= −k−3[Fred][Mox] + k3[Fox][Mred],
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d[Mox]

dt
= −k2[Ered][Mox] + k3[Fox][Mred]− k−3[Fred][Mox],

d[Mred]

dt
= k2[Ered][Mox]− k3[Fox][Mred] + k−3[Fred][Mox],

d[P ]

dt
= k1[Eox][S]

d[S]

dt
= −k1[Eox][S].

All reagent concentrations in experiment could be known. In such case the problem
reduces to fitting experimental data to four constants: k1, k2, k−3, k3. This system of
nonlinear ordinary differential equations have no analytical solution. But this system can
be integrated numerically and could be evaluated fitting score for some set of constants
and experimental data curve.

It is necessary to begin analysis with global minimum search. As there is no ana-
lytical solution, some parameter set {k1, k2, k−3, k3} should be selected and numeri-
cally checked fitting score dependency on parameter variation. Let us fix our parameters
k1 = 105, k2 = 108, k−3 = 105, k3 = 106, which are quite realistic and also have
some illustrative value. Initial concentrations can be selected also fairly realistically:
Eox = 10−9, Mox = 10−6, Fox = 10−4, S = 10−3. Other concentrations set to zero. It
is assumed that in reaction, Fox concentration is measured (parameters were selected in
analogy to [6, 7]).

Rate constants search grid is set in logarithmical form of size 9× 9× 9× 9. There is
a little interest to inspect bimolecular rate constants larger than 108 (or possibly 1010 – it
deppends on predicted diffusion controled reaction rate constants limit [15]) and little use
of reactions with bimolecular rate constants smaller than 100. Here test curve for reagent
Fox is simulated and is fitting score for entire system on grid evaluated.

As expected from simple case, fitting score for this complex mechanism exhibits same
features – flatness of fitting score surface at large distance from simulation constants set
and one global minimum of fitting score (Fig. 2). There are some doubts about practi-
cality of such evaluation on constants grid and possibly quite large time and computation
resources needed for this task. But actually, evaluation on grid of size 9× 9× 9× 9 can
be performed on Intel Core i3 single thread in less than 10 minutes (three data sets with
2000 data points) and on grid of 17× 17× 17× 17 – in less than hour with Python script
(with conventional program – possibly several order faster).

Of course, this initial set of parameters is quite idealistic, because evaluation grid by
itself has point, in which fitting score is minimal. In real world, such perfect numbers
as integer power of ten are rarely found. And of course, grid of constants could not be
made infinitely small as in this case, computation time simply rises in order of fourth
power. However there is no need to make grid finer. It could be simply selected some
set of points with minimal fitting score and used as initial points for further minimization
with some optimization algorithm. There is a hope that some points in this set will be
quite close to global minimum and will converge to it.

For further testing of our procedure described at the end of simple case analysis, we
select few sets of possible rate constants (rate constants sets and initial concentrations
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An exhaustive search approach for chemical kinetics experimental data fitting 151

Fig. 2. Fitting score evaluation on constants grid, from left top to rigth bottom k−3 = {100, 102, 103, 104,
105, 106, 107, 108}. Purple – bad fit, red – perfect fit. (Online version in color.)

Fig. 3. Sorted fitting scores of optimized 81 initial grid search points (in logarithmic scale, unbiased case #1).

in Table 1). As procedure depends on number of best solutions after grid search, we
found it useful to select 3p (here p – number of constants to optimize, in this particular
case, 34 = 81) solutions for minimization with Powell algorithm. As was expected, initial
grid points set after optimization does not converge to one solution. Actually, we are left
with optimized solution set, where fitting score can vary in several orders of magnitude
as showed in Fig. 3 (same behavior in other cases). It is worth to note that optimization
procedure had terminated in each case without any flaws.

In Table 1, simulated rate constants and results of fitting on one kinetic curve are
presented. All six cases behave in the same manner as the first one. Fitting score greatly
varies from solution to solution and only in two cases, #4 and #6, best solution reasonably
agrees with simulation parameters. These differences do not improve on finer grids (even
worsen). Main reason of this behavior is possibly simple – one curve is not enough to fit
four rate constants.
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Table 1. Fitting constants of one kinetic curve to system of differential equations (coarse 9×9×9×9
grid). Initial concentrations Eox = 10−9, Mox = 10−6, Fox = 10−4, S = 10−3.

Case Simulation constants Worst solution Best solution
lg(k1) lg(k2) lg(k3) lg(k−3)

#1 6.3 7.3 6.3 5.3 fscore = 1.63 · 10−10 fscore = 3.35 · 10−21

8.00 8.00 7.23 8.00 6.30 7.30 8.00 7.00

#2 5.3 7.3 6.3 5.3 fscore = 1.70 · 10−10 fscore = 6.81 · 10−17

8.00 8.00 7.18 8.00 5.52 7.28 8.00 6.99

#3 5.3 6.3 6.3 5.3 fscore = 2.22 · 10−10 fscore = 2.11 · 10−19

7.75 8.00 6.11 8.00 5.32 6.30 6.77 5.77

#4 5.3 6.3 5.3 5.3 fscore = 4.04 · 10−11 fscore = 5.37 · 10−21

8.00 6.08 8.00 0.32 5.17 6.30 5.26 5.26

#5 5.3 6.3 5.3 4.3 fscore = 7.72 · 10−13 fscore = 3.19 · 10−23

6.29 8.00 3.78 7.04 6.57 6.30 5.30 4.30

#6 5.0 8.0 7.0 7.0 fscore = 3.41 · 10−11 fscore = 9.24 · 10−21

8.00 8.00 6.45 6.81 5.00 8.00 7.00 7.00

Table 2. Fitting constants of three kinetic curves to system of differential equations (coarse 9× 9×
9× 9 grid). Initial concentrations Eox = 10−9, Mox = 10−(4÷6), Fox = 10−4, S = 10−3.

Case Simulation constants Worst solution Best solution
lg(k1) lg(k2) lg(k3) lg(k−3)

#1 6.3 7.3 6.3 5.3 fscore = 2.86 · 10−10 fscore = 1.10 · 10−15

6.75 8.00 5.54 6.30 6.30 7.30 6.43 5.43

#2 5.3 7.3 6.3 5.3 fscore = 3.23 · 10−10 fscore = 1.48 · 10−19

5.60 8.00 7.17 8.00 5.30 7.30 6.30 5.30

#3 5.3 6.3 6.3 5.3 fscore = 4.19 · 10−10 fscore = 2.11 · 10−19

5.64 8.00 6.12 8.00 5.30 6.30 6.24 5.24

#4 5.3 6.3 5.3 5.3 fscore = 1.72 · 10−10 fscore = 4.14 · 10−20

4.69 6.09 6.86 0.00 5.30 6.30 5.35 5.35

#5 5.3 6.3 5.3 4.3 fscore = 2.71 · 10−11 fscore = 2.87 · 10−20

5.63 8.00 1.42 2.74 5.30 6.30 5.24 4.24

#6 5.0 8.0 7.0 7.0 fscore = 4.08 · 10−10 fscore = 5.29 · 10−20

4.78 8.00 8.00 2.24 5.00 8.00 7.00 7.00

This hypothesis can be tested with simultaneous fitting of three simulated experimen-
tal curves with different initialMox concentrations – 10−4, 10−5, 10−6, as experimentally
there are little difficulties to vary concentrations in reaction. The results of three curves
fitting are summarized in Table 2. There is practically perfect agreement between rate
constants used in simulations and rate constants, recovered after optimization.

As mentioned earlier, the set of solutions consists of 81 combinations of optimized
rate constants. Even though perfect agreement between simulated and optimized param-
eters exist in this particular case with particular initial conditions, it is worth to analyze
other solutions more closely. For example, we can take case #1, in which rate constants in
one curve fitting vary greatly and are hard to interpret. 54 solutions of three curve fitting
case shows stable values of k1 and k2. Rate constants k3 and k−3 vary much more – from
103.4 to 107 (k−3), but their change is not independent – logarithm of constants differs
by approximately one. This relation indicates two interesting and valuable findings about

http://www.mii.lt/NA



An exhaustive search approach for chemical kinetics experimental data fitting 153

Fig. 4. Two sets of curves simulated withMox concentrations 10−6, 10−5, 10−4. Red dashed – k1 = 105.3,
k2 = 106.3, k3 = 104.3, k−3 = 103.3; blue dashed – k1 = 105.30, k2 = 106.30, k3 = 108, k−3 = 107.
Left simulation [Eox] = 10−9, right – [Eox] = 10−8. (Online version in color.)

this particular mechanism – the third reaction is in equilibrium and overall reaction rate
is not affected by absolute values of these rate constants, but only by their ratio (in range
from 103.4 to 107 for k−3).

Kinetic curves in Fig. 4 (left) for different values of k3 and k−3 illustrate the fact that
reaction rate practically does not depend on absolute values of rate constants of k3 and
k−3. But this is not a property of this particular chemical mechanism. This phenomenon
depends on initial reaction concentrations and can by discriminated by experimenter with
an increase of [Eox] (from 10−9 to 10−8, Fig. 4 (right)).

This research is focused on practical fittability of experimental data. Real experimen-
tal data have many issues, such as various experimental noise distributions, approximately
known extinction coefficients or initial concentrations, not always precisely known reac-
tion initial measurement time and others. These factors make subtle impact on data fitting,
but of course, simultaneous effort to experiment design and data analysis can cope with
these problems.

For example, in case of noisy data, where difference xi,exp − xi,calc are distributed
normaly with zero mean value, we can estimate lowest fitting score value in case of biased
curve. This can be done starting with expectation value definition [11]

E
[
g(x)

] def
=

∞∫
−∞

g(x)f(x) dx, (9)

where g(x) is an arbitrary function of x, and f(x) is a probability distribution function.
Substitution to Eq. (9) our particular case with g(x) = x2, f(x) = e−x

2/(2σ2)σ
√

2π and
integration leads to

n∑
i=1

(xi,exp − xi,calc)2 ≈
∞∫
−∞

e−x
2/(2σ2)

σ
√

2π
x2 dx = σ2. (10)

This result suggest that ranking of solutions should not change dramatically, because
the bias should only lift fitting score function by σ2. Practically, it is not true. Adding to
data noise with normal distribution (σ2 = 2 · 10−6 and µ = 0 – fairly reasonable parame-
ters in experiment, example case #1 in Fig. 5) changes fitting results more than expected.
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Fig. 5. Example of biased and not biased data for case #1.

Table 3. Fitting constants of three biased kinetic curves to system of differential equations (coarse
9×9×9×9 grid and bias from normal distribution σ2 = 2 ·10−6 and µ = 0).Initial concentrations
Eox = 10−9, Mox = 10−(4÷6), Fox = 10−4, S = 10−3.

Case Simulation constants Worst Solution Best solution
lg(k1) lg(k2) lg(k3) lg(k−3)

#1 6.3 7.3 6.3 5.3 fscore = 2.95 · 10−10 fscore = 1.06 · 10−11

6.75 8.00 5.55 6.31 6.30 7.31 4.05 3.01

#2 5.3 7.3 6.3 5.3 fscore = 3.35 · 10−10 fscore = 1.33 · 10−11

5.60 8.00 7.17 8.00 5.30 7.31 4.45 3.44

#3 5.3 6.3 6.3 5.3 fscore = 4.19 · 10−10 fscore = 1.15 · 10−11

8.00 6.20 8.00 0.11 5.30 6.30 8.00 7.02

#4 5.3 6.3 5.3 5.3 fscore = 2.04 · 10−10 fscore = 1.21 · 10−11

4.69 6.09 6.48 0.11 5.30 6.30 7.56 7.56

#5 5.3 6.3 5.3 4.3 fscore = 4.32 · 10−10 fscore = 1.18 · 10−11

5.63 8.00 6.12 8.00 5.30 6.30 3.75 2.74

#6 5.0 8.0 7.0 7.0 fscore = 4.17 · 10−10 fscore = 1.18 · 10−11

4.78 8.00 8.00 2.09 5.00 8.00 7.00 7.00

Fitting score lifted as expected. It could be checked simply by dividing fitting score
by 3 (number of curves). Taking from Table 3 first row of biased curves fitting score
1.06 · 10−11 and dividing by 3 and taking square root yields 1.87 · 10−6, which is close
to bias value of σ = 2.0 · 10−6. But as seen from same table, even by employing grid
search it is not possible find absolute values of k3 and k−3 (despite the fact, that k1 and
k2 are fitted perfectly). This behaviour could be atributed to formed equilibrium in third
reaction. As consequence of this equilibrium fitting score hypersurface exhibits narrow
minima canyon, which is actually reached by the optimization procedure. In this case
k3 and k−3 are related to each other through equilibrium constant. Such phenomena are
common in other contexts (for example in electrochemistry [4]).

5 Statistical analysis

Large set of solutions implies the necessity of statistical analysis. It could be splited in
two parts – estimation of likelihood region and estimation of standard errors of fitting
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parameters. The estimation of contour value of likelihood region for fitting score can be
done with approximation from [1] and correction factor (in square brackets) from [11]:

c =
s2

1− I−1
1−α(P/2, (N − P )/2)

[∑m
i=1 ni/(ni − 1)

m

]
. (11)

Here N – total number of data points from all experimental curves, P – number of
parameters, α – significance value, I−1 – inverse beta regularized function, s2 – smallest
fitting score value found on grid search, ni – number of data points in certain experimental
curve and m – number of experimental curves.

Inverse beta regularized function arise from Fisher–Snedecor cumulative distribution
function, which is well known as Ixn/(xn+m)(n,m), where I – beta regularized function,
by solving equation Ixn/(xn+m)(n,m) = 1 − α for x [17]. Correction factor (in square
brackets) arises from transformation of biased standard deviations into unbiased ones
(with reasonable assumption that standard deviations are equal in all experimental curves).
Formula can be used if standard deviations in all experiments are approximately same (as
it should be true if noise level does not depend on signal level).

Estimation of errors is a byproduct of fitting. Summarized results from computation
on grid with 0.25 logarithmic unit spacing and 20000 best optimized solutions are listed
in Table 4.

Table 4. Final solutions of three biased curves fitting with estimated errors (with 95% confidence level).

Case Data Critical fitting score Estimated mean and confidence interval (in logarithmic form)
points contour value

#1 859 1.0888 · 10−11 lg(k1) = 6.303 [−0.010,+0.006]
lg(k2) = 7.303 [−0.006,+0.016]
lg(k3) = 5.2 [−1.4,+2.8], lg(k−3) = 4.2 [−1.5,+2.8]
lg(K) = lg(k3/k−3) = 1.02 [−0.02,+0.05]

#2 1057 1.3518 · 10−11 lg(k1) = 5.300 [−0.013,+0.003]
lg(k2) = 7.305 [−0.004,+0.023]
lg(k3) = 5.3 [−1.6,+2.7], lg(k−3) = 4.3 [−1.7,+2.7]
lg(K) = lg(k3/k−3) = 1.01 [−0.02,+0.08]

#3 8573 1.1509 · 10−11 lg(k1) = 5.304 [−0.002,+0.002]
lg(k2) = 6.302 [−0.001,+0.002]
lg(k3) = 5.3 [−1.6,+2.7], lg(k−3) = 4.3 [−1.6,+2.7]
lg(K) = lg(k3/k−3) = 0.98 [−0.01,+0.01]

#4 10514 1.2144 · 10−11 lg(k1) = 5.297 [−0.003,+0.002]
lg(k2) = 6.302 [−0.002,+0.004]
lg(k3) = 4.7 [−1.5,+3.3], lg(k−3) = 4.7 [−1.5,+3.3]
lg(K) = lg(k3/k−3) = −0.003 [−0.003,+0.003]

#5 8576 1.1818 · 10−11 lg(k1) = 5.297 [−0.003,+0.001]
lg(k2) = 6.301 [−0.002,+0.004]
lg(k3) = 5.3 [−2.0,+2.7], lg(k−3) = 4.3 [−2.0,+2.7]
lg(K) = lg(k3/k−3) = 1.011 [−0.005,+0.011]

#6 765 1.1997 · 10−11 lg(k1) = 5.000 [−0.001,+0.001], lg(k2) = 8.000 [0, 0]
lg(k3) = 5.5 [−1.1,+2.5], lg(k−3) = 5.5 [−1.1,+2.5]
lg(K) = lg(k3/k−3) = 0.006 [−0.006,+0.012]
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In all test cases, first two constants fit perfectly with small uncertainties. This is not
valid for k3 and k−3 – in Table 4 listed confidence intervals in logarithmic form shows
uncertainties of several orders. Closer inspection of fitted k3 and k−3 reveals perfect
correlation between these constants (correlation coefficient = 0.999972÷ 1). This effect
comes from chemical equilibrium formed in third reaction with particular initial concen-
trations and rate constants compensation in fitting score optimization. Perfect correlation
between constants and chemical equilibrium implies dimensionality reduction of k3 and
k−3 by simply combining into equilibrium constant. Resulted equilibrium constant has
much smaller uncertainties as a consequence of perfect correlation between k3 and k−3.

6 Conclusions

In this article, it was shown that the main reasons of possible failures to find desirable
solutions are: the flat fitting score function surface; possible experimental design issues.
We have shown that it is possible to deal with first problem by using exponential form of
rate constants and starting optimization with evaluation of fitting score on constants grid
and by selecting a set of possible candidates for further optimization, which leads to good
fit or suggestion to modify experimental conditions. Also we showed how this method
would cope with biased cases and how much information from certain experimental
data can actually be extracted. Statistical analysis of fitting results identified confidence
intervals of fitted parameters.

The approach suggested in our work is much more fruitful in experimental data fitting
than the currently used strategies, which generate a single solution and offer no clue
what is happening on entire fitting score function surface. Without such information it
is impossible to draw any conclusions about quality and reliability of fit even when the
fitting score looks excellent numerically.

The proposed method, where the final optimization step is performed on the set of grid
searched initial points, is a general technique that can be applied to any case where op-
timization metric gives flat hypersurface, narrow canyons of minima, or other deviations
from quadratic score function are expected.
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