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Abstract. In this paper, we investigate the optimal control of the Burgers equation. For both
optimal distributed and (Neumann) boundary control problems, the Dubovitskii and Milyutin
functional analytical approach is adopted in investigation of the Pontryagin maximum principles
of the systems. The necessary optimality conditions are, respectively, presented for two kinds of
optimal control problems in both fixed and free final horizon cases, four extremum problems in
all. Moreover, in free final horizon case, the assumptions of admissible control set on convexity
and non-empty interior are removed so that it can be any set including an interesting case contains
only finite many points. Finally, a remark on how to utilize the obtained results is also made for the
illustration.
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1 Introduction

The Burgers equation, as one dimensional simple mathematical model for the convection-
diffusion phenomena which are often governed by Navier–Stokes equations, is given the
considerable investigations due to its importance in the fluids or combustion. It can also
be used in modelling of gas dynamics, traffic flow as well as describing wave processes
in acoustics and hydrodynamics.
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2 B. Sun

Since the past two decades, to impose the control on these phenomena above by
the Burgers equation has become one of active topics in applied mathematics and en-
gineering. Here, due to our emphasis on optimization problems for the said equation,
more attention is paid to its optimal control observations. So far, in this aspect, lots
of contributions are available. An optimal control framework for the viscous Burgers
equation is constructed in [5] and initial results for both distributed as well as boundary
control (Dirichlet and Neumann) are presented using a continuous-adjoint formulation.
Burns and Marrekchi in [2] investigate the optimal fixed-finite-dimensional compensator
problem for the Burgers equation with unbounded input/output operators. Agarwal et al.
in [1] discuss the optimal and robust control of the Burgers equation with disturbance,
in which the quadratic performance index is employed to find the optimal controller for
the Burgers equation. Vedantham in [18] develops a technique to utilize the Cole–Hopf
transformation to solve an optimal control problem for the Burgers equation. Adjoint tech-
niques are studied in [14] for the optimal control of the Burgers equation with Neumann
boundary control. By the optimal control techniques, Leredde et al. in [13] carry out the
investigation for the Burgers equation and find the best parameters of the model which
ensure the closest simulation to the observed values. de los Reyes and Kunisch [7] do the
comparison of three different numerical methods for the constrained optimal control of
the Burgers equation and develop the principal ideas of the different strategies considered.
The suboptimal feedback control procedure is applied to the stochastic Burgers equation
in [6] and several cases of controls are numerically simulated. Kucuk and Sadek in [12]
give an efficient computational method for the optimal control problem for the Burgers
equation.

In this paper, we are concerned with necessary optimality conditions for optimal
control of the Burgers equations and four optimal control problems on the said equation
are, respectively, investigated. They are optimal distributed control problem in fixed final
horizon case, optimal distributed control problem in free final horizon case, optimal
Neumann boundary control problem in fixed final horizon case, and optimal Neumann
boundary control problem in free final horizon case. By the Dubovitskii and Milyutin
functional analytical approach [10], we respectively obtain the Pontryagin maximum
principles of the systems in these four cases. And the necessary optimality conditions
are presented for the optimal control problems of the distributed parameter systems.

True enough, the feedback control of dynamical systems has many merits comparing
to the open-loop control. However, an undeniable fact is that the latter, the open-loop
control has its own advantages in investigation of infinite dimensional systems, such as
the efficiency and accuracy of the open-loop control algorithms as well as the robustness
aspect of investigational systems [15]. Just as Ho and Pepyne [11] said in “The No Free
Lunch Theorem of Optimization (NFLT)”, a general-purpose universal optimization strat-
egy is impossible. Therefore, the open-loop control investigation to the Burgers equation
is both necessary and interesting.

Comparing with those existing references, this paper has some noticeable features
deserving to be addressed here. Firstly, in two cases of distributed and boundary control,
the cost functionals of optimal control problems are quite general and they contain most
practically concerned ones like quadratic cost functional that is often adopted in previous
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observations of the Burgers equation. Secondly, we have the investigations for two kinds
of control in free final horizon case, which is, to the best of our knowledge, new and
never touched by people. Moreover, in this case, the assumptions for the cost functional
are few and the cost functional does not need to be differentiable with respect to the
control variable. The admissible control set does neither need to be convex nor contains
interior points. In fact, it can be any set.

This paper is organized as follows. Next section, Section 2, contributes to the optimal
distributed control problem formulation in fixed final horizon case. The weak solution
issue of the system is recalled. The Dubovitskii–Milyutin theorem of optimal control
problem in this case is presented. In the first three subsections of Section 3, which consists
of four subsections, the cone of directions of decrease, the cone of feasible directions
and the cone of tangent directions as well as their dual cones are derived, respectively.
Section 3.4, the last subsection of Section 3, is devoted to the proof of the Pontryagin
maximum principle of optimal distributed control problem in fixed final horizon case.
In Section 4, the optimal distributed control system in free final horizon case is inves-
tigated and the corresponding Pontryagin maximum principle is obtained. The optimal
(Neumann) boundary control problems are considered in Section 5, in which both fixed
and free final horizon cases are investigated. The Pontryagin maximum principles in these
two cases are, respectively, given by the same approach. Section 6 contributes to make an
illustrative remark to show how to use the obtained maximum principle of the extremum
problem. Finally, in Section 7, the section of conclusions, the main results obtained in this
paper are highlighted and the general ideas which state these theorems are reviewed.

2 Optimal distributed control problem

Let T > 0, QT = (0, T ) × (0, 1), V = H1
0 (0, 1) and H = L2(0, 1). Take the Hilbert

space
W (0, T ;V ) =

{
γ
∣∣ γ ∈ L2(V ), γt ∈ L2(V ∗)

}
equipped with the norm

‖γ‖W (0,T ;V ) =
√
‖γ‖2L2(V ) + ‖γt‖2L2(V ∗),

where V ∗ = H−1(0, 1) is the dual space of V .
Consider the following Burgers equation:

yt(t, x)− νyxx(t, x) + y(t, x)yx(t, x) = f̃(t, x) ∈ L2(V ∗),

y(t, 0) = y(t, 1) = 0, t ∈ [0, T ] a.e.,
y(0, x) = y0(x) ∈ H,

(1)

in which ν > 0 is the viscosity parameter.
For the nonlinear partial differential equations (1), Volkwein in [21] presents the

definition of weak solution below and proves the existence of the unique weak solution
y(t, ·) ∈W (0, T ;V ) as in the proof for the unsteady Navier–Stokes equations in [19].
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4 B. Sun

A function y(t, ·) ∈W (0, T ;V ) is a weak solution to (1) if〈
yt(t, ·), ζ(·)

〉
V ∗,V

+ν
〈
y(t, ·), ζ(·)

〉
V

+b
(
y(t, ·), y(t, ·), ζ(·)

)
=
〈
f̃(t, ·), ζ(·)

〉
V ∗,V

(2)

for all ζ(·) ∈ V , t ∈ [0, T ] a.e. and y(0, ·) = y0(·) ∈ H , in which b(ϕ,ψ,$), the
continuous trilinear form, is

b(ϕ,ψ,$) =
1

3

1∫
0

(ϕψ)′$ + ϕψ′$ dx

forϕ,ψ,$ ∈ H1(0, 1). Here and thereafter 〈·, ·〉X is the inner product of Hilbert spaceX .
Letting Y be a real normed linear space and Y∗ its dual space, we have 〈f̄ , v̄〉Y∗,Y for the
duality pairing of f̄ ∈ Y∗ and v̄ ∈ Y .

Now consider the optimal control issues of the investigated system. Unless otherwise
stated, in what follows when we speak of a solution of (1), we shall always mean the weak
solution in the sense of (2).

Firstly, the attention is paid to optimal distributed control of system (1) in fixed final
horizon case. For T > 0, take f̃(t, x) = f(t, x) + u(t), in which f(t, x) ∈ L2(0, T ;V ∗)
and u(t) ∈ L2(0, T ) is the control. Consider an optimal control problem for system (1)
with the general cost functional

min
u(·)∈Uad

J(y, u) = min
u(·)∈Uad

T∫
0

1∫
0

L
(
y(t, x), u(t), t, x

)
dx dt (3)

and the control constraint Uad that is a non-empty closed convex set of L2(0, T ). Here
the cost function L is quite general in the sense that it contains most practically concerned
ones like quadratic cost functional of the following form:

J(y, u) =

T∫
0

1∫
0

`1
∣∣y(t, x)− y†(t, x)

∣∣2 dx dt+

T∫
0

`2
∣∣u(t)− u†(t)

∣∣2 dt, (4)

where `i > 0, i = 1, 2, are constants, and y†, u† are, respectively, the predesigned optimal
state and control, which is exactly the main object of [21]’s interest.

Take y(t, ·) ∈ W (0, T ;V ). The control space is L2(0, T ) and the control func-
tion satisfies a convex constraint u(·) ∈ Uad. Here we assume that the set Uad of
admissible controls has the non-empty interior with respect to L2(0, T ) topology, i.e.,
intL2(0,T ) Uad 6= ∅. Of course, this is the normal assumption on the admissible control
set, which is often used in literatures [20]. Moreover, subsequently, one will see that
this assumption on the non-empty interior, even that of the convexity of control set, will
be removed in free final horizon case for both optimal distributed and boundary control
problems. That means, in free final horizon case, the admissible control set does neither
need to be convex nor contains interior points, which is usually regarded as the most
difficult situation in extremum problems.
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The following assumptions for the cost functional are assumed:

(a) L is a functional defined on V × Uad × [0, T ]× [0, 1] and

∂L(y(t, x), u(t), t, x)

∂y
,

∂L(y(t, x), u(t), t, x)

∂u

exist for every (y, u) ∈ V × Uad and L is continuous in its variables.

(b)

1∫
0

∣∣∣∣∂L(y(t, x), u(t), t, x)

∂y

∣∣∣∣dx,
1∫

0

∣∣∣∣∂L(y(t, x), u(t), t, x)

∂u

∣∣∣∣dx
are bounded for t ∈ [0, T ]. In addition, we assume the existence of optimal control
here and keep this assumption in other three cases.

Define XT = W (0, T ;V ) × L2(0, T ). Let (y∗, u∗) be the optimal solution to the
control problem (3) subject to equation (1). Set

Ω1 =
{

(y, u) ∈ XT

∣∣ u(t) ∈ Uad, t ∈ [0, T ] a.e.
}
,

Ω2 =
{

(y, u) ∈ XT

∣∣ yt(t, x)− νyxx(t, x) + y(t, x)yx(t, x) = f(t, x) + u(t),

y(t, 0) = y(t, 1) = 0, y(0, x) = y0(x), y(T, x) = y∗(T, x)
}
.

Then problem (3) is equivalent to questing for (y∗, u∗) ∈ Ω = Ω1 ∩Ω2 such that

J(y∗, u∗) = min
(y,u)∈Ω

J(y, u). (5)

It is seen that problem (5) is an extremum problem on the constraint Ω1 and the
equality constraint Ω2. In this situation, the Dubovitskii and Milyutin functional analyt-
ical approach has been turned out to be very powerful to solve such kind of extremum
problems (see, e.g., [3, 4, 16, 17]). The general Dubovitskii and Milyutin theorem for
problem (5) can be stated as the following theorem.

Theorem 1 (Dubovitskii–Milyutin). Suppose the functional J(y, u) assumes a mini-
mum at the point (y∗, u∗) in Ω. Assume that J(y, u) is regularly decreasing at (y∗, u∗)
with the cone of directions of decrease K0 and the constraint Ω1 is regular at (y∗, u∗)
with the cone of feasible directionsK1; and that the equality constraintΩ2 is also regular
at (y∗, u∗) with the cone of tangent directions K2. Then there exist continuous linear
functionals f0, f1, f2, not all identically zero, such that fi ∈ K∗i , the dual cone of Ki,
i = 0, 1, 2, which satisfy the condition

f0 + f1 + f2 = 0. (6)

3 The Pontryagin maximum principle

In this section, we are interested in optimal distributed control problem (3) in fixed final
horizon case. To apply Theorem 1 and obtain the Pontryagin maximum principle, we
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6 B. Sun

proceed as follows: to determine all cones Ki, i = 0, 1, 2, and their dual cones one by
one; by equation (6), to derive the final result step by step. First of all, let us find the cone
of directions of decrease K0.

3.1 The cone of directions of decrease K0

By assumption, J(y, u) is differentiable at any point (y0, u0) in any direction (y, u) and
its directional derivative is

J ′(y0, u0; y, u) = lim
ε→0+

1

ε

[
J
(
y0 + εy, u0 + εu

)
− J

(
y0, u0

)]
= lim
ε→0+

1

ε

{ T∫
0

1∫
0

[
L
(
y0 + εy, u0 + εu, t, x

)
− L

(
y0, u0, t, x

)]
dx dt

}

=

T∫
0

1∫
0

[
∂L(y0, u0, t, x)

∂y
y +

∂L(y0, u0, t, x)

∂u
u

]
dx dt.

Hence the cone of directions of decrease of the functional J(y, u) at point (y∗, u∗) is
determined by

K0 =
{

(y, u) ∈ XT

∣∣ J ′(y∗, u∗; y, u) < 0
}

=

{
(y, u) ∈ XT

∣∣∣ T∫
0

1∫
0

[
∂L(y∗, u∗, t, x)

∂y
y +

∂L(y∗, u∗, t, x)

∂u
u

]
dxdt < 0

}
.

If K0 6= ∅, then, for any f0 ∈ K∗0 , there exists a κ0 > 0 such that

f0(y, u) = −κ0

T∫
0

1∫
0

[
∂L(y∗, u∗, t, x)

∂y
y +

∂L(y∗, u∗, t, x)

∂u
u

]
dx dt.

3.2 The cone of feasible directions K1

Since Ω1 = W (0, T ;V ) × Uad, in which intL2(0,T ) Uad 6= ∅, so the interior of Ω1 is
not empty, i.e., Ω̊1 6= ∅ and, at point (y∗, u∗), the cone of feasible directions K1 of Ω1 is
determined by

K1 =
{
κ
(
Ω̊1 − (y∗, u∗)

) ∣∣ κ > 0
}

=
{
h
∣∣ h = κ(y − y∗, u− u∗), (y, u) ∈ Ω̊1, κ > 0

}
.

Therefore, for an arbitrary f1 ∈ K∗1 , if there is an ā(t) ∈ L2(0, T ) such that the linear
functional defined by

f1(y, u) =

T∫
0

ā(t)u(t) dt
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is a support to Ω̃1 at point u∗, then, for all u(t) ∈ Uad, t ∈ [0, T ] a.e.,

ā(t)
[
u(t)− u∗(t)

]
> 0. (7)

3.3 The cone of tangent directions K2

Define the operator G : XT → L2(0, T ;V ∗)× (L2(0, T ))2 × (H)2 by

G(y, u) =
(
ϑ(t, x), y(t, 0), y(t, 1), y(0, x)− y0(x), y(T, x)− y∗(T, x)

)
,

in which ϑ(t, x) = yt(t, x)− νyxx(t, x) + y(t, x)yx(t, x)− f(t, x)− u(t). Then

Ω2 =
{

(y, u) ∈ XT

∣∣ G(y(t, x), u(t)
)

= 0
}
.

The Fréchet derivative of the operator G(y, u) is

G′(y, u)(ŷ, û) =
(
ϑ̂(t, x), ŷ(t, 0), ŷ(t, 1), ŷ(0, x), ŷ(T, x)

)
,

in which ϑ̂(t, x) = ŷt(t, x)− νŷxx(t, x) + y(t, x)ŷx(t, x) + ŷ(t, x)yx(t, x)− û(t).
Since (y∗, u∗) is the solution to problem (3), it hasG(y∗, u∗) = 0. Choosing arbitrary

(g1, g2, g3, g4, g5) ∈ L2(0, T ;V ∗)×
(
L2(0, T )

)2 × (H)2

and solving the equation

G′(y∗, u∗)(ŷ, û) =
(
g1(t, x), g2(t), g3(t), g4(x), g5(x)

)
,

we obtain

ŷt(t, x)− νŷxx(t, x) + y∗(t, x)ŷx(t, x) + y∗x(t, x)ŷ(t, x)− û(t) = g1(t, x),

ŷ(t, 0) = g2(t), ŷ(t, 1) = g3(t), ŷ(0, x) = g4(x), ŷ(T, x) = g5(x).
(8)

Next, assume that the linearized system

yt(t, x)− νyxx(t, x) + y∗(t, x)yx(t, x) + y∗x(t, x)y(t, x) = u(t),

y(t, 0) = y(t, 1) = 0, y(0, x) = 0
(9)

is controllable. (People can refer to [3, 4] for the information of the linearization.) Then
choose u(t) = û(t) ∈ L2(0, T ) such that y(T, x) = g5(x) − ξ(T, x) and let y be the
solution to the linearized system (9). Choose ŷ(t, x) = y(t, x) + ξ(t, x), where ξ satisfies
the following equations:

ξt(t, x)− νξxx(t, x) + y∗(t, x)ξx(t, x) + y∗x(t, x)ξ(t, x) = g1(t, x),

ξ(t, 0) = g2(t), ξ(t, 1) = g3(t), ξ(0, x) = g4(x).

In this way, it suffices for (ŷ, û) satisfying (8). Therefore, G′(y∗, u∗) maps the space XT

onto L2(0, T ;V ∗) × (L2(0, T ))2 × (H)2. Moreover, the cone of the tangent directions
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K2 to the constraint Ω2 at point (y∗, u∗) consists of the kernel of G′(y∗, u∗), i.e., (y, u)
satisfies the following equations in XT :

yt(t, x)− νyxx(t, x) + y∗(t, x)yx(t, x) + y∗x(t, x)y(t, x) = u(t),

y(t, 0) = y(t, 1) = 0, y(0, x) = 0
(10)

and
y(T, x) = 0. (11)

Define

K21 =
{

(y, u) ∈ XT

∣∣ (y(t, x), u(t)
)

satisfies (10)
}
,

K22 =
{

(y, u) ∈ XT

∣∣ (y(t, x), u(t)
)

satisfies (11)
}
.

Then the cone of tangent directions K2 = K21

⋂
K22. Hence

K∗2 = K∗21 +K∗22.

For any f2 ∈ K∗2 , decompose f2 = f21 + f22, f2i ∈ K∗2i, the dual cone of K2i, i = 1, 2.
Then f21(y, u) = 0 and, for all y(t, x) ∈W (0, T ;V ) satisfying y(T, x) = 0, there exists
φ(x) ∈ V ∗ such that

f22
(
y(t, x), u(t)

)
=

1∫
0

y(T, x)φ(x) dx.

Then from Theorem 1 follows that there exist continuous linear functionals, not all iden-
tically zero, such that

f0 + f1 + f21 + f22 = 0.

Therefore, when selecting (y, u) satisfies (10), f21(y, u) = 0. Moreover,

f1
(
y(t, x), u(t)

)
= −f0

(
y(t, x), u(t)

)
− f22

(
y(t, x), u(t)

)
= κ0

T∫
0

1∫
0

[
∂L(y∗, u∗, t, x)

∂y
y(t, x) +

∂L(y∗, u∗, t, x)

∂u
u(t)

]
dxdt

−
1∫

0

y(T, x)φ(x) dx.

3.4 Maximum principle of problem (3)

Define the adjoint system of (9) as

zt(t, x) + νzxx(t, x) + y∗(t, x)zx(t, x) = κ0
∂L(y∗(t, x), u∗(t), t, x)

∂y
,

z(t, 0) = z(t, 1) = 0, z(T, x) = φ(x).

(12)
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Theorem 2. The solution of system (9) and that of its adjoint system (12) have the
following relationship:

κ0

T∫
0

1∫
0

∂L(y∗, u∗, t, x)

∂y
y(t, x) dxdt−

1∫
0

y(T, x)φ(x) dx = −
T∫

0

1∫
0

z(t, x)u(t) dx dt.

Proof. Multiply the first equation of (12) by y(t, x) and integrate the product by parts
over [0, T ]× [0, 1] with respect to t and x, respectively. The proof then follows.

Now, by virtue of Theorem 2, we can rewrite f1(y, u) as

f1(y, u) =

T∫
0

{ 1∫
0

[
κ0
∂L(y∗, u∗, t, x)

∂u
− z(t, x)

]
dx

}
u(t) dt.

Therefore,

ā(t) =

1∫
0

[
κ0
∂L(y∗, u∗, t, x)

∂u
− z(t, x)

]
dx

and (7) then reads{ 1∫
0

[
κ0
∂L(y∗, u∗, t, x)

∂u
− z(t, x)

]
dx

}[
u(t)− u∗(t)

]
> 0 (13)

for all u(t) ∈ Uad, t ∈ [0, T ] a.e., where κ0 and z(t, x) are not identical to zero simul-
taneously. Since otherwise, there are definitely f0 = 0, f1 = 0, f22 = 0 and f21 = 0,
which contradict with the fact in Theorem 1 that these continuous linear functionals are
not all identically zero.

On the other hand, if K0 is a null set, then, for all (y, u) ∈ XT ,

T∫
0

1∫
0

[
∂L(y∗, u∗, t, x)

∂y
y(t, x) +

∂L(y∗, u∗, t, x)

∂u
u(t)

]
dxdt = 0.

In particular, if we choose κ0 = 1 and φ(x) = 0, then from Theorem 2 follows that

T∫
0

1∫
0

∂L(y∗, u∗, t, x)

∂y
y(t, x) dxdt = −

T∫
0

1∫
0

z(t, x)u(t) dxdt.

Therefore, for all u(t) ∈ L2(0, T ),

T∫
0

{ 1∫
0

[
∂L(y∗, u∗, t, x)

∂u
− z(t, x)

]
dx

}
u(t) dt = 0,

Nonlinear Anal. Model. Control, 20(1):1–20
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from which we obtain
1∫

0

[
∂L(y∗, u∗, t, x)

∂u
− z(t, x)

]
dx = 0

for all t ∈ [0, T ] a.e. Therefore, (13) still holds.
Finally, if there is a nonzero solution ẑ(t, x) (in which case, ẑ(T, x) 6≡ 0) to the adjoint

system

ẑt(t, x) + νẑxx(t, x) + y∗(t, x)ẑx(t, x) = κ0
∂L(y∗(t, x), u∗(t), t, x)

∂y
,

ẑ(t, 0) = ẑ(t, 1) = 0

(14)

such that, for all t ∈ [0, T ] a.e.,

1∫
0

ẑ(t, x) dx = 0,

then if we choose κ0 = 0 and φ(x) = ẑ(T, x), (13) is still valid. Since otherwise, if for
any nonzero solution ẑ of (14), it has

1∫
0

ẑ(t, x) dx 6≡ 0,

in this case, we say the situation is non-degenerate. Then the linearized system (9) is
controllable. In fact, if (9) is not controllable, then there exists a φ(x) ∈ V ∗ such that

1∫
0

y(T, x)φ(x) dx = 0, φ(x) 6≡ 0.

Choose κ0 = 0, ẑ to be the solution of (14). Then it follows from Theorem 2 that, for all
u(t) ∈ L2(0, T ),

T∫
0

[ 1∫
0

ẑ(t, x) dx

]
u(t) dt = 0.

Hence
1∫

0

ẑ(t, x) dx = 0

for all t ∈ [0, T ] a.e. This is a contradiction. Therefore, under the case of (14), system (9)
is controllable.

Combining the results above, we have obtained the Pontryagin maximum principle
for problem (3) subject to system (1).
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Theorem 3. Suppose (y∗, u∗) is a solution to the optimal control problem (3). Then there
exist κ0 > 0 and z(t, x), not identically zero, such that the following maximum principle
holds true: { 1∫

0

[
κ0
∂L(y∗, u∗, t, x)

∂u
− z(t, x)

]
dx

}[
u(t)− u∗(t)

]
> 0, (15)

u(t) ∈ Uad, t ∈ [0, T ] a.e., where the function z(t, x) satisfies the adjoint equation (12).

4 Free final horizon case

In the preceding section, we give the Pontryagin maximum principle for optimal dis-
tributed control problem of system (1) with fixed final horizon. Those results were derived
under two additional conditions. The first one is that the admissible control set Uad must
be convex and contains interior points, i.e., intL2(0,T ) Uad 6= ∅, and the second requires
the cost functional to be differentiable with respect to the control variable. In this section,
we consider optimal distributed control of the system with free final time without these
assumptions.

Consider the following control system defined in the fixed domain [0, t1]× [0, 1]:

yt(t, x)− νyxx(t, x) + y(t, x)yx(t, x) = f(t, x) + u(t),

y(t, 0) = y(t, 1) = 0, y(0, x) = y0(x), y(t1, x) = y1(x),

(t, x) ∈ Qt1 = (0, t1)× (0, 1), t1 > 0, u ∈M ⊂ R,
(16)

and formulate the optimal control Problem I below. Surely it is worth emphasizing the
cancellation of assumptions imposed on the preceding fixed final horizon problem. That
is to say, in this section, the admissible control set M neither need be convex nor contains
interior points as well as the cost functionalL(y, u) need not be differentiable with respect
to the control variable u. Therefore, M can be any set. An interesting case is that M is
allowed to contain only finite many points. The optimal distributed control problem with
free final horizon t1 is presented as follows.

Problem I. Minimize

J(y, u) =

t1∫
0

1∫
0

L
(
y(t, x), u(t)

)
dxdt (17)

for y(t, x) ∈W (0, t1;V ), u(t) ∈ L2(0, t1) under constraints (16), where the functional L
defined on V × R satisfies:

(c) L(y, u) is continuous in u;

(d) |∂L(y, u)/∂y| is bounded for every bounded subset of V × R.

In this section, we will derive the Pontryagin maximum principle of Problem I with
free final horizon. Introduce a time transformation t → s, mapping [0, t1] onto [0, 1],
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defined by a certain function v(·) > 0,

t(s) =

s∫
0

v(ς) dς, t(1) = t1,

and let y(s, x) = y(t(s), x),

u(s) =

{
u(t(s)), s ∈ Ξ1 = {s | s ∈ [0, 1], v(s) > 0},
arbitrary, s ∈ Ξ2 = {s | s ∈ [0, 1], v(s) = 0}.

(18)

Then (y(s, x), u(s)) satisfies the following equations:

ys(s, x)−νyxx(s, x)v(s)+y(s, x)yx(s, x)v(s)=f(s, x)v(s)+g(s, x)u(s)v(s),

y(s, 0)v(s) = y(s, 1)v(s) = 0, y(0, x) = y0(x), y(1, x) = y1(x),
(19)

where
f(s, x) = f

(
t(s), x

)
, g(s, x) = g

(
t(s), x

)
.

To make the definition of s(t) one-to-one, we shall assume that

s(t) = inf
{
s
∣∣ t(s) = t

}
.

And then we can formulate a new problem.

Problem II. Minimize

J(y, u, v) =

1∫
0

1∫
0

v(s)L
(
y(s, x), u(s)

)
dx ds

for y(s, x) ∈ W (0, 1;V ), u(s) ∈ L2(0, 1), v(s) ∈ L∞(0, 1) under constraints (19) with
v(s) > 0, u(s) ∈M for almost all 0 6 s 6 1.

If (y∗, u∗) is an optimal solution to the control problem (17) subject to equations (16),
then, for any v∗(s) > 0 satisfying

∫ 1

0
v∗(ς) dς = t1, u∗(s) defined similar to (18),

(y∗, u∗, v∗) solves Problem II [10]. Fixing u = u∗, another optimal control problem
can be formulated as follows.

Problem III. Minimize

J(y, u∗, v) =

1∫
0

1∫
0

v(s)L
(
y(s, x), u∗(s)

)
dxds

for (y(s, x), v(s)) ∈ X1 = W (0, 1;V )× L∞(0, 1) subject to

ys(s, x)− νyxx(s, x)v(s) + y(s, x)yx(s, x)v(s) = f(s, x)v(s) + g(s, x)u∗(s)v(s),

y(s, 0)v(s) = y(s, 1)v(s) = 0, y(0, x) = y0(x), y(1, x) = y1(x),
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in which v(s) plays the role of control. Now we can observe that Problem III is an optimal
control problem with fixed final horizon, which can be tackled by the same method
adopted in the investigation of the preceding optimal control problem (3). As such, in this
case, we can derive the corresponding theorem similar to Theorem 1. Those continuous
linear functionals in that theorem can, respectively, be determined as

f0(y, u∗, v) = −κ0

1∫
0

1∫
0

[
v∗(s)

∂L(y∗, u∗)

∂y
y(s, x) + L(y∗, u∗)v(s)

]
dxds,

f1(y, u∗, v) =

1∫
0

ā(s)v(s) ds,

f21(y, u∗, v) = 0, f22(y, u∗, v) =

1∫
0

y(1, x)ψ(x) dx,

in which there exist κ0 > 0, ā(s) ∈ L(0, 1), and ψ(x) ∈ V ∗ such that the expressions
above hold. Here we still adopt the same symbols to denote these functionals in the case
of no confusions caused. And the linearized system can be read as

ys(s, x)− νv∗(s)yxx(s, x) + y∗(s, x)v∗(s)yx(s, x) + y∗x(s, x)v∗(s)y(s, x)

=
[
νy∗xx(s, x)− y∗(s, x)y∗x(s, x) + f(s, x) + g(s, x)u∗(s)

]
v(s),

y(s, 0)v∗(s) + y∗(s, 0)v(s) = 0, y(s, 1)v∗(s) + y∗(s, 1)v(s) = 0,

y(0, x) = 0.

(20)

Correspondingly, its adjoint system is

zs(s, x) + νv∗(s)zxx(s, x) + y∗(s, x)v∗(s)zx(s, x) = κ0v
∗(s)

∂L(y∗, u∗)

∂y
,

z(s, 0) = z(s, 1) = 0, z(1, x) = ψ(x).

(21)

Moreover, the relationship between the solution of the linearized system (20) and that
of its adjoint system (21) is

1∫
0

1∫
0

κ0v
∗(s)

∂L(y∗, u∗)

∂y
y(s, x) dxds−

1∫
0

y(1, x)ψ(x) dx

= −
1∫

0

1∫
0

[
νy∗xx(s, x)−y∗(s, x)y∗x(s, x)+f(s, x)+g(s, x)u∗(s)

]
z(s, x)v(s) dx ds

−
1∫

0

ν
[
y∗(s, 1)zx(s, 1)−y∗(s, 0)zx(s, 0)

]
v(s) ds.

Nonlinear Anal. Model. Control, 20(1):1–20
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After we get the Pontryagin maximum principle of Problem III, the maximum princi-
ple of Problem I with free final horizon can be obtained easily. The obtained result can
be stated as the following Theorem 4, which is none other than the Pontryagin maximum
principle of Problem I with free final horizon.

Theorem 4. Suppose (y∗, u∗, t1) is a solution to Problem I, then there exist κ0 > 0 and
z(t, x), not identically zero, such that, for all t ∈ [0, t1] a.e.,

1∫
0

{
κ0L

(
y∗(t, x), u∗(t)

)
−
[
νy∗xx(t, x)−y∗(t, x)y∗x(t, x)+f(t, x)+u∗(t)

]
z(t, x)

}
dx

− νy∗(t, 1)zx(t, 1) + νy∗(t, 0)zx(t, 0) = 0,

1∫
0

{
κ0L

(
y∗(t, x), u∗(t)

)
−
[
νy∗xx(t, x)−y∗(t, x)y∗x(t, x)+f(t, x)+u

]
z(t, x)

}
dx

− νy∗(t, 1)zx(t, 1) + νy∗(t, 0)zx(t, 0) > 0 ∀u ∈M,

where the function z(t, x) satisfies

zt(t, x) + νzxx(t, x) + y∗(t, x)zx(t, x) = κ0
∂L(y∗, u∗)

∂y
, (t, x) ∈ Qt1 ,

z(t, 0) = z(t, 1) = 0, z(t1, x) = ψ(x).

5 Optimal (Neumann) boundary control problems

In this section, we consider the optimal (Neumann) boundary control problems of the
Burgers equation in both fixed and free final horizon cases. The investigated model is

yt(t, x)− νyxx(t, x) + y(t, x)yx(t, x) = f(t, x) ∈ L2(Ṽ ∗),

yx(t, 0) = α(t), yx(t, 1) = β(t), t ∈ [0, T ] a.e.,
y(0, x) = y0(x) ∈ H.

(22)

Here Ṽ = H1(0, 1) and its dual space Ṽ ∗ = BMO(0, 1) that is the space of functions
of bounded mean oscillation [8]. Two boundary control variables α(·), β(·) ∈ L2(0, T ).
Introduce the definition of weak solution to (22) from [21] as follows.

A function y(t, ·) ∈ W (0, T ; Ṽ ) is called a weak solution to (22) if y(0, ·) =
y0(·) ∈ H and

d

dt

〈
y(t, ·), ϕ(·)

〉
H

+ ν
〈
y(t, ·), ϕ(·)

〉
Ṽ
− ν
〈
y(t, ·), ϕ(·)

〉
H

+ b
(
y(t, ·), y(t, ·), ϕ(·)

)
=
〈
f(t, ·), ϕ(·)

〉
Ṽ ∗,Ṽ

+ νβ(t)ϕ(1)− να(t)ϕ(0)

for all ϕ(·) ∈ Ṽ, t ∈ [0, T ] a.e., in which b(ϕ,ψ,$) is defined as before. For the nonlinear
partial differential equations (22), Volkwein in [21] proves the existence of the unique
weak solution y(t, ·) ∈W (0, T ; Ṽ ).
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Take the state space be W (0, T ; Ṽ ) and the control space L2(0, T ). Consider the
following optimal boundary control problem for system (22) with the general cost func-
tional:

min
α(·),β(·)∈Uad

J(y, α, β) = min
α(·),β(·)∈Uad

T∫
0

1∫
0

L
(
y(t, x), α(t), β(t), t, x

)
dx dt, (23)

in which the control functions satisfy the convex constraint α(·), β(·) ∈ Uad and L satis-
fies the similar conditions (a), (b) in problem (3). Here the assumption intL2(0,T ) Uad 6= ∅
is again assumed in this fixed final horizon case although it will be removed in investiga-
tion of the subsequent free final horizon case.

Let (y∗, α∗, β∗) be the solution of the optimal boundary control problem (23). Adopt-
ing the same approach, we give the following linearized system:

yt(t, x)− νyxx(t, x) + y∗(t, x)yx(t, x) + y∗x(t, x)y(t, x) = 0,

yx(t, 0) = α(t), yx(t, 1) = β(t), y(0, x) = 0.
(24)

In this case, the continuous linear functionals in the general Dubovitskii and Milyutin
theorem can be determined as

f0(y, α, β) = −κ0

T∫
0

1∫
0

[
∂L(y∗, α∗, β∗, t, x)

∂y
y(t, x) +

∂L(y∗, α∗, β∗, t, x)

∂α
α(t)

+
∂L(y∗, α∗, β∗, t, x)

∂β
β(t)

]
dxdt,

f1(y, α, β) =

T∫
0

[
aα(t)α(t) + aβ(t)β(t)

]
dt,

f21(y, α, β) = 0, f22(y, α, β) =

1∫
0

y(T, x)φ(x) dx,

in which κ0 > 0, aα(t), aβ(t) ∈ L2(0, T ), and φ(x) ∈ Ṽ ∗ are given and can be
determined as in investigation of optimal distributed control problems before. As such,
we adopt the same symbols to denote these functionals in the case of no confusions
caused.

Moreover, the adjoint system of (24) can be given as

zt(t, x) + νzxx(t, x) + y∗(t, x)zx(t, x) = κ0
∂L(y∗(t, x), α∗(t), β∗(t), t, x)

∂y
,

νzx(t, 0) + y∗(t, 0)z(t, 0) = 0, νzx(t, 1) + y∗(t, 1)z(t, 1) = 0,

z(T, x) = φ(x).

(25)
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And the relationship between the solution of the linearized system (24) and that of its
adjoint system (25) above is

T∫
0

1∫
0

κ0
∂L(y∗, α∗, β∗, t, x)

∂y
y(t, x) dx dt−

T∫
0

y(T, x)φ(x) dx

=

T∫
0

ν
[
z(t, 0)α(t)− z(t, 1)β(t)

]
dt. (26)

By the general Dubovitskii–Milyutin theorem and relationship (26), there is

f1(y, α, β) = −f0(y, α, β)− f22(y, α, β)

= κ0

T∫
0

1∫
0

[
∂L(y∗, α∗, β∗, t, x)

∂y
y(t, x) +

∂L(y∗, α∗, β∗, t, x)

∂α
α(t)

+
∂L(y∗, α∗, β∗, t, x)

∂β
β(t)

]
dx dt−

1∫
0

y(T, x)φ(x) dx

= κ0

T∫
0

1∫
0

[
∂L(y∗, α∗, β∗, t, x)

∂α
α(t) +

∂L(y∗, α∗, β∗, t, x)

∂β
β(t)

]
dx dt

+

T∫
0

ν
[
z(t, 0)α(t)− z(t, 1)β(t)

]
dt,

so we have theorem that follows.

Theorem 5. Suppose (y∗, α∗, β∗) is a solution to the optimal control problem (23). Then
there exist κ0 > 0 and z(t, x), not identically zero, such that the following maximum
principle holds true:[ 1∫

0

κ0
∂L(y∗, α∗, β∗, t, x)

∂α
dx+ νz(t, 0)

][
α(t)− α∗(t)

]

+

[ 1∫
0

κ0
∂L(y∗, α∗, β∗, t, x)

∂β
dx− νz(t, 1)

][
β(t)− β∗(t)

]
> 0

for all α(t), β(t) ∈ Uad, t ∈ [0, T ] a.e., where the function z(t, x) satisfies the adjoint
equation (25).

Similarly, we can consider the following free final horizon problem of system (22).
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Problem IV. Minimize

J(y, α, β) =

t1∫
0

1∫
0

L
(
y(t, x), α(t), β(t)

)
dxdt, (27)

in which L satisfies the similar properties with (c), (d) and t1 is defined as before.

Here we omit the proof and directly present the final result. The corresponding Pon-
tryagin maximum principle for optimal boundary control problem of system (22) in free
final horizon case can be stated as theorem below.

Theorem 6. Suppose (y∗, α∗, β∗, t1) is a solution to Problem IV, then there exist κ0 > 0
and z(t, x), not identically zero, such that, for all t ∈ [0, t1] a.e.,

1∫
0

{
κ0L

(
y∗(t, x), α∗(t), β∗(t)

)
−
[
νy∗xx(t, x)− y∗(t, x)y∗x(t, x) + f(t, x)

]
z(t, x)

}
dx

+ ν
[
α∗(t)− y∗x(t, 0)

]
z(t, 0)− ν

[
β∗(t)− y∗x(t, 1)

]
z(t, 1) = 0,

1∫
0

{
κ0L

(
y∗(t, x), α∗(t), β∗(t)

)
−
[
νy∗xx(t, x)− y∗(t, x)y∗x(t, x) + f(t, x)

]
z(t, x)

}
dx

+ ν
[
α− y∗x(t, 0)

]
z(t, 0)− ν

[
β − y∗x(t, 1)

]
z(t, 1) > 0, α, β ∈M,

where the function z(t, x) satisfies

zt(t, x) + νzxx(t, x) + y∗(t, x)zx(t, x) = κ0
∂L(y∗, α∗, β∗)

∂y
, (t, x) ∈ Qt1 ,

νzx(t, 0) + y∗(t, 0)z(t, 0) = 0, νzx(t, 1) + y∗(t, 1)z(t, 1) = 0,

z(t1, x) = ψ(x),

and ψ(x) ∈ Ṽ ∗ as well as the set M defined as before.

6 A remark

Generally speaking, there are three kinds of numerical methods for solving the optimal
control problem. By the necessary condition of optimal control, such as the Pontryagin
maximum principle, a two-point boundary-value problem solution is one of these three
methods mentioned above. Though it is difficult to solve it, the Pontryagin maximum prin-
ciple provides a possibility of seeking numerical solution for the optimal control at least
in open-loop form. Basically, there are two ways for numerically solving optimal control
problems through necessary conditions. It is generally believed that the indirect method
that is mainly the multiple shooting method is the most powerful numerical method in
seeking the optimal control of the lumped parameter systems through solving a two-
point boundary-value problem obtained by the Pontryagin maximum principle. Of course,
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except for the complexity when the original problem involves inequality constraints of
both state variables and controls, the difficulty for shooting method additionally includes
the “guess" for the initial data to start the iterative numerical process. It demands that the
user understands the essential of the problem well in physics, which is often not a trivial
task. In addition, there are many other existing effective algorithms available, such as
gradient method introduced for overcoming the difficulty of the initial guess, the “min-H”
approach corrected from the gradient method for the higher convergence rate, and so on.
Surely, both these algorithms based on the Pontryagin maximum principle to obtain the
optimal control do give us the satisfying solutions.

In this section, we shall show, by the min-H iterative method, how to use the re-
sults obtained before for solving the extremum problems. Specifically, we discuss the
optimal distributed control of the Burgers equation in fixed final horizon case, namely,
problem (3).

To this end, rewrite the Pontryagin maximum principle (15) as follows:

u∗(t)Hu(y∗, u∗) = max
u(·)∈Uad

u(t)Hu(y∗, u∗), (28)

in which
H(y, u) = u(t)z(t, x)− κ0L(y, u, t, x).

Upon that, we may utilize the so-called “min-H” iterative algorithm [9, 22] to solve the
extremum problem. The algorithm is formulated below:

(i) Guess u0(t) and solve the state equation (1) to get y0(t, x).
(ii) By u0(t), y0(t, x), solve the adjoint equation (12) to get z0(t, x).

(iii) In view of y0(t, x), z0(t, x) and the Pontryagin maximum principle (28), to deter-
mine u1(t).

(iv) Calculate J(u1(t)). If it does not reach the minimum, replace u0(t) with u1(t) and
redo the steps above until we get the proper J(u1(t)).

After setting some parameters and functions such as y0(x), T , y†(t, x), u†(t), f(t, x),
L(y, u, t, x), one can proceed the numerical simulation using the algorithm above. More-
over, people can choose the quadratic cost functional (4) for the convenience. Although it
is definitely not easy, the concrete steps given by the algorithm make it possible for people
to follow and finish this nontrivial work, to get the numerical solutions for optimal con-
trol problems of distributed parameter systems governed by nonlinear partial differential
equations.

7 Conclusions

To sum up, in this paper we study optimal distributed and (Neumann) boundary con-
trol problems for the Burgers equation in both fixed and free final horizon cases, four
optimal control problems in all. The Pontryagin maximum principles of optimal control
systems are, respectively, investigated by the Dubovitskii and Milyutin functional analyt-
ical approach and the first-order necessary optimality conditions in these four cases are
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presented, successively. Then a remark is made for the illustration and the min-H iterative
algorithm is expounded.

Overall, the paper provides a framework for using functional analysis and control
methods to analyze and optimize the distributed parameter systems. People can adopt the
similar techniques for solving much more and interesting extremum problems.

Acknowledgment. The author appreciates the valuable suggestions and comments pre-
sented by the editor and the anonymous reviewers.
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