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Abstract. The paper is devoted to multivariate goodness-of-fit ests based on kernel density
estimators. Both simple and composite null hypotheses are investigated. The test statistic is
considered in the form of maximum of the normalized deviation of the estimate from its expected
value. The produced comparative Monte Carlo power study shows that the proposed test is
a powerful competitor to the existing classical criteria for testing goodness of fit against a specific
type of an alternative hypothesis. An analytical way to establish the asymptotic distribution of the
test statistic is discussed, using the approximation results for the probabilities of high excursions of
differentiable Gaussian random fields.
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1 Introduction

The goodness of fit problem for testing whether i.i.d. random variables Xn = (X1, . . . ,
Xn) are distributed according to the pre-specified distribution F has been well-studied in
the literature, and a variety of methods have been proposed. However, the choice of the
most efficient test, among the available criteria, is regarded as one of the basic problems in
statistics. The topicality of creation of new test procedures is also justified by the absence
of the uniformly most powerful tests for a variety of problems arising in practice.

Since Pearson criteria, goodness-of-fit tests have been developed mostly for univari-
ate distributions and, except for the case of normality, much less attention in literature
was paid to multivariate tests of fit. In contrast to the classical approaches based on the
empirical distribution function Fn(x), e.g. Kolmogorov–Smirnov, Cramer–von Mises,
Anderson–Darling criteria, in this paper, we consider the tests based on the kernel density
estimator. The idea of using nonparametric kernel density estimators for goodness-of-fit
tests goes back to Bickel and Rosenblatt [5, 23]. Since that time the approach has been
extended and attracted plenty of attention in statistical papers adjusting the methodol-
ogy for different practical purpose, see, for example [1, 6, 28] and references therein.
A comprehensive review of the goodness of fit density tests is presented in the recent

c© Vilnius University, 2015

mailto:aleksej.bakshaev@gmail.com
mailto:rimantas.rudzkis@mii.vu.lt


586 A. Bakshaev, R. Rudzkis

paper by Gonzalez et al. [12]. With some exceptions, see [18], particular attention in
the overwhelming majority of mentioned works were devoted to the criteria based on
Lp, p = 1, 2, distance between the density estimate f̂(x) = f̂(x,Xn) and its expected
value under the null hypothesis. This is presumably explained by the more competitive
performance of integrated distance tests against a wide range of practical alternatives in
comparison with sumpremum-type density tests, which are the objective of this paper.

This work is a continuation of our research started in [28] with the main objective
to generalize the proposed test procedure to the multivariate case. The test statistic is
considered in the form of maximum of the normalized deviation of the density estimate
f̂(x) from its hypothetical expected value. Consideration of the deviations in the uniform
metric is justified by the investigation of a specific type of alternative hypothesis, where
the null distribution is contaminated with a small tight cluster. Similar “sharp peak”
alternatives in univariate case were also considered in [11, 18].

In the multivariate case, the efficient use of kernel estimators requires an appropriate
choice of the kernel function K(·) and smoothing matrix W . In contrast to the kernel,
the selection problem of the bandwidth matrix is much more critical, since under- or
over-smoothing can substantially reduce the precision. In this work, a certain method is
proposed to avoid the stated problem. It is suggested to consider the test statistic with
different choices of smoothing matrices and make thereby a decision of rejecting the null
hypothesis, based on the maximum of statistics values with respect to W .

In practice, the critical region of the test is found by means of Monte Carlo simu-
lations. The problem of analytical approximation of the distribution of the test statistic
under the null hypothesis is discussed, using the theory of high excursions of Gaussian
(and, in some sense, close to Gaussian) random fields developed in [25, 27].

At the end of the paper, a comparative Monte Carlo power study of the proposed
test is presented. The analyzed test is compared with some general classical criteria:
Kolmogorov–Smirnov, Cramer–von-Mises, Anderson–Darling and Bickel–Rosenblatt, us-
ing the specific type of alternative hypothesis. The behavior of the tests is examined in
bivariate, simple and composite hypotheses cases with the standard normal and χ2(2)
distributions as the null ones. In the case of composite hypothesis with the Gaussian null
distribution, the comparative study was also extended with some multivariate normality
specific tests, i.e. BHEP, Mardia and Mahalanobis, see [13, 14, 19, 21]. The results of
simulations show that the proposed test is a powerful competitor to the existing classical
ones.

2 Statement of the problem. Simple hypothesis

Let X1, . . . , Xn be a sample of independent observations of a random vector X with an
unknown probability density function f(x), x ∈ Rd, d > 1. Based on the given sample,
it is required to test a simple hypothesis of goodness-of-fit

H0: f(x) = f0(x)
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against the complex alternative

H1: f(x) = (1− ε)f0(x) + εg(x), (1)

where f0(x) is a pre-specified probability density function, ε is a small enough fixed
value, i.e. 0 < ε � 1, and g(x) is an arbitrary distribution concentrated on a small
d-dimensional interval, e.g. σgi � σf0i , i = 1, . . . , d, where σfi is a standard deviation of
the ith component of a random vector with the density function f .

The form of the alternative is of a particular interest in some social and economic
studies, e.g. determination of small high income clusters of people, in population income
distribution. Meaningful applications could be also achieved in a multivariate case, deal-
ing with the problem of detection of tight clusters in multimodal distributions. At the
same time, the tightness of the distribution g justifies the usage of a uniform metric as the
loss function for f̂(x). Following the outline of the work [28], we consider a test statistic
based on the Parzen–Rosenblatt kernel density estimator of f , which, in the multivariate
case, has the form

f̂W (x) =
1

n|W |

n∑
i=1

K
(
W−1(x−Xi)

)
, (2)

where K(·) is the kernel function, W is a smoothing d × d symmetric and positive
definite matrix, and |W | is its determinant. Then the generalization of the univariate case
is straightforward and the test statistic is presented in the form

ζ(W ) = max
x∈I

∣∣ξW (x)
∣∣, (3)

where

ξW (x) =
f̂W (x)−mW (x)

σW (x)
, (4)

and I is a fixed d-dimensional interval. Here mW (x) = E0f̂W (x) and σ2
W (x) =

Var(f̂W (x)) denote a mathematical expectation and variance defined in the case of the
null hypothesis.

In a nonparametric approach, the efficient use of kernel estimators requires an appro-
priate choice of the kernel K(·) and the bandwidth matrix W . There is a wide range of
kernels commonly used in practice, e.g. uniform, Epanechnikov, Gaussian, and others.
In contrast to the smoothing matrix, the selection problem of the kernel is much less
important. Due to a small loss of efficiency for the kernels listed above, usually the choice
is based on the convenience of utilization. Therefore, further in our study, primarily to
simplify the calculations, we restrict ourselves to the usage of the Gaussian kernel only.

At the same time, the problem of selecting an optimal bandwidth matrix W is cru-
cial, since it controls the degree of smoothing, applied to the data, and the precision
of estimation thereby. Bandwidth selection procedures have attracted much attention of
the researchers over the past decades. Among the most popular approaches, plug-in and
cross-validation methods could be mentioned [2, 3, 4, 6, 9, 17, 19, 20, 21]. However, in
practice, the usage of the fixed bandwidth W for kernel density estimation, even selected
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optimally, in a certain sense, still does not solve the problem. That is obvious dealing
with the stated type of alternatives, where the contaminated cluster is much tighter in
comparison with the null distribution. This fact suggests us to consider the test statistic ζW
with different choices of a smoothing matrix W and make a decision thereby of rejecting
the null hypothesis, based on the maximum of ζW values with respect to W . As a result,
we have the following improved test statistics presented in two alternative standardization
forms:

M1 = max
W∈J

ζ(W )− µ(W )

γ(W )
, (5)

where

µ(W ) = E0ζ(W ), γ2(W ) = Var
(
ζ(W )

)
; (6)

M2 = max
W∈J

ζ(W )

cα(W )
. (7)

Here cα(W ), 0 < α < 1, is calculated from

P0

(
ζ(W ) > cα(W )

)
= α, (8)

where P0 is a probability distribution corresponding to the null hypothesis and α is
selected similarly to tests significance levels, e.g. α = 0.05. Here the maximum with
respect to W is calculated in a set J , symmetric and positive definite d × d matrices,
defined by a researcher. In practice, under the additional restrictions on the smoothing
matrixW , e.g.W = diag(h1, . . . , hd), the set J could be reduced to a certain multivariate
interval, i.e. (h1, . . . , hd) ∈ J ⊂ Rd.

Further, if the concrete form of the proposed statistics is not important in the discus-
sion, we will use the common notation M for both analyzed statistics Mi, i = 1, 2.

Naturally, we should reject the null hypothesis in the case of large values of the test
statistics, i.e, if M > zα, where zα can be found from the equation

P0(M > zα) = α. (9)

Here α is a significance level of the test. In practice, the functions µ(W ), γ(W ) and
cα(W ) could be defined instead of formulas (6), (8) by means of further presented for-
mulas (14), (15), obtained using the analytical approximations provided in [25], applied
to the random function f̂W (·).

3 Analytical approximation of the null distribution of the statistic
ζ(W )

In practice, the critical region of the proposed test could be defined by means of Monte
Carlo simulations. An alternative approach refers to the establishment of the asymptotic
null distribution of the test statistic, which is the objective of this section. Further, we
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discuss the problem of analytical approximation of the distribution of statistic (3), which
could be used as a test statistic with a fixed choice of the smoothing matrix W . The
problem is investigated using the theory of high excursions of Gaussian (and, in some
sense, close to Gaussian) random fields introduced in [25, 27]. In addition, the obtained
results lead to the analytical approximations of functions µ(·), γ(·) and quintile cα(·) used
in the definitions of the statistics (5) and (7), respectively.

First, we are concerned with the asymptotics of the probability

PW (u) = P0

{
ζ(W ) < u

}
, n→∞, (10)

representing the distribution function of ζ(W ). The fact that f̂W (x), x ∈ Rd, is close to
the Gaussian random field, in a certain sense, suggests us to apply the mentioned results
from the theory of high excursions of Gaussian fields to approximate the probability
PW (u).

It has been shown that if a differentiable (in the mean square sense) Gaussian random
field {η(t), t ∈ T} with Eη(t) ≡ 0, Var(η(t)) ≡ 1 and continuous trajectories defined on
the d-dimensional interval T ⊂ Rd satisfies certain smoothness and regularity conditions
[25, Thm. 1], then P{−v1(t) < η(t) < v2(t), t ∈ T} ∼= e−Q as for all t ∈ T ,
v1(t), v2(t) > χ, χ → ∞, where vi(·), i = 1, 2, are smooth enough functions and
Q is a certain constructive functional depending on v1, v2, T and the matrix function
R(t) = cov(η′(t), η′(t)). Here η′(t) is the gradient of η(t). The stated result leads to the
following approximation of the probability PW (u):

PW (u) = P0

{
ζ(W ) < u

} ∼= e−2Q(u) =: P̂W (u), (11)

where Q depends on u, I and the matrix function R(x) = cov(ξ′W (x), ξ′W (x)).
To define the functionalQ in the general case x ∈ Rd, let us introduce some additional

notation. N = {1, . . . , d}. Assume that

I =
{
x = (x1, . . . , xd)

>: ai 6 xi 6 bi, i = 1, d
}
, a(·) < b(·). (12)

For any z ∈ R and set D ⊂ R, let δz(D) = 1{z∈D},

λI(dx) =
∏
i∈N

λi(dxi) := λ1(dx1)× · · · × λd(dxd),

where λi(dxi) = dxi + δai(dxi) + δbi(dxi),

J = Jx = {i: ai < xi < bi, i ∈ N},

Yi,x =


{0}, i ∈ J,
[0,∞), xi = bi,

(−∞, 0], xi = ai,

Yx = Y1,x × · · · × Yd,x,

λ∗x(dy) =
∏

i∈N\J

dyi,

and λ∗x(Yx) = 1 if J = N .
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Then

Q(u) =

∫
I

λI(dx)

∫
Yx

λ∗x(dy)

∞∫
u

φ(z)φ
(
y
∣∣R(x)

)∣∣zR(x)
∣∣
J

dz. (13)

Here, for an arbitrary d-dimensional matrix B = [Bi,j ], denote BJ = [Bi,j ]i,j∈J and
B∅ = 1; by φ(·) and φ(· |R) we denote the probability density functions of normal
distributions N(0, 1) and N(0, R), respectively.

Further, from the definition of f̂W (x), we obtain by means of easy calculations the
following exact expression for the covariance matrix R(x):

R(x) =
1

n|W |σ2
W (x)

∫ (
W−1K ′(y)

)(
W−1K ′(y)

)>
f0(x+Wy) dy

− m′W (x)m′>W (x)

nσ2
W (x)

− (σ2
W (x))′(σ2

W (x))′>

4σ4
W (x)

,

mW (x) = E0f̂W (x) =

∫
K(y)f0(x+Wy) dy,

σ2
W (x) = Var

(
f̂W (x)

)
=

1

n|W |

∫
K2(z)f0(x+Wz) dz − m2

W (x)

n
,

(
σ2
W (x)

)′
=

1

n|W |

∫
K2(y)f ′0(x+Wy) dy − 2mW (x)m′W (x)

n
.

Here we assume that, for any functions f(x), g(x) with a multivariate argument
x ∈ Rd, f ′ is the gradient (vector-column) of f and∫

f ′(x)g(x) dx :=

(∫
∂f

∂x1
g(x) dx, . . . ,

∫
∂f

∂xd
g(x) dx

)>
.

Finally, from (6), we can obtain approximations for the functions µ(W ) and γ(W )
using the formulas

µ̂(W ) =

∫
udP̂W (u), γ̂2(W ) =

∫
u2 dP̂W (u)− µ̂2(W ). (14)

Next, a special case of d = 2 is investigated. We also provide graphical examples
of the accuracy of the proposed approximations comparing the empirical distribution
function of statistic ζW (3) and the asymptotic distribution function (11).

Let x = (x1, x2) ∈ R2, R = R(x1, x2) = cov(ξ′W (x), ξ′W (x)) be the covariance
matrix of the bivariate random field ξ′W (x) with elementsRi,j = Ri,j(x1, x2), i, j = 1, 2,
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(a) (b)

Fig. 1. Empirical and asymptotic distributions of ζ(W ), n = 2000, W = diag(0.3, 0.3): (a) I = [0, 3] ×
[0, 3], (b) I = [0, 1]× [0, 1].

and I = I1 × I2 = [a1, b1]× [a2, b2]. Afterwards, the functional Q can be written in the
form

Q(u) =
1

2π

(
1− Φ(u) + uφ(u)

) ∫
I

|R|1/2 dx1 dx2

+
φ(u)

2
√

2π

∫
I1

(
R

1/2
1,1 (y, a2) +R

1/2
1,1 (x1, b2)

)
dx1

+
φ(u)

2
√

2π

∫
I2

(
R

1/2
2,2 (a1, x2) +R

1/2
2,2 (b1, x2)

)
dx2,

For a graphical assessment of precision of the proposed approximations, we consider
the case, where f is a standard normal distribution. In the simulations, the smoothing
matrix W for the kernel density estimator f̂W (x) is assumed to be diagonal with the
elements (h1, h2), where h1 = h2 ∈ [0.2, 1]. The empirical distribution of ζW was
obtained by generating 500 samples of sizes 1000–5000 from the distribution f . Different
variants of intervals I in the definition of the statistic ζW were investigated.

The experimental results show that sufficiently good accuracy of approximation for
moderate and small significance levels (α < 0.1) and all the considered bandwidth
matrices could be achieved in the intervals of order σ × σ, σ2 = VarX , X ∼ f , and
sample sizes n > 2000, which is natural for a nonparametric approach. Some sim-
ulation results for the sample size n = 2000 are presented in Fig. 1. The precision
of approximations strongly depends on the smoothing matrix, the size of the chosen
interval I , probability P{X ∈ I}, and the sample size n. A similar precision level,
obtained for W = diag(0.3, 0.3), I = [0, 1] × [0, 1] and n = 2000, for the case I =
[1, 2]×[1, 2] could be achieved only when n = 5000. There is a strong general tendency of
a growing precision of approximation with a decreasing size of the interval I observed for
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all bandwidth matrices considered. At the same time, consideration of relatively smaller
intervals I in the tests, based on ζW , could be practically meaningful as the researcher
might be interested in the potential discrepancies from the hypothesized distribution only
in a certain pre-specified interval, obtained from a priori information.

The fact, that the proposed asymptotic distributions provide quite a good approxima-
tion to the null distribution of the statistic ζW only for moderate and small significance
levels, is a theoretical justification for the usage of statistic M2 (7) with quintile standard-
ization, where cα(W ) could be obtained from

P̂W
(
cα(W )

)
= 1− α. (15)

4 Composite hypothesis

In addition to the simple hypothesis of goodness of fit, where all the parameters of the
null distribution are specified, let us further consider the composite hypothesis variant. In
this case, on the basis of the sample X1, . . . , Xn, we wish to test whether the unknown
density function f lies in a certain parametric family, i.e.

H0: f = f0(·, θ),

against an alternative

H1: f(x) = (1− ε)f0(x, θ) + εg(x),

where θ ∈ Θ ⊂ Rp is an unknown vector parameter and distribution g(x) satisfies the
conditions in (1).

The modifications of proposed statistics (3), (5) and (7) for testing composite hypoth-
esis H0 are quite straightforward. Since in this case expectation mW (x) and variance
σ2
W (x) in the definition of empirical process ξW (x) depend on the unknown parameter θ

one has to replace it by θ̂n, where θ̂n is a
√
n-consistent estimator of θ0 ∈ Θ, the true

parameter value under H0. In our simulation study we use maximum likelihood estimator
for θ0. Thus, the process (4) in this case has the form

ξW (x, θ̂n) =
f̂W (x)−mW (x, θ̂n)

σW (x, θ̂n)
. (16)

Here mW (x, θ̂n) = Eθ̂n f̂W (x) and σ2
W (x, θ̂n) = Varθ̂n(f̂W (x)). Finally, the composite

hypothesis H0 could be verified by using statistics (5) and (7) with an estimate θ̂n substi-
tuted for the unknown parameter θ in (6), (8) and process ξW (x) replaced by ξW (x, θ̂n)
in (3).

Statistic ξW (x, θ̂n) may be regarded as an analogue of a modified Kolmogorov–
Smirnov statistic based on the empirical cumulative distribution function Fn(x) and used
for testing whether an unknown distribution function lies in a certain parametric family of
distribution functions. Recall that in the case of the simple hypothesis, the critical region
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of the test based on (3) is defined by ζh > zα, where zα is a cutoff point obtained from
the proved approximation (11), i.e. P̂h(zα) = 1 − α and α is the significance level of
the test. Unlike Kologorov–Smirnov statistic with estimated parameter, where the limit
distribution under the null hypothesis depends on the distribution of θ̂n, under some
additional assumptions, e.g. partial derivatives of f0 with respect to θi, i = 1, . . . , p, are
bounded for θ in a neighborhood of θ0 for all x (for more details, see [5,18,24]), the same
cutoff points may be used for testing the specified composite hypothesis using statistic
ξW (x, θ̂n). This is due to the fact that the normalizing factor

√
n in the Kolmogorov–

Smirnov test statistic is of the same order as the square of the rate of consistency of the
parameter estimator, while in the density test case this factor is

√
n|W | which tends to

infinity slower. Here we assume the smoothing matrix W = Wn tends to zero as n→∞
and n−1 = o(W ), where o notation is applied elementwise. Therefore, the parameter
estimator’s influence can be neglected in the problem presented here.

5 Simulation study

After the introduction of a certain test procedure, it is practically important to establish
whether the proposed test is powerful enough in comparison with the well-known criteria.
This section is aimed at the comparative Monte Carlo power study, where analyzed tests
(5)–(7) are compared with some classical criteria: Anderson–Darling (AD), Cramer–von
Mises (CM), Kolmogorov–Smirnov (KS) and Bickel–Rosenblatt (BR). A brief descrip-
tion of all considered tests is presented below. Recall that the power of a statistical test is
the probability that the test will reject the null hypothesis when the alternative hypothesis
is true.

In our empirical analysis, we consider a simple hypotheses of goodness of fit with
Gaussian and χ2(2) null distributions and composite hypothesis of normality in bivariate
case, i.e.

H0: f(x) = f0(x) or f(x) = f0(x, θ),

where

• f0 ∼ N(0,Σ) and Σ is assumed to be a unit matrix;
• f0 ∼ (Y1, Y2), Yi, i = 1, 2, are independent univariate random variables with the
χ2 distribution with two degrees of freedom;

against an alternative

H1: f(x) = (1− ε)f0(x) + εg(x),

where g ∼ N(m,σ2Σ), σ � 1 and ε is small.
In our comparative study, we examine the behavior of (5) and (7) tests, where func-

tions µ(W ), γ2(W ) and cα(W ), α = 0.05, are calculated using the proved approxi-
mations (14)–(15). In addition, the following versions of M1 and M2 test statistics are
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investigated:

M∗1 = max
W∈J

ζ(W )− µ̂∗(W )

γ̂∗(W )
, (17)

M∗2 = max
W∈J

ζ(W )

ĉ∗α(W )
, (18)

where the functions µ̂∗(W ), γ̂∗(W ) and ĉ∗α(W ), α = 0.05, are obtained by Monte Carlo
simulations.

The main objective of the study is to compare the sensitivity of the proposed tests
to the given type of alternative with the general criteria listed above. However, in the
composite hypothesis case, where the null distribution f is Gaussian, we have added
several multivariate normality criteria to our analysis, i.e. BHEP [13,14,21], Mardia [19]
and Mahalanobis criteria. In this case, statistics (5), (7), (17), (18) are applied with
the estimated mean vector and covariance matrix of the Gaussian distribution using the
maximum likelihood estimator and procedure described in Section 4.

5.1 Classical tests used in the comparison study

In this subsection, we provide the specifications of the mentioned best-known multivariate
goodness of fit tests further applied in our simulation comparative study. It is assumed that
a sample of independent observations X1, . . . , Xn of random variable X with unknown
distribution function F (x), x ∈ Rd, is available for the researcher. For simplicity, we
present the test statistics for the case of simple hypothesis of goodness of fit with a given,
completely known distribution F0 as a null one. The modifications of statistics for the
case of composite hypothesis is done in the same way described in Section 4.

In the case of continuous distributions, the most popular general tests used to verify
the stated hypothesis are based on the empirical distribution functions Fn(x). The most
famous and well-studied statistic of this type is obviously Kolmogorov–Smirnov statistic
[17, 31]

Dn =
√
n sup

x

∣∣F0(x)− Fn(x)
∣∣.

Another group of statistics is based on the integral distance between F0 and Fn. The best
known among them is Cramer–von Mises statistic (see [4, 20])

ω2
n = n

∫ (
F0(x)− Fn(x)

)2
dF0(x).

Anderson and Darling in [2,3] proposed to improve the properties of the presented statistic
by introducing a non-negative weight function, used in this statistic in order to vary the
contribution of the deviations of the empirical distribution function from the theoretical
distribution function in different ranges of its argument. One of the most wide spread
variant of ω2

n statistic with weight has the form

A2
n = n

∫
(F0(x)− Fn(x))2

F0(x)(1− F0(x))
dF0(x).
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In contrast to univariate case, the probability distribution functions of statistics Dn, ω2
n

and A2
n in multivariate case are not distribution-free. However, this problem could be

overcome by means of Rosenblatt transformation (see [22]), which transforms an abso-
lutely continuous d-variate distribution into the uniform distribution on the d-dimensional
cube. Let sample Y1, . . . , Yn be the result of the Rosenblatt transformation of the sam-
ple X1, . . . , Xn. Thus, intial goodness of fit problem could be reduced to testing the
unifomity on the hipercube based on Y1, . . . , Yn.

In the general case d > 2, all the statistics above are characterized by considerable
computational difficulties, therefore, in our simulation study (d = 2), we use some
convenient for calculation formulas of the form

D̂n =
√
n sup
y∈{Y1,...,Yn}

∣∣y1y2 − F ∗n(y)
∣∣,

ω̂2
n =

n∑
i=1

(
ri
n
− Y1,iY2,i

)2

, Â2
n =

n∑
i=1

( rin − Y1,iY2,i)
2

(1− Y1,iY2,i)Y1,iY2,i
,

where Yi = (Y1,i, Y2,i), i = 1, . . . , n, ri = nF ∗n(Yi) + 1 and F ∗n(·) is the empirical dis-
tribution function of the tranformed sample. All the presented formulas reflect statistics,
which are asimptotically equavalent to the original ones (for more details, see [16, 20]).

In addition to proposed statistics (5)–(7), the class of tests based on kernel density
estimators is also presented in the study by Bickel–Rosenblatt test [5, 23] reflecting the
L2 distance between the density estimate f̂(x) and its expected value under the null
hypothesis

Tn =

∫
(f̂W (x)−E0f̂W (x))2

f0(x)
dx,

where W = W (n) is a smoothing parameter, optimally chosen in the sense of min-
imization of the asymptotic mean integrated square error (AMISE). In bivariate case,
i.e. Xi = (X1,i, X2,i), i = 1, . . . , n, Gaussian null hypothesis and under the condition
W = diag(h1, h2), test statistic could be calculated using the formula

Tn =
1

n2|W |2
n∑

i,j=1

L1(X1,i, X1,j , h1)L1(X2,i, X2,j , h2)− 1,

where

L1(x1, x2, h) =
h√

2− h2
e−1/(2h

2)

(
x21 + x22 −

(x1 + x2)2

2− h2

)
.

In the case of considered χ2(2), null distribution test statistic has the form

Tn =
1

n2|W |2
n∑

i,j=1

L2(X1,i, X1,j , h1)L2(X2,i, X2,j , h2)

− 2

n

n∑
i=1

(
1− Φ

(
−X1,i

h1

))(
1− Φ

(
−X2,i

h2

))
+ 1,
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where

L2(x1, x2, h)

=
h√
π

[
1− Φ

(
−
x1 + x2 + h2

2√
2h

)]
e−1/(2h

2)

(
x21 + x22 −

(x1 + x2 + h2

2 )2

2

)
.

In the case of composite hypothesis with Gaussian null distribution, the comparative
study is extended with some popular normality tests. The first one is based on the com-
parison of the sample moments with the theoretical ones. In univariate case, standardized
third and fourth moments are often used to indicate distribution skewness and kurtosis.
For a given sample with sample mean X̄ and sample covariance matrix Ŝ, Mardia in [19]
defined the d-variate skewness and kurtosis statistics as

b1 =
1

n2

n∑
i,j=1

[
(Xi − X̄)>Ŝ−1(Xj − X̄)

]3
and

b2 =
1

n

n∑
i=1

[
(Xi − X̄)>Ŝ−1(Xi − X̄)

]2
,

respectively. Under the multinormality, b1 and b2 are affine invariant, asymptotically
independent and the limiting distribution of n(b1/6) and

√
n(b2−d(d+2))/

√
8d(d+ 2)

are a chi-squared distribution with d(d + 1)(d + 2)/6 degrees of freedom and N(0, 1)
distribution respectively. Finally, the null hypothesis should be rejected in the case of the
large values of statistic n(b1/6) + n(b2 − d(d+ 2))2)/(8d(d+ 2)).

Another well-known normality criteria, called BHEP (see [13, 14, 21]), is based on
the empirical characteristic function Ψn(t) = (1/n)

∑n
k=1 eit

TYk , where Yk = Ŝ−1/2 ×
(Xk − X̄), k = 1, . . . , n, is the standardized sample. The test statistic Bn(β) is the
weighted integral of the squared difference between the multivariate normal characteristic
function and the empirical characteristic function, i.e.

Bn(β) = n

∫ (
Ψn(t)− e−‖t‖

2/2
)2
ϕβ(t) dt,

where ϕβ(t) = (2πβ2)−d/2e−‖t‖
2/(2β2) is a weight function with optimal parameter β

value in bivariate case equals to (1/
√

2)(5n/4)1/6. In our simulation study, statistic
Bn(β) is calculated using the formula

Bn(β) =
1

n2

n∑
i,j=1

e−(β
2/2)‖Xi−Xj‖2

− 2

(1 + β2)n

n∑
i=1

e−β
2‖Xi‖2/(2(1+β2)) +

1

1 + 2β2
.

The last normality criteria in our study is based on Mahalanobis transformation of initial
sample

Yi = (Xi − X̄)>Ŝ−1/2(Xi − X̄), i = 1, . . . , n.
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Transformed univariate sample has chi-squared limiting distribution with d degrees of
freedom. After that the null hypothesis should be rejected in the case of large values of
one-sample Kolmogorov–Smirnov statistic.

5.2 Simulation design

In the study, the smoothing matrix W is considered to be diagonal with the elements
(h1, h2). Recall that the kernel K(·) in the density estimator (2) is assumed to be Gaus-
sian.

In all the cases, we investigate the behavior of the above mentioned tests for sample
sizes n = 1000, 2000 and the significance level α = 0.05. The maxima with respect to x
and W in the considered test statistics are calculated using the following intervals:

• J = [0.2, 1]× [0.2, 1];
• I = [0, 3]× [0, 3] (normality case);
I = [0, 10]× [0, 10] (χ2 case).

The interval J considered for the selection of the smoothing parameters hi, i = 1, 2, in the
kernel density estimator includes a wide range of choices of the bandwidth W , obtained
by applying the most common optimality criteria.

The critical regions of both classical and investigated tests were established using
the finite sample null distribution of corresposning test statistics, including proposed
(5),(7),(17),(18), obtained by the Monte Carlo method. The power of the tests was esti-
mated by simulating 1000 samples of alternative distributions (1−ε)f0(x)+εg(x), where
g ∈ N(m,σ2Σ), m = (m1,m2), ε ∼ Unif(0.01, 0.05). The following characteristics
of the mixing distribution g were investigated:

• Σ is a unit matrix;
• m1 = m2 ∼ Unif(0, 3) (normality case);
m1 = m2 ∼ Unif(0, 10) (χ2 case);

• σ ∼ Unif(0.1, 0.5) / Unif(0.1, 0.3) / Unif(0.1, 0.2).

The simulations of alternative samples were produced in two steps. Firstm, σ and ε values
were generated, then the obtained values were used for simulating the sample from the
distribution (1− ε)f0(x) + εg(x).

Considered several variants of tightness of the distribution cluster g and mixing prob-
abilities ε in (1), give us a wide range of deviations from the null hypothesis and allow us
to test the sensitivity of criteria to each of them.

5.3 Summary of the simulation results

The empirical results summarized in Tables 1–3 illustrate that the criteria proposed are
powerful competitors not only to the classical general tests, but also to specific normality
criteria in the goodness-of-fit problem against a complex alternative, when a hypothesized
distribution is contaminated with a small tight cluster.
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Table 1. Percentage of the rejected simple hypothesis of
normality, m ∼ Unif(0, 3): (a) σ ∼ Unif(0.1, 0.5),
(b) σ ∼ Unif(0.1, 0.3), (c) σ ∼ Unif(0.1, 0.2).

Tests n = 1000 n = 2000
(a) (b) (c) (a) (b) (c)

KS 23 23 24 48 50 53
CM 20 20 20 40 41 41
AD 17 18 19 37 38 39
BR 31 32 32 42 43 44
M1 52 60 68 70 79 87
M∗

1 65 71 71 77 82 84
M2 53 62 68 69 79 86
M∗

2 66 73 74 77 85 87

Table 2. Percentage of the rejected simple hypothesis of
χ2, m ∼ Unif(0, 10): (a) σ ∼ Unif(0.1, 0.5), (b) σ ∼
Unif(0.1, 0.3), (c) σ ∼ Unif(0.1, 0.2).

Tests n = 1000 n = 2000
(a) (b) (c) (a) (b) (c)

KS 26 27 27 45 47 49
CM 23 23 23 39 40 41
AD 24 24 24 38 38 38
BR 42 42 43 49 50 50
M1 53 59 66 72 80 81
M∗

1 65 70 70 85 86 87
M2 54 59 66 74 80 81
M∗

2 66 70 71 85 87 88

Table 3. Percentage of the rejected composite hypothesis
of normality, m ∼ Unif(0, 3): (a) σ ∼ Unif(0.1, 0.5),
(b) σ ∼ Unif(0.1, 0.3), (c) σ ∼ Unif(0.1, 0.2).

Tests n = 1000 n = 2000
(a) (b) (c) (a) (b) (c)

KS 35 38 39 57 67 73
CM 45 49 52 59 68 71
AD 46 49 52 57 65 68
BR 33 35 36 50 51 53
BHEP 53 60 64 70 81 84
Mardia 47 47 47 52 54 54
Mahalanobis 27 28 28 46 49 53
M1 43 56 64 61 82 89
M∗

1 55 63 65 69 83 87
M2 44 57 64 61 82 89
M∗

2 57 68 69 69 86 90

Recall that we are using the same notation M for all the analyzed statistics Mi, i =
1, 2, in case the specific form of the statistics is not important for us.

The general behavior of all the proposed tests M is characterized by an obvious
tendency. We observe the increasing power of the test, if the tightness of the distribution
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cluster g becomes smaller. That is clearly explained by the usage of the uniform metric
as the loss function for f̂(x). Produced additional simulations also show a significant
increase in the comparative power of tests, while shifting the cluster g towards the tails of
the null distribution. This fact could be justified by the application of the standardization
factor Var(f̂W (x)) in the process ξW (x) (4), which assigns more weight to discrepancies
in the tails of the distribution.

All the proposed M tests are considerably more powerful than the target general
criteria (KS, CM, AD and BR) against the investigated alternatives in all examined cases
of the null distributions. Furthermore, in the composite Gaussian hypothesis case and
a tight enough distribution cluster g, the performance of tests M is comparable or better
than the Mardia normality test, based on multivariate measures of skewness and kurtosis,
and the BHEP criterion, which reflects the L2 weighted distance between the empirical
and actual characteristic functions of Gaussian distributions. For the χ2 alternative, rea-
sonably competitive performance to the proposed criteria is shown only by Kolmogrov–
Smirnov and Bickel–Rosenblatt tests in the case of large sample sizes. In general, the
Bickel–Rosenblatt criterion, as a integrated distance test also based on the kernel density
estimator, is considered to be the main competitor among the general tests in our study.
However its comparison with the proposed maximum-type tests shows the significant
superiority of the latter ones against the considered alternative, which was also noticed
in the univariate case in [18]. Graphically the behavior of the best M2 and M∗2 tests
for sample sizes n = 1000, 2000 in all investigated cases of the null distributions is
summarized in Figs. 2–4.

A comparison of the performance of Mi and M∗i , i = 1, 2, tests shows a moderate
superiority of the latter ones. It is explained mostly by the fact that the precision of the
approximations (presented in Section 3) to the null distribution of the statistic ζW is high
only for moderate and small significance levels and considerably small intervals I . This
fact also justifies the behavior of the M2 test with analytically established cα(W ) values,
the results of which only slightly exceed that of M1.

The simulation study on the accuracy of established approximations to the null dis-
tribution of ζW , see Fig. 1, suggests the following rule for the option between Mi and

Fig. 2. Empirical power of the tests. The normality
case, simple hypothesis, σ ∼ Unif(0.1, 0.2).

Fig. 3. Empirical power of the tests. The χ2 case,
simple hypothesis, σ ∼ Unif(0.1, 0.2).
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Fig. 4. Empirical power of the tests. The normality case, composite hypothesis, σ ∼ Unif(0.1, 0.2).

M∗i , i = 1, 2, statistics. If, based on a priori information, the multivariate interval I for
detecting the contamination cluster g could be sufficiently minimized, we suggest using
Mi, i = 1, 2, statistics, where the functions µ(W ), γ2(W ) and cα(W ), in their definitions
are obtained from approximations (14)–(15). This certainly makes the application of the
test more convenient. Otherwise, it is recommended to use M∗i , i = 1, 2, tests with the
mentioned functions, derived by means of Monte Carlo simulations.

6 Conclusion

In this paper, we have proposed supremum-type statistics for comparing multivariate
distributions based on kernel density estimators. All considered tests are practical to apply
for moderate dimension and arbitrary sample sizes. Produced Monte Carlo power study
illustrates that the relative performance of proposed tests is impressive in comparison with
classical criteria based on empirical distribution function, e.g. Kolmogorov–Smirnov,
Anderson-Darling, integrated distance Bickel–Rosenblatt test also based on kernel density
estimator and some specific normality tests, e.g. BHEP, Mardia, in testing goodness of fit,
sensitive to contamination of the null distribution with small tight clusters. Furthermore it
is advisable to use analytical approximations for the parameters of proposed test statistics
obtained by means of the theory of large excursions of Gaussian fields.
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