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Abstract. The Lie group analysis method is performed for the nonlinear perturbed Burgers equation
and the time fractional nonlinear perturbed Burgers equation. All of the point symmetries of the
equations are constructed. In view of the point symmetries, the vector fields of the equations are
constructed. Subsequently, the symmetry reductions are investigated. In particular, some novel exact
and explicit solutions are obtained.
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1 Introduction

Nonlinear evolution equations (NLEEs) play an increasingly important role in mathemat-
ical modeling of physical, biological, and chemical processes, and it is also used in fractal
and differential geometry and so on [1–11, 13–26, 29–32].

In general, the fractional partial differential equations (FPDEs) can be written as
follows:

∂αu

∂tα
= F [u].

Here u = u(x, t) represents the unknown function, F [u] is a given function in regard to
their variables, α is a real number. ∂αu/∂tα = Dα

t represents the Riemann–Liouville
(R–L) derivative,

Dα
t u =

{
1

Γ(1−α)
∂n

∂tn

∫ t
0
(t− ξ)n−α−1u(ξ, x) dξ, n− 1 < α < n, n ∈ N,

∂nu
∂tn , α = n ∈ N,
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where the Euler gamma function Γ(z) is given by

Γ(z) =

∞∫
0

e−ttz−1 dt.

This paper focus on the Burgers equation (BE) that is used in the studies of cosmic
rays. The study of Burgers equation plays an key role in solitary waves theory [1, 6, 9,
11, 13, 31, 32]. It was demonstrated earlier that the cosmic ray shocks can be modeled by
the BE in the long wavelength and small amplitude limit [31]. Then, it was also shown
that the generalized BE describes the temporal evolution of weak shocks in the context of
diffusive shock accleration [32].

The perturbed Burgers equation (pBE) that is studied is given by [9, 11]

ut − au2ux + buux + cuxx − duuxx − e(ux)2 − kuxxx = 0, (1)

where u(x, t) denotes the unknown function of the space variable x and time t, also indi-
cates the profile of the shock wave. Equation (1) play an important role in gas dynamics
and heated fluids. Equation (1) display in the long-wave small-amplitude limit of extended
systems dominated by dissipation [9]. In different circumstances, Eq. (1) contains a lot of
important nonlinear PDEs. For example, if a = c = d = e = 0, then (1) just is celebrated
Korteweg–de Vries equation. Let b = c = d = e = 0, it is the mKdV equation. When
a = d = e = k = 0, it becomes famous Burgers equation.

The time fractional nonlinear perturbed Burgers equation is

∂αu

∂tα
− au2ux + buux + cuxx − duuxx − e(ux)2 − kuxxx = 0, (2)

where 0 < α 6 1, a, b, c, d, e, k are parameters, α shows up the order of the fractional
time-derivative. If α = 1, the fractional equation reduces to the classical perturbed Burg-
ers equation. In [22], invariant analysis of time fractional generalized Burgers equation
are investigated.

The remainder of this paper is divided as follows. In Section 2, we perform Lie
group classification on the perturbed Burgers equation (pBE), all of the geometric vector
fields of the pBE are presented. In Section 3, the complete symmetry classification of the
time fractional nonlinear perturbed Burgers equation are established. In Section 4, some
exact solutions of pBE are discussed. In Section 5, we firstly give some exact solutions of
time fractional nonlinear perturbed Burgers equation. The main results of the paper are
summarized in the last section.

2 Lie symmetry group analysis of Eq. (1)

In this section, we apply Lie group method to deal with Eq. (1).
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Considering one parameter Lie group of point transformations

t∗ = t+ ετ(x, t, u) +O
(
ε2
)
,

x∗ = x+ εξ(x, t, u) +O
(
ε2
)
,

u∗ = u+ εη(x, t, u) +O
(
ε2
)

and the corresponding infinitesimal generator

V = τ(x, t, u)
∂

∂t
+ ξ(x, t, u)

∂

∂x
+ η(x, t, u)

∂

∂u
.

Consider the Lie’s symmetry condition, one can get

pr(3)V (∆1)|∆1=0 = 0,

where ∆1 = ut − au2ux + buux + cuxx − duuxx − e(ux)2 − kuxxx. We employ the
third prolongation pr(3)V to Eq. (1), one can get

ηt − kηxxx − 2euxη
x − duηxx − dηuxx

− au2ηx − 2aηuux + buηx + bηux + cηxx = 0,

where

ηt = Dt(η)− uxDt(ξ)− utDt(τ)

= Dt(η − ξux − τut) + ξuxt + τutt

= ηt − ξtux + (ηu − τt)ux − τtut − ξuuxut − τuu2
t ,

ηx = Dx(η)− uxDx(ξ)− utDx(τ)

= Dx(η − ξux − τut) + ξuxx + τuxt

= ηx + (ηu − ξx)ux − τxut − ξuu2
x − τuuxut, (3)

ηxx = Dx(ηx)− uxtDx(τ)− uxxDx(ξ)

= ηxx + (2ηxu − ξxx)ux − τxxut + (ηuu − 2ξxu)u2
x

− 2τxuuxut − ξuuu3
x − τuuu2

xut + (ηu − 2ξx)uxx

− 2τxuxt − 3ξuuxxux − τuuxxut − 2τuuxtux, (4)

ηxxx = Dx(ηxx)− uxxtDx(τ)− uxxxDx(ξ)

= ηxxx + (3ηxxu − ξxxx)ux − τxxxut + 3(ηxuu − ξxxu)u2
x

− 3τxxuuxut + (ηuuu − 3ξxuu)u3
x + 3(ηxu − ξxx)uxx

− 3τxuxxt + (ηu − 3ξx)uxxx − 3τxxuxt − 3τxuuu
2
xut

+ 3(ηuu − 3ξxu)uxuxx − 3τxuutuxx − 3τuuuxxuxut

− 6τxuuxtux − ξxxxu4
x − 6ξuuu

2
xuxx − 3τuuu

2
xutx − τuuxxut

− 4ξuuxxxux − τuuuu3
xut − 3ξuu

2
xx − 3τuuxxtux − 3τuuxtuxx. (5)
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Here (x1, x2) = (t, x) and Di is given by

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ · · · , i = 1, 2.

Then, in terms of the Lie symmetry analysis method, one can obtain the following
results:

1) For the arbitrary parameters a, b, c, d, e, k, the infinitesimal generator of
Eq. (1) is as follows:

V1 =
∂

∂x
, V2 =

∂

∂t
. (6)

2) For the case a = c = d = e = 0, infinitesimal generator of Eq. (1) is given by

V1 =
∂

∂t
, V2 =

∂

∂x
, V3 = t

∂

∂x
+

1

b

∂

∂u
,

V4 = x
∂

∂x
+ 3t

∂

∂t
− 2u

∂

∂u
.

3) If b = c = d = e = 0, then the infinitesimal generator of Eq. (1) is

V1 =
∂

∂t
, V2 =

∂

∂x
, V3 = x

∂

∂x
+ 3t

∂

∂t
− u ∂

∂u
. (7)

4) When b = c = 0, we obtain that the infinitesimal generator of Eq. (1) is the same
as (7).

5) Let c = 0, e = 0, one can get that the infinitesimal generator of Eq. (1) is the same
as (6), that is

V1 =
∂

∂x
, V2 =

∂

∂t
.

6) Let b = d = e = k = 0, one can have

V1 =
∂

∂t
, V2 =

∂

∂x
, V3 = 2x

∂

∂x
+ 4t

∂

∂t
− u ∂

∂u
.

3 Lie symmetry group analysis of Eq. (2)

In this section, we deal with all of the point symmetries of the FPDE (2), then the
symmetries are presented. As previous step, under a one parameter Lie group of point
transformations [3, 5, 7, 22, 24, 25, 26, 29], one can get

t∗ = t+ ετ(x, t, u) +O
(
ε2
)
,

x∗ = x+ εξ(x, t, u) +O
(
ε2
)
,

u∗ = u+ εη(x, t, u) +O
(
ε2
)
,

∂αū

∂t̄α
=
∂αu

∂tα
+ εη0

α(x, t, u) +O
(
ε2
)
, . . . ,
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where

η0
α = Dα

t (η) + ξDα
t (ux)−Dα

t (ξux) +Dα
t

(
Dt(τ)u

)
−Dα+1

t (τu) + τDα+1
t (u)

=
∂αη

∂tα
+
(
ηu − αDt(τ)

)∂αu
∂tα
− u∂

αηu
∂tα

+ µ

+

∞∑
n=1

[(
a

n

)
∂αηu
∂tα

−
(

a

n+1

)
Dn+1
t (τ)

]
Dα−n
t (u)

−
∞∑
n=1

(
a

n

)
Dn
t (ξ)Dα−n

t (ux)

with

µ =
∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
a

n

)(
n

m

)(
k

r

)
1

k!

tn−α

Γ(n+ 1− α)
[−u]r

∂m

∂tm
[
uk−r

] ∂n−m+kη

∂tn−m∂uk
.

The corresponding vector field is given by

V = τ(x, t, u)
∂

∂t
+ ξ(x, t, u)

∂

∂x
+ η(x, t, u)

∂

∂u
. (8)

We will determine the coefficient functions ξ(x, t, u), τ(x, t, u), and η(x, t, u) later.
Assume that the vector field (8) can derive a symmetry of (2), then V must satisfy the

following Lie’s symmetry condition:

pr(n)V (∆1)|∆1=0 = 0,

where

∆1 =
∂αu

∂tα
− au2ux + buux + cuxx − duuxx − e(ux)2 − kuxxx.

As we have given in previous process, one can obtain

η0
α − kηxxx − 2euxη

x + buηx + bηux

− au2ηx − 2aηuux + cηxx − duηxx − dηuxx = 0.

Here ηx, ηxx, ηxxx are the same as Eqs. (3)–(5). Based on the Lie group calculation
method, one obtains:

1) For the arbitrary parameters a, b, c, d, e, k, the corresponding vector fields of
Eq. (2) are

V1 =
∂

∂x
. (9)

2) For the case a = c = d = e = 0, the corresponding vector fields of Eq. (2) are
given by

V1 =
∂

∂x
, V2 = x

∂

∂x
+

3t

α

∂

∂t
− 2u

∂

∂u
.
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3) If b = c = d = e = 0, we get the corresponding vector fields of Eq. (2)

V1 =
∂

∂x
, V2 = x

∂

∂x
+

3t

α

∂

∂t
− u ∂

∂u
. (10)

4) When b = c = 0, we obtain that the corresponding vector fields of Eq. (2) are the
same as (10).

5) Let c = 0, e = 0, one can get that the corresponding vector fields of Eq. (2) are
the same as (9).

4 Symmetry reductions and exact solutions of Eq. (1)

In this section, we deal with the symmetry reductions and exact solutions of this equation.
We will consider the following similarity reductions and group-invariant solutions:

4.1. V1

The group-invariant solution corresponding to V1 is u = f(ξ), where ξ = t is the
group-invariant, the substitution of this solution into Eq. (1) gives the trivial solution
u(x, t) = C, C is a constant.

4.2. V2 (stationary solution)
The group-invariant solution corresponding to V2 is u = f(ξ), where ξ = x is the group-
invariant, the substitution of this solution into the (1) yields

bff ′ − af2f ′ + cf ′′ − dff ′′ − e(f ′)2 − kf ′′′ = 0. (11)

4.3. V2 + λV1 (travelling wave solutions)
For the case of linear combination V2 + λV1, we get

u = f(ξ), (12)

where ξ = x− λt is the group-invariant. Putting (12) into the (1), one gets

λf ′ + bff ′ − af2f ′ + cf ′′ − dff ′′ − e(f ′)2 − kf ′′′ = 0. (13)

According to the homogeneous balance principle, one can get

f(ξ) = a0 + a1ϕ, (14)

where a0, a1 are constants to be determined, ϕ(ξ) satisfies

ϕ′ = A+Bϕ+ Cϕ2. (15)

Plugging (14) with (15) into (13), collecting different coefficients of ϕ, and letting each
coefficients equal to zero, one gets

A = A, B = B, C = C, a = a, b = b, a0 = a0, a1 = a1,

c = −BCda1 +Baa1
2 − 2C2da0 − 2Caa0a1 + Cba1

2C2
, d = d,
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e = −6C2k + 2Cda1 + aa2
1

Ca1
, k = k,

λ = −8AC3k + 4AC2da1 + 2ACaa2
1 − 2B2C2k −B2Cda1 −B2aa2

1

2C2

+
2BCaa0a1 − 2C2aa2

0 −BCba1 + 2C2ba0

2C2
.

One can find many exact travelling wave solutions for (1) as follows.

Family 1. When ∆ = B2 − 4AC > 0 and BC 6= 0 (or AC 6= 0),

u(x, t) = a0 − a1
1

2C

[
B + ∆ tanh

(
∆

2
ξ

)]
,

u(x, t) = a0 − a1
1

2C

[
B + ∆ coth

(
∆

2
ξ

)]
,

u(x, t) = a0 − a1
1

2C

[
B + ∆

(
tanh(∆ξ)± i sech(∆ξ)

)]
,

u(x, t) = a0 − a1
1

2C

[
B + ∆

(
coth(∆ξ)± i csch(∆ξ)

)]
,

u(x, t) = a0 − a1
1

4C

[
2B + ∆

(
tanh

(
∆

4
ξ

)
+ coth

(
∆

4
ξ

))]
,

u(x, t) = a0 + a1
1

2C

[
−B +

√
(E2 + F 2)∆− E∆ cosh(∆ξ)

Esinh(∆ξ) + F

]
,

u(x, t) = a0 + a1
1

2C

[
−B −

√
(F 2 − E2)∆ + E∆ sinh(∆ξ)

Ecosh(∆ξ) + F

]
,

where E and F are two non-zero real constants and satisfies F 2 − E2 > 0.

u(x, t) = a0 + a1

2A cosh(∆
2 ξ)

∆ sinh(∆
2 ξ)−B cosh(∆

2 ξ)
,

u(x, t) = a0 + a1

−2A sinh(∆
2 ξ)

−∆ cosh(∆
2 ξ) +B sinh(∆

2 ξ)
,

u(x, t) = a0 + a1
2A cosh(∆ξ)

∆ sinh(∆ξ)−B cosh(∆ξ)± i∆
,

u(x, t) = a0 + a1
2A sinh(∆ξ)

∆ cosh(∆ξ)−B sinh(∆ξ)±∆
,

u(x, t) = a0 + a1

4A sinh(∆
4 ξ) cosh(∆

4 ξ)

−2B sinh(∆
4 ξ) cosh(∆

4 ξ) + 2∆ cosh2(∆
4 ξ)−∆

.
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Family 2. When ∆ = 4AC −B2 > 0 and BC 6= 0 (or AC 6= 0),

u(x, t) = a0 + a1
1

2C

[
−B + ∆ tan

(
∆

2
ξ

)]
,

u(x, t) = a0 − a1
1

2C

[
B + ∆ cot

(
∆

2
ξ

)]
,

u(x, t) = a0 + a1
1

2C

[
−B + ∆

(
tan(∆ξ)± sec(∆ξ)

)]
,

u(x, t) = a0 − a1
1

2C

[
B + ∆

(
cot(∆ξ)± csc(∆ξ)

)]
,

u(x, t) = a0 − a1
1

4C

[
−2B + ∆

(
tan

(
∆

4
ξ

)
− cot

(
∆

4
ξ

))]
,

u(x, t) = a0 + a1
1

2C

[
−B +

±
√

(F 2 − E2)∆− E∆ cos(∆ξ)

E sin(∆ξ) + F

]
,

u(x, t) = a0 + a1
1

2C

[
−B +

±
√

(F 2 − E2)∆ + E∆ sinh(∆ξ)

E cos(∆ξ) + F

]
,

where E and F are two non-zero real constants and satisfies F 2 − E2 > 0.

u(x, t) = a0 + a1

−2A cos(∆
2 ξ)

∆ sin(∆
2 ξ) +B cos(∆

2 ξ)
,

u(x, t) = a0 + a1

2A sin(∆
2 ξ)

∆ cos(∆
2 ξ)−B sin(∆

2 ξ)
,

u(x, t) = a0 + a1
−2A cos(∆ξ)

∆ sin(∆ξ) +B cos(∆)±∆
,

u(x, t) = a0 + a1
2A sin(∆ξ)

∆ cos(∆ξ)−B sin(∆)±∆
,

u(x, t) = a0 + a1

4A sin(∆
4 ξ) cos(∆

4 ξ)

−2B sin(∆
4 ξ) cos(∆

4 ξ) + 2∆ cos2(∆
4 ξ)−∆

.

Family 3. When A = 0 and BC 6= 0,

u(x, t) = a0 + a1
−Bd

C(d+ cosh(Bξ)− sinh(Bξ))
,

u(x, t) = a0 + a1 −
cosh(Bξ) + sinh(Bξ)

C(d+ cosh(Bξ) + sinh(Bξ))
,

where d is an arbitrary constant.
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Family 4. When A = B = 0 and C 6= 0,

u(x, t) = a0 + a1
−1

Bξ + k
,

where k is an arbitrary constant.

Remark 1. In fact, all of these solutions can be derived from the following equation [12]:

ϕ =

√
4AC −B2

2C

C1e(θ/2)
√

4AC−B2 − C2e−(θ/2)
√

4AC−B2

C1e(θ/2)
√

4AC−B2 + C2e−(θ/2)
√

4AC−B2
− B

2C
,

where C1, C2 are arbitrary constants.

Next, we look for a solution of (13) as follows:

f(ξ) =

∞∑
n=0

cnξ
n. (16)

Putting (16) into (13), one can get

λc1 + λ

∞∑
n=1

(n+ 1)cn+1ξ
n + bc0c1 + b

∞∑
n=1

n∑
j=0

(n+ 1− j)cjcn+1−jξ
n

− 6c3k + 2cc2 + c

∞∑
n=1

(n+ 1)(n+ 2)cn+2ξ
n − ec21

− e
∞∑
n=1

n+1∑
j=0

j(n+ 2− j)cjcn+2−jξ
n − 2dc0c2

− d
∞∑
n=1

n∑
j=0

(n+ 1− j)(n+ 2− j)cjcn+2−jξ
n − ac20c1

− ac20
∞∑
n=1

(n+ 1)cn+1ξ
n − a

∞∑
n=1

n∑
j=1

j∑
i=0

(n+ 1− j)cicj−icn+1−jξ
n

− k
∞∑
n=1

(n+ 3)(n+ 2)(n+ 1)cn+3ξ
n = 0. (17)

Comparing coefficients for n = 0 in (17), one can get

c3 =
λc1 + bc0c1 + 2cc2 − ec21 − 2dc0c2 − ac20c1

6k
.

For the general case, for n > 1, one can arrive at

cn+3 =
1

k(n+ 1)(n+ 2)(n+ 3)

(
b

n∑
j=0

(n+ 1− j)cjcn+1−j

+ c(n+ 1)(n+ 2)cn+2λ(n+ 1)cn+1 + c(n+ 1)(n+ 2)cn+2
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− e
n+1∑
j=1

j(n+ 2− j)cjcn+2−j − ac20(n+ 1)cn+1

− d
n∑
j=0

(n+ 1− j)(n+ 2− j)cjcn+2−j

− a
n∑
j=1

j∑
i=0

(n+ 1− j)cicj−icn+1−j

)
.

Therefore, the power series solution of (16) can be rewritten

f(ξ) = c0 + c1ξ + c2ξ
2 + c3ξ

3 +

∞∑
n=1

cn+3ξ
n+3

= c0 + c1ξ + c2ξ
2 +

λc1 + bc0c1 + 2cc2 − ec21 − 2dc0c2 − ac20c1
6k

ξ3

+

∞∑
n=1

1

k(n+ 1)(n+ 2)(n+ 3)

(
b

n∑
j=0

(n+ 1− j)cjcn+1−j

+ c(n+ 1)(n+ 2)cn+2λ(n+ 1)cn+1 + c(n+ 1)(n+ 2)cn+2

− e
n+1∑
j=1

j(n+ 2− j)cjcn+2−j − ac20(n+ 1)cn+1

− d
n∑
j=0

(n+ 1− j)(n+ 2− j)cjcn+2−j

− a
n∑
j=1

j∑
i=0

(n+ 1− j)cicj−icn+1−j

)
ξn+3.

Thus, the explicit solution of (1) is

u(x, t) = c0 + c1(x− λt) + c2(x− λt)2

+
λc1 + bc0c1 + 2cc2 − ec21 − 2dc0c2 − ac20c1

6k
(x− λt)3

+

∞∑
n=1

cn+3(x− λt)n+3

= c0 + c1(x− λt) + c2(x− λt)2

+
λc1 + bc0c1 + 2cc2 − ec21 − 2dc0c2 − ac20c1

6k
(x− λt)3

+

∞∑
n=1

1

k(n+ 1)(n+ 2)(n+ 3)

(
b

n∑
j=0

(n+ 1− j)cjcn+1−j

+ c(n+ 1)(n+ 2)cn+2λ(n+ 1)cn+1 + c(n+ 1)(n+ 2)cn+2

Nonlinear Anal. Model. Control, 20(4):570–584



580 G. Wang, T. Xu

− e
n+1∑
j=1

j(n+ 2− j)cjcn+2−j − ac20(n+ 1)cn+1

− d
n∑
j=0

(n+ 1− j)(n+ 2− j)cjcn+2−j

− a
n∑
j=1

j∑
i=0

(n+ 1− j)cicj−icn+1−j

)
(x− λt)n+3,

where ci (i = 0, 1, 2, 3) are arbitrary constants.

Remark 2. As far as we know, these solutions are new.

Remark 3. If λ = 0, the exact solutions of Eq. (11) can be derived.

5 Symmetry reductions and exact solutions of Eq. (2)

In this section, we will deal with the symmetry reductions and exact solutions of Eq. (2).
Recently, sub-equation method is successfully used for solving fractional differential

equations [16, 27, 28].
Firstly, we employ the following transformations:

u(x, t) = u(ξ), ξ = x+ lt, (18)

where l is an constant. Putting (18) into (2), we get the following equation:

lαDα
ξ u− au2uξ + buuξ + cuξξ − duuξξ − e(uξ)2 − kuξξξ = 0. (19)

We assume that solution of Eq. (19) can be written as follows:

u(ξ) = a0 +

n∑
i=1

ai
(
ψ(ξ)

)i
,

where ai (i = 1, . . . , n) are constants to be fixed later. The function ψ(ξ) satisfy the
following Bäklund transformation of fractional Riccati equation [16, 25, 28]:

ψ(ξ) =
−σB +Dφ(ξ)

D +Bφ(ξ)
, (20)

where B,D are arbitrary parameters, and B 6= 0. Also, φ(ξ) meets the following equa-
tion:

Dα
ξ φ(ξ) = σ + φ2(ξ), (21)

http://www.mii.lt/NA



Invariant analysis and explicit solutions 581

where σ is a constant. Equation (21) has solutions

φ(ξ) =



−
√
−σ tanh(

√
−σξ, α), σ < 0,

−
√
−σ coth(

√
−σξ, α), σ < 0,

√
σ tan(

√
σξ, α), σ > 0,

−
√
σ cot(

√
σξ, α), σ > 0,

−Γ(1 + α)/(ξα + ω), ω is constant, σ = 0,

with

sinα(ξ) =
Eα(iξα)− Eα(−iξα)

2i
, cosα(ξ) =

Eα(iξα) + Eα(−iξα)

2i
,

sinhα(ξ) =
Eα(ξα)− Eα(−ξα)

2
, coshα(ξ) =

Eα(ξα) + Eα(−ξα)

2
,

tanα(ξ) =
sinα(ξ)

cosα(ξ)
, cotα(ξ) =

cosα(ξ)

sinα(ξ)
,

tanhα(ξ) =
sinhα(ξ)

coshα(ξ)
, cothα(ξ) =

coshα(ξ)

sinhα(ξ)
,

here Eα(ξ) =
∑∞
k=0 ξ

k/Γ(1+kα) (α > 0) represents the Mittag–Leffler function in one
parameter.

Once again, consider the homogeneous balance principle, we get

u(ξ) = a0 + a1ψ. (22)

Putting (20), (21) with (22) into (19), one can get algebraic equations about l, a0, a1

with the coefficients of (φ)i. Solving them, one can derive:

Case 1.

B = B, D = D, a = a, b = b, c = c, d = d, α = α,

e = e, k = k, l = l, σ = −D
2

B2
, a0 = a0, a1 = a1.

Case 2.

B = B, D = D, a = a, b = b, c = aa0a1 −
1

2
ba1 + da0,

d = d, e = e, l =

(
−1

3
aσa2

1 + aa0
2 − 2

3
dσa1 +

2

3
eσa1 − ba0

)1/α

,

k = −1

6
aa2

1 −
1

3
da1 −

1

6
ea1, α = α, σ = σ, a0 = a0, a1 = a1.
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In Case 1, one can obtain new solutions of Eq. (2) as follows:

u = a0 + a1
−σB −D

√
−σ tanh(

√
−σξ, α)

D −B
√
−σ tanh(

√
−σξ, α)

,

where σ < 0, ξ = x+ lt;

u = a0 + a1
−σB −D

√
−σ coth(

√
−σξ, α)

D −B
√
−σ coth(

√
−σξ, α)

,

where σ < 0, ξ = x+ lt;

u = a0 + a1
−σB +D

√
σ tan(

√
σξ, α)

D +B
√
σ tan(

√
σξ, α)

,

where σ > 0, ξ = x+ lt;

u = a0 + a1
−σB −D

√
σ cot(

√
σξ, α)

D −B
√
σ cot(

√
σξ, α)

,

where σ > 0, ξ = x+ lt;

u = a0 + a1
DΓ(1 + α)

−D(ξα + ω) +BΓ(1 + α)
,

where σ = 0, ξ = x+ lt.

Remark 4. In Case 2, one can also get other exact solutions of (2). We do not list all of
them here.

6 Concluding remarks

In the present paper, by using the Lie symmetry groups, we studied the symmetry prop-
erties, similarity reduction forms and explicit solutions of nonlinear perturbed Burgers
equation and the time fractional nonlinear perturbed Burgers equation. We note that there
is the essential difference between the fractional nonlinear perturbed Burgers equation
and the nonlinear perturbed Burgers equation. Furthermore, it should be also stressed that
the obtained point transformation groups of the fractional equation (2) are relatively fewer
than the evolution equation (1). At last, some exact and explicit solutions of the equations
are presented. The obtained results are helpful to better understand the intricate nonlinear
physical real world.

Acknowledgment. The authors gratefully acknowledge Editor and anonymous Review-
ers for their valuable comments and suggestions for improving the manuscript.
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