# Positive solutions for a class of fractional boundary value problems* 

Jiafa Xu ${ }^{\text {a }}$, Zhongli Wei ${ }^{\text {b,c }}$<br>${ }^{\text {a }}$ School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China xujiafa292@sina.com<br>${ }^{\mathrm{b}}$ School of Mathematics, Shandong University, Jinan 250100, Shandong, China<br>${ }^{c}$ Department of Mathematics, Shandong Jianzhu University, Jinan 250101, Shandong, China jnwzl32@163.com

Received: November 11, 2013 / Revised: August 22, 2014 / Published online: November 16, 2015
Abstract. In this work, by virtue of the Krasnoselskii-Zabreiko fixed point theorem, we investigate the existence of positive solutions for a class of fractional boundary value problems under some appropriate conditions concerning the first eigenvalue of the relevant linear operator. Moreover, we utilize the method of lower and upper solutions to discuss the unique positive solution when the nonlinear term grows sublinearly.
Keywords: fractional boundary value problem, Krasnoselskii-Zabreiko fixed point theorem, positive solution, uniqueness.

## 1 Introduction

In this paper we consider the existence of positive solutions for the boundary value problem of fractional order involving Riemann-Liouville's derivative

$$
\begin{align*}
& D_{0+}^{\alpha} D_{0+}^{\alpha} u=f\left(t, u, u^{\prime},-D_{0+}^{\alpha} u\right), \quad t \in[0,1] \\
& u(0)=u^{\prime}(0)=u^{\prime}(1)=D_{0+}^{\alpha} u(0)=D_{0+}^{\alpha+1} u(0)=D_{0+}^{\alpha+1} u(1)=0 \tag{1}
\end{align*}
$$

where $\alpha \in(2,3]$ is a real number, $D_{0+}^{\alpha}$ is the standard Riemann-Liouville fractional derivative of order $\alpha$ and $f \in C\left([0,1] \times \mathbb{R}_{+}^{3}, \mathbb{R}_{+}\right)\left(\mathbb{R}_{+}:=[0,+\infty)\right)$.

Recently, the fractional differential calculus and fractional differential equation have drawn more and more attention due to the applications of such constructions in various

[^0]sciences such as physics, mechanics, chemistry, engineering, etc. Many books on fractional calculus, fractional differential equations have appeared, for instance, see [7,10,11]. This may explain the reason that the last two decades have witnessed an overgrowing interest in the research of such problems, with many papers in this direction published. We refer the interested reader to $[1,2,4,5,6,12,13,14,15]$ and the references therein.

In $[4,6]$, by using the fixed point index theory and Krein-Rutman theorem, Jiang et al. obtained the existence of positive solutions for the multi-point boundary value problems of fractional differential equations

$$
\begin{align*}
& D_{0+}^{\alpha} u(t)+f(t, u(t))=0, \quad 0<t<1,1<\alpha \leqslant 2, \\
& u(0)=0, D_{0+}^{\beta} u(1)=\sum_{i=1}^{m-2} a_{i} D_{0+}^{\beta} u\left(\xi_{i}\right), \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
& D^{\alpha} u-M u=\lambda f(t, u(t)), \quad t \in[0,1], 0<\alpha<1, \\
& u(0)=\sum_{i=1}^{n} \beta_{i} u\left(\xi_{i}\right) . \tag{3}
\end{align*}
$$

In this paper, we first construct an integral operator for the corresponding linear boundary value problem and find out its first eigenvalue and eigenfunction. Then we establish a special cone associated with the Green's function of (1). Finally, by employing the Krasnoselskii-Zabreiko fixed point theorem, combined with a priori estimates of positive solutions, we obtain the existence of positive solutions for (1). Note that our nonlinear term $f$ involves the fractional derivatives of the dependent variable-this is seldom studied in the literature and most research articles on boundary value problems consider nonlinear terms that involve the unknown function $u$ only, for example, $[1,2,4$, $5,6,12,13,15]$. Moreover, we adopt the method of lower and upper solutions to discuss the uniqueness of positive solutions for (1), and prove that the unique positive solution can be uniformly approximated by an iterative sequence beginning with any function which is continuous, nonnegative and not identically vanishing on $[0,1]$ This, together with the fact that our nonlinearity may be of distinct growth, means that our methodology and main results here are entirely different from those in the above papers.

## 2 Preliminaries

For convenience, we give some background materials from fractional calculus theory to facilitate analysis of problem (1). These materials can be found in the recent books, see [7, 10, 11].

Definition 1. (See [7, 10], [11, pp. 36-37].) The Riemann-Liouville fractional derivative of order $\alpha>0$ of a continuous function $f:(0,+\infty) \rightarrow(-\infty,+\infty)$ is given by

$$
D_{0+}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{\mathrm{d}}{\mathrm{~d} t}\right)^{n} \int_{0}^{t}(t-s)^{n-\alpha-1} f(s) \mathrm{d} s
$$

where $n=[\alpha]+1,[\alpha]$ denotes the integer part of number $\alpha$, provided that the right side is pointwise defined on $(0,+\infty)$.

Definition 2. (See [11, Def. 2.1].) The Riemann-Liouville fractional integral of order $\alpha>0$ of a function $f:(0,+\infty) \rightarrow(-\infty,+\infty)$ is given by

$$
I_{0+}^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f(s) \mathrm{d} s
$$

provided that the right side is pointwise defined on $(0,+\infty)$.
From the definition of the Riemann-Liouville derivative, we can obtain the following statement.

Lemma 1. (See [1].) Let $\alpha>0$. If we assume $u \in C(0,1) \cap L(0,1)$, then the fractional differential equation $D_{0+}^{\alpha} u(t)=0$ has a unique solution

$$
u(t)=c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}+\cdots+c_{N} t^{\alpha-N}, \quad c_{i} \in \mathbb{R}, i=1,2, \ldots, N
$$

where $N$ is the smallest integer greater than or equal to $\alpha$.
Lemma 2. (See [1].) Assume that $u \in C(0,1) \cap L(0,1)$ with a fractional derivative of order $\alpha>0$ that belongs to $C(0,1) \cap L(0,1)$. Then

$$
I_{0+}^{\alpha} D_{0+}^{\alpha} u(t)=u(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}+\cdots+c_{N} t^{\alpha-N}, \quad c_{i} \in \mathbb{R}, i=1,2, \ldots, N
$$

where $N$ is the smallest integer greater than or equal to $\alpha$.
In what follows, we shall discuss some properties of the Green's function for fractional boundary value problem (1). Let

$$
G_{1}(t, s):=\frac{1}{\Gamma(\alpha)} \begin{cases}t^{\alpha-1}(1-s)^{\alpha-2}-(t-s)^{\alpha-1}, & 0 \leqslant s \leqslant t \leqslant 1  \tag{4}\\ t^{\alpha-1}(1-s)^{\alpha-2}, & 0 \leqslant t \leqslant s \leqslant 1\end{cases}
$$

Then we can easily obtain that

$$
\begin{align*}
G_{2}(t, s) & :=\frac{\partial}{\partial t} G_{1}(t, s) \\
& =\frac{\alpha-1}{\Gamma(\alpha)} \begin{cases}t^{\alpha-2}(1-s)^{\alpha-2}-(t-s)^{\alpha-2}, & 0 \leqslant s \leqslant t \leqslant 1 \\
t^{\alpha-2}(1-s)^{\alpha-2}, & 0 \leqslant t \leqslant s \leqslant 1\end{cases} \tag{5}
\end{align*}
$$

Lemma 3. (See [2, Lemma 2.7].) Let $f$ be as in (1) and $-D_{0+}^{\alpha} u:=v$. Then (1) is equivalent to

$$
\begin{equation*}
v(t)=\int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) v(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) v(\tau) \mathrm{d} \tau, v(s)\right) \mathrm{d} s \tag{6}
\end{equation*}
$$

Lemma 4. (See [2, Lemma 2.8] and [5, Thms. 1.1, 1.2].) The functions $G_{i}(t, s) \in$ $C\left([0,1] \times[0,1], \mathbb{R}_{+}\right)(i=1,2)$, moreover, the following two inequalities hold:

$$
\begin{align*}
& t^{\alpha-1} s(1-s)^{\alpha-2} \\
& \quad \leqslant \Gamma(\alpha) G_{1}(t, s) \leqslant s(1-s)^{\alpha-2} \quad \forall t, s \in[0,1]  \tag{7}\\
& (\alpha-1)(\alpha-2) t^{\alpha-2}(1-t) s(1-s)^{\alpha-2} \\
& \quad \leqslant \Gamma(\alpha) G_{2}(t, s) \leqslant(\alpha-1) t^{\alpha-3} s(1-s)^{\alpha-2} \quad \forall t, s \in[0,1] . \tag{8}
\end{align*}
$$

In what follows, we shall define two extra functions by $G_{1}, G_{2}$. Let

$$
\begin{align*}
& G_{3}(t, s):=\int_{0}^{1} G_{1}(t, \tau) G_{1}(\tau, s) \mathrm{d} \tau \quad \forall t, s \in[0,1]  \tag{9}\\
& G_{4}(t, s):=\int_{0}^{1} G_{1}(t, \tau) G_{2}(\tau, s) \mathrm{d} \tau \quad \forall t, s \in[0,1]
\end{align*}
$$

Then $G_{i}(t, s) \in C\left([0,1] \times[0,1], \mathbb{R}_{+}\right)(i=3,4)$. Moreover, by Lemma 4, we easily have

$$
\begin{align*}
& \frac{\alpha}{(\alpha-1) \Gamma(2 \alpha)} t^{\alpha-1} s(1-s)^{\alpha-2} \\
& \quad=\int_{0}^{1} \frac{t^{\alpha-1} \tau(1-\tau)^{\alpha-2}}{\Gamma(\alpha)} \cdot \frac{\tau^{\alpha-1} s(1-s)^{\alpha-2}}{\Gamma(\alpha)} \mathrm{d} \tau \leqslant G_{3}(t, s) \\
& \quad \leqslant \int_{0}^{1} \frac{s(1-s)^{\alpha-2} \tau(1-\tau)^{\alpha-2}}{\Gamma^{2}(\alpha)} \mathrm{d} \tau=\frac{s(1-s)^{\alpha-2}}{\alpha(\alpha-1) \Gamma^{2}(\alpha)} . \tag{10}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \frac{(\alpha-1)(\alpha-2)}{\Gamma(2 \alpha)} t^{\alpha-1} s(1-s)^{\alpha-2} \\
& \quad=\int_{0}^{1} \frac{t^{\alpha-1} \tau(1-\tau)^{\alpha-2}}{\Gamma(\alpha)} \cdot \frac{(\alpha-1)(\alpha-2) \tau^{\alpha-2}(1-\tau) s(1-s)^{\alpha-2}}{\Gamma(\alpha)} \mathrm{d} \tau \\
& \quad \leqslant G_{4}(t, s) \leqslant \int_{0}^{1} \frac{(\alpha-1) \tau^{\alpha-3} s(1-s)^{\alpha-2} \tau(1-\tau)^{\alpha-2}}{\Gamma^{2}(\alpha)} \mathrm{d} \tau \\
& \quad=\frac{s(1-s)^{\alpha-2}}{(\alpha-1) \Gamma(2 \alpha-2)} . \tag{11}
\end{align*}
$$

Let

$$
E:=C[0,1], \quad\|v\|:=\max _{t \in[0,1]}|v(t)|, \quad P:=\{v \in E: v(t) \geqslant 0 \forall t \in[0,1]\} .
$$

Then $(E,\|\cdot\|)$ becomes a real Banach space and $P$ is a cone on $E$. Define $B_{\rho}:=\{v \in E$ : $\|v\|<\rho\}$ for $\rho>0$ in the sequel.

Let

$$
\begin{equation*}
(A v)(t):=\int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) v(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) v(\tau) \mathrm{d} \tau, v(s)\right) \mathrm{d} s \tag{12}
\end{equation*}
$$

for all $v \in E$. The continuity of $G_{1}, G_{2}$ and $f$ implies that $A: E \rightarrow E$ is a completely continuous nonlinear operator. As mentioned in Lemma 3, $-D_{0+}^{\alpha} u=v$, together with the boundary conditions $u(0)=u^{\prime}(0)=u^{\prime}(1)=0$, we have

$$
\begin{equation*}
u(t)=\int_{0}^{1} G_{1}(t, s) v(s) \mathrm{d} s \tag{13}
\end{equation*}
$$

where $G_{1}$ is determined by (4). Therefore, we find the existence of solutions of (1) is equivalent to that of fixed points of $A$.

For $a, b, c \geqslant 0$ with $a^{2}+b^{2}+c^{2} \neq 0$, let

$$
G_{a, b, c}(t, s):=a G_{3}(t, s)+b G_{4}(t, s)+c G_{1}(t, s) \quad \forall t, s \in[0,1]
$$

and define a linear operator $L_{a, b, c}$ as follows:

$$
\begin{equation*}
\left(L_{a, b, c} v\right)(t)=\int_{0}^{1} G_{a, b, c}(t, s) v(s) \mathrm{d} s \quad \forall v \in E \tag{14}
\end{equation*}
$$

Obviously, $L_{a, b, c}$ is positive, i.e., $L_{a, b, c}(P) \subset P$. The continuity of $G_{1}, G_{3}, G_{4}$ implies that $L_{a, b, c}$ is a completely continuous operator. From now on, we utilize $r\left(L_{a, b, c}\right)$ to denote the spectral radius of $L_{a, b, c}$. Furthermore, Gelfand's theorem enables us to obtain the following result.

Lemma 5. Let

$$
\begin{aligned}
\xi_{a, b, c} & :=\frac{a \alpha}{(\alpha-1) \Gamma(2 \alpha)}+\frac{b(\alpha-1)(\alpha-2)}{\Gamma(2 \alpha)}+\frac{c}{\Gamma(\alpha)} \\
\eta_{a, b, c} & :=\frac{a}{\alpha(\alpha-1) \Gamma^{2}(\alpha)}+\frac{b}{(\alpha-1) \Gamma(2 \alpha-2)}+\frac{c}{\Gamma(\alpha)}
\end{aligned}
$$

Then

$$
\frac{\xi_{a, b, c} \Gamma(\alpha+1) \Gamma(\alpha-1)}{\Gamma(2 \alpha)} \leqslant r\left(L_{a, b, c}\right) \leqslant \frac{\eta_{a, b, c}}{\alpha(\alpha-1)}
$$

Proof. By (7), (10), and (11), we obtain

$$
\left\|L_{a, b, c}\right\|=\max _{t \in[0,1]} \int_{0}^{1} G_{a, b, c}(t, s) \mathrm{d} s \leqslant \eta_{a, b, c} \int_{0}^{1} s(1-s)^{\alpha-2} \mathrm{~d} s=\frac{\eta_{a, b, c}}{\alpha(\alpha-1)}
$$

Similarly, we find, for all $n \in \mathbb{N}_{+}$,

$$
\begin{aligned}
\left\|L_{a, b, c}^{n}\right\| & =\max _{t \in[0,1]} \underbrace{\int_{0}^{1} \cdots \int_{0}^{1}}_{n} G_{a, b, c}\left(t, s_{n-2}\right) \cdots G_{a, b, c}\left(s_{2}, s_{1}\right) G_{a, b, c}\left(s_{1}, s\right) \\
& \leqslant\left[\frac{\eta_{a, b, c}}{\alpha(\alpha-1)}\right]^{n}
\end{aligned}
$$

Gelfand's theorem implies that

$$
r\left(L_{a, b, c}\right)=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|L_{a, b, c}^{n}\right\|} \leqslant \frac{\eta_{a, b, c}}{\alpha(\alpha-1)}
$$

On the other hand,

$$
\begin{aligned}
\left\|L_{a, b, c}\right\| & =\max _{t \in[0,1]} \int_{0}^{1} G_{a, b, c}(t, s) \mathrm{d} s \geqslant \max _{t \in[0,1]} \int_{0}^{1} \xi_{a, b, c} t^{\alpha-1} s(1-s)^{\alpha-2} \mathrm{~d} s \\
& =\frac{\xi_{a, b, c}}{\alpha(\alpha-1)}
\end{aligned}
$$

Similarly, we also obtain

$$
\begin{aligned}
\left\|L_{a, b, c}^{2}\right\| & =\max _{t \in[0,1]} \int_{0}^{1} \int_{0}^{1} G_{a, b, c}(t, s) G_{a, b, c}(s, \tau) \mathrm{d} \tau \mathrm{~d} s \\
& \geqslant \max _{t \in[0,1]} \int_{0}^{1} \int_{0}^{1} \xi_{a, b, c}^{2} t^{\alpha-1} s(1-s)^{\alpha-2} s^{\alpha-1} \tau(1-\tau)^{\alpha-2} \mathrm{~d} \tau \mathrm{~d} s \\
& =\xi_{a, b, c}^{2} \int_{0}^{1} s^{\alpha}(1-s)^{\alpha-2} \mathrm{~d} s \int_{0}^{1} \tau(1-\tau)^{\alpha-2} \mathrm{~d} \tau
\end{aligned}
$$

and

$$
\left\|L_{a, b, c}^{3}\right\| \geqslant \xi_{a, b, c}^{3}\left(\int_{0}^{1} s^{\alpha}(1-s)^{\alpha-2} \mathrm{~d} s\right)^{2} \int_{0}^{1} \tau(1-\tau)^{\alpha-2} \mathrm{~d} \tau
$$

Therefore, for all $n \in \mathbb{N}_{+}$,

$$
\left\|L_{a, b, c}^{n}\right\| \geqslant \xi_{a, b, c}^{n}\left(\int_{0}^{1} s^{\alpha}(1-s)^{\alpha-2} \mathrm{~d} s\right)^{n-1} \int_{0}^{1} \tau(1-\tau)^{\alpha-2} \mathrm{~d} \tau
$$

By Gelfand's theorem, we see

$$
\begin{aligned}
r\left(L_{a, b, c}\right) & =\lim _{n \rightarrow \infty} \sqrt[n]{\left\|L_{a, b, c}^{n}\right\|} \geqslant \xi_{a, b, c} \int_{0}^{1} s^{\alpha}(1-s)^{\alpha-2} \mathrm{~d} s \\
& =\frac{\xi_{a, b, c} \Gamma(\alpha+1) \Gamma(\alpha-1)}{\Gamma(2 \alpha)} .
\end{aligned}
$$

This completes the proof.
By Lemma 5, we see $r\left(L_{a, b, c}\right)>0$, and thus the Krein-Rutman theorem [9] asserts that there are $\varphi_{a, b, c} \in P \backslash\{0\}$ and $\psi_{a, b, c} \in P \backslash\{0\}$ such that

$$
\begin{align*}
& \int_{0}^{1} G_{a, b, c}(t, s) \varphi_{a, b, c}(s) \mathrm{d} s=r\left(L_{a, b, c}\right) \varphi_{a, b, c}(t),  \tag{15}\\
& \int_{0}^{1} G_{a, b, c}(t, s) \psi_{a, b, c}(t) \mathrm{d} t=r\left(L_{a, b, c}\right) \psi_{a, b, c}(s) .
\end{align*}
$$

Note that we can normalize $\psi_{a, b, c}$ such that

$$
\begin{equation*}
\int_{0}^{1} \psi_{a, b, c}(t) \mathrm{d} t=1 \tag{16}
\end{equation*}
$$

Let $\omega_{a, b, c}=\xi_{a, b, c} \eta_{a, b, c}^{-1} \int_{0}^{1} t^{\alpha-1} \psi_{a, b, c}(t) \mathrm{d} t$ and define

$$
P_{0}:=\left\{v \in P: \int_{0}^{1} v(t) \psi_{a, b, c}(t) \mathrm{d} t \geqslant \omega_{a, b, c}\|v\|\right\} .
$$

Clearly, $P_{0}$ is also a cone of $E$.
Lemma 6. $L_{a, b, c}(P) \subset P_{0}$.
Proof. We easily have the following inequality:

$$
G_{a, b, c}(t, s) \geqslant \xi_{a, b, c} \eta_{a, b, c}^{-1} t^{\alpha-1} G_{a, b, c}(\tau, s) \quad \forall t, s, \tau \in[0,1] .
$$

For $v(t) \geqslant 0, t \in[0,1]$, we have

$$
\int_{0}^{1}\left(L_{a, b, c} v\right)(t) \psi_{a, b, c}(t) \mathrm{d} t=\int_{0}^{1} \int_{0}^{1} G_{a, b, c}(t, s) v(s) \psi_{a, b, c}(t) \mathrm{d} s \mathrm{~d} t
$$

$$
\begin{aligned}
& \geqslant \int_{0}^{1} \int_{0}^{1} \xi_{a, b, c} \eta_{a, b, c}^{-1} t^{\alpha-1} G_{a, b, c}(\tau, s) v(s) \psi_{a, b, c}(t) \mathrm{d} s \mathrm{~d} t \\
& =\xi_{a, b, c} \eta_{a, b, c}^{-1} \int_{0}^{1} t^{\alpha-1} \psi_{a, b, c}(t) \mathrm{d} t \int_{0}^{1} G_{a, b, c}(\tau, s) v(s) \mathrm{d} s \quad \forall \tau \in[0,1]
\end{aligned}
$$

Consequently, we see

$$
\int_{0}^{1}\left(L_{a, b, c} v\right)(t) \psi_{a, b, c}(t) \mathrm{d} t \geqslant \omega_{a, b, c}\left\|L_{a, b, c} v\right\| .
$$

This completes the proof.
Lemma 7. (See [8].) Let E be a real Banach space and $W$ a cone of $E$. Suppose that $A:\left(\bar{B}_{R} \backslash B_{r}\right) \cap W \rightarrow W$ is a completely continuous operator with $0<r<R$. If either
(i) $A u \nless u$ for each $\partial B_{r} \cap W$ and $A u \nexists u$ for each $\partial B_{R} \cap W$ or
(ii) $A u \ngtr u$ for each $\partial B_{r} \cap W$ and $A u \nless u$ for each $\partial B_{R} \cap W$,
then $A$ has at least one fixed point on $\left(\bar{B}_{R} \backslash B_{r}\right) \cap W$.
Lemma 8. (See [3].) Let E be a partial order Banach space, and $x_{0}, y_{0} \in E$ with $x_{0} \leqslant y_{0}, D=\left[x_{0}, y_{0}\right]$. Suppose that $A: D \rightarrow E$ satisfies the following conditions:
(i) $A$ is an increasing operator;
(ii) $x_{0} \leqslant A x_{0}, y_{0} \geqslant A y_{0}$, i.e., $x_{0}$ and $y_{0}$ is a subsolution and a supersolution of $A$;
(iii) $A$ is a completely continuous operator.

Then $A$ has the smallest fixed point $x^{*}$ and the largest fixed point $y^{*}$ in $\left[x_{0}, y_{0}\right]$, respectively. Moreover, $x^{*}=\lim _{n \rightarrow \infty} A^{n} x_{0}$ and $y^{*}=\lim _{n \rightarrow \infty} A^{n} y_{0}$.

## 3 Main results

We first offer twelve fixed numbers $\alpha_{i}, \beta_{i}, \gamma_{i} \geqslant 0$ which are not all zero and let $r^{-1}\left(L_{\alpha_{i}, \beta_{i}, \gamma_{i}}\right)=\lambda_{\alpha_{i}, \beta_{i}, \gamma_{i}}$ for $i=1,2,3,4$. Now, we list our assumptions on $f$ :
(H1) $f \in C\left([0,1] \times \mathbb{R}_{+}^{3}, \mathbb{R}_{+}\right) ; \quad(\mathrm{H} 1)^{\prime} f \in C\left([0,1] \times \mathbb{R}_{+}^{3},(0,+\infty)\right)$.
(H2)

$$
\begin{equation*}
\liminf _{\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3} \rightarrow+\infty} \frac{f\left(t, x_{1}, x_{2}, x_{3}\right)}{\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3}}>\lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}} \tag{17}
\end{equation*}
$$

uniformly for $t \in[0,1]$.
(H3)

$$
\begin{equation*}
\limsup _{\alpha_{2} x_{1}+\beta_{2} x_{2}+\gamma_{2} x_{3} \rightarrow 0^{+}} \frac{f\left(t, x_{1}, x_{2}, x_{3}\right)}{\alpha_{2} x_{1}+\beta_{2} x_{2}+\gamma_{2} x_{3}}<\lambda_{\alpha_{2}, \beta_{2}, \gamma_{2}} \tag{18}
\end{equation*}
$$

uniformly for $t \in[0,1]$.
(H4)

$$
\begin{equation*}
\liminf _{\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3} \rightarrow 0^{+}} \frac{f\left(t, x_{1}, x_{2}, x_{3}\right)}{\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3}}>\lambda_{\alpha_{3}, \beta_{3}, \gamma_{3}} \tag{19}
\end{equation*}
$$

uniformly for $t \in[0,1]$.
(H5)

$$
\begin{equation*}
\limsup _{\alpha_{4} x_{1}+\beta_{4} x_{2}+\gamma_{4} x_{3} \rightarrow+\infty} \frac{f\left(t, x_{1}, x_{2}, x_{3}\right)}{\alpha_{4} x_{1}+\beta_{4} x_{2}+\gamma_{4} x_{3}}<\lambda_{\alpha_{4}, \beta_{4}, \gamma_{4}} \tag{20}
\end{equation*}
$$

uniformly for $t \in[0,1]$.
(H6) There exists a positive constant $\mu<1$ such that

$$
\kappa^{\mu} f\left(t, x_{1}, x_{2}, x_{3}\right) \leqslant f\left(t, \kappa x_{1}, \kappa x_{2}, \kappa x_{3}\right) \quad \forall \kappa \in(0,1) .
$$

(H7) $f\left(t, x_{1}, x_{2}, x_{3}\right)$ is increasing in $x_{1}, x_{2}, x_{3}$, that is, the inequality

$$
f\left(t, x_{1}, x_{2}, x_{3}\right) \leqslant f\left(t, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)
$$

holds for $x_{1} \leqslant x_{1}^{\prime}, x_{2} \leqslant x_{2}^{\prime}, x_{3} \leqslant x_{3}^{\prime}$.

### 3.1 Existence of positive solutions

Theorem 1. Assume that (H1)-(H3) hold. Then (1) has at least one positive solution.
Proof. (H2) implies that there are $\varepsilon>0$ and $c_{1}>0$ such that

$$
\begin{equation*}
f\left(t, x_{1}, x_{2}, x_{3}\right) \geqslant\left(\lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}}+\varepsilon\right)\left(\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3}\right)-c_{1} \quad \forall x_{i} \in \mathbb{R}_{+}, t \in[0,1] . \tag{21}
\end{equation*}
$$

Let $\mathscr{M}_{1}:=\{v \in P: v \geqslant A v\}$. We claim that $\mathscr{M}_{1}$ is bounded in $P$. Indeed, if $v \in \mathscr{M}_{1}$, by (12) and (21), we can obtain

$$
\begin{align*}
v(t) \geqslant & \int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) v(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) v(\tau) \mathrm{d} \tau, v(s)\right) \mathrm{d} s \\
\geqslant & \left(\lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}}+\varepsilon\right)\left[\int_{0}^{1} \alpha_{1} G_{3}(t, \tau) v(\tau) \mathrm{d} \tau+\int_{0}^{1} \beta_{1} G_{4}(t, \tau) v(\tau) \mathrm{d} \tau\right. \\
& \left.+\int_{0}^{1} \gamma_{1} G_{1}(t, s) v(s) \mathrm{d} s\right]-\frac{c_{1}}{\alpha(\alpha-1) \Gamma(\alpha)} \\
= & \left(\lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}}+\varepsilon\right) \int_{0}^{1} G_{\alpha_{1}, \beta_{1}, \gamma_{1}}(t, s) v(s) \mathrm{d} s-\frac{c_{1}}{\alpha(\alpha-1) \Gamma(\alpha)} \tag{22}
\end{align*}
$$

Multiply (22) by $\psi_{\alpha_{1}, \beta_{1}, \gamma_{1}}(t)$ on both sides and integrate over $[0,1]$ and use (15), (16) to obtain

$$
\begin{equation*}
\int_{0}^{1} v(t) \psi_{\alpha_{1}, \beta_{1}, \gamma_{1}}(t) \mathrm{d} t \geqslant \frac{\lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}}+\varepsilon}{\lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}}} \int_{0}^{1} v(t) \psi_{\alpha_{1}, \beta_{1}, \gamma_{1}}(t) \mathrm{d} t-\frac{c_{1}}{\alpha(\alpha-1) \Gamma(\alpha)} \tag{23}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\int_{0}^{1} v(t) \psi_{\alpha_{1}, \beta_{1}, \gamma_{1}}(t) \mathrm{d} t \leqslant \frac{\varepsilon^{-1} \lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}} c_{1}}{\alpha(\alpha-1) \Gamma(\alpha)} . \tag{24}
\end{equation*}
$$

Consequently, Lemma 6 implies that

$$
\begin{equation*}
\omega_{\alpha_{1}, \beta_{1}, \gamma_{1}}\|v\| \leqslant \frac{\varepsilon^{-1} \lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}} c_{1}}{\alpha(\alpha-1) \Gamma(\alpha)} \tag{25}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\|v\| \leqslant \frac{\varepsilon^{-1} \omega_{\alpha_{1}, \beta_{1}, \gamma_{1}}^{-1} \lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}} c_{1}}{\alpha(\alpha-1) \Gamma(\alpha)} \tag{26}
\end{equation*}
$$

for all $v \in \mathscr{M}_{1}$. Taking $R>\sup \left\{\|v\|: v \in \mathscr{M}_{1}\right\}$, we obtain

$$
\begin{equation*}
v \not \equiv A v \quad \forall v \in \partial B_{R} \cap P . \tag{27}
\end{equation*}
$$

On the other hand, by (H3), there exist $r \in(0, R)$ and $\varepsilon \in\left(0, \lambda_{\alpha_{2}, \beta_{2}, \gamma_{2}}\right)$ such that

$$
\begin{equation*}
f\left(t, x_{1}, x_{2}, x_{3}\right) \leqslant\left(\lambda_{\alpha_{2}, \beta_{2}, \gamma_{2}}-\varepsilon\right)\left(\alpha_{2} x_{1}+\beta_{2} x_{2}+\gamma_{2} x_{3}\right) \tag{28}
\end{equation*}
$$

for all $x_{i} \in[0, r]$ and $t \in[0,1]$. This implies that

$$
\begin{align*}
(A v)(t) \leqslant & \left(\lambda_{\alpha_{2}, \beta_{2}, \gamma_{2}}-\varepsilon\right) \int_{0}^{1} G_{1}(t, s) \\
& \times\left(\alpha_{2} \int_{0}^{1} G_{1}(s, \tau) v(\tau) \mathrm{d} \tau+\beta_{2} \int_{0}^{1} G_{2}(s, \tau) v(\tau) \mathrm{d} \tau+\gamma_{2} v(s)\right) \mathrm{d} s \\
= & \left(\lambda_{\alpha_{2}, \beta_{2}, \gamma_{2}}-\varepsilon\right) \int_{0}^{1} G_{\alpha_{2}, \beta_{2}, \gamma_{2}}(t, s) v(s) \mathrm{d} s \tag{29}
\end{align*}
$$

for all $v \in \bar{B}_{r} \cap P$. Let $\mathscr{M}_{2}:=\left\{v \in \bar{B}_{r} \cap P: v \leqslant A v\right\}$. Now, we claim $\mathscr{M}_{2}=\{0\}$. Indeed, if $v \in \mathscr{M}_{2}$, by (29), we have

$$
v(t) \leqslant\left(\lambda_{\alpha_{2}, \beta_{2}, \gamma_{2}}-\varepsilon\right) \int_{0}^{1} G_{\alpha_{2}, \beta_{2}, \gamma_{2}}(t, s) v(s) \mathrm{d} s
$$

Multiply (22) by $\psi_{\alpha_{2}, \beta_{2}, \gamma_{2}}(t)$ on both sides and integrate over [0,1] and use (15), (16) to obtain

$$
\int_{0}^{1} v(t) \psi_{\alpha_{2}, \beta_{2}, \gamma_{2}}(t) \mathrm{d} t \leqslant\left(\lambda_{\alpha_{2}, \beta_{2}, \gamma_{2}}-\varepsilon\right) \lambda_{\alpha_{2}, \beta_{2}, \gamma_{2}}^{-1} \int_{0}^{1} v(t) \psi_{\alpha_{2}, \beta_{2}, \gamma_{2}}(t) \mathrm{d} t
$$

and thus $\int_{0}^{1} v(t) \psi_{\alpha_{2}, \beta_{2}, \gamma_{2}}(t) \mathrm{d} t=0$. Consequently, we have $v(t) \equiv 0$, i.e., $\mathscr{M}_{2}=\{0\}$. Therefore,

$$
\begin{equation*}
v \nless A v \quad \forall v \in \partial B_{r} \cap P . \tag{30}
\end{equation*}
$$

Now Lemma 7 indicates that the operator $A$ has at least one fixed point on $\left(B_{R} \backslash \bar{B}_{r}\right) \cap P$. That is, (1) has at least one positive solution. This completes the proof.

Theorem 2. Assume that (H1), (H4) and (H5) hold. Then (1) has at least one positive solution.

Proof. By (H4), there exist $r>0$ and $\varepsilon>0$ such that

$$
\begin{equation*}
f\left(t, x_{1}, x_{2}, x_{3}\right) \geqslant\left(\lambda_{\alpha_{3}, \beta_{3}, \gamma_{3}}+\varepsilon\right)\left(\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3}\right) \quad \forall x_{i} \in[0, r], t \in[0,1] . \tag{31}
\end{equation*}
$$

This implies

$$
\begin{equation*}
(A v)(t) \geqslant\left(\lambda_{\alpha_{3}, \beta_{3}, \gamma_{3}}+\varepsilon\right) \int_{0}^{1} G_{\alpha_{3}, \beta_{3}, \gamma_{3}}(t, s) v(s) \mathrm{d} s \tag{32}
\end{equation*}
$$

for all $v \in \bar{B}_{r} \cap P$. Let $\mathscr{M}_{3}:=\left\{v \in \bar{B}_{r} \cap P: v \geqslant A v\right\}$. We claim that $\mathscr{M}_{3}=\{0\}$. Indeed, if $v \in \mathscr{M}_{3}$, combining with (32), we find

$$
\begin{equation*}
v(t) \geqslant\left(\lambda_{\alpha_{3}, \beta_{3}, \gamma_{3}}+\varepsilon\right) \int_{0}^{1} G_{\alpha_{3}, \beta_{3}, \gamma_{3}}(t, s) v(s) \mathrm{d} s \tag{33}
\end{equation*}
$$

Multiply (33) by $\psi_{\alpha_{3}, \beta_{3}, \gamma_{3}}(t)$ on both sides and integrate over $[0,1]$ and use (15), (16) to obtain

$$
\int_{0}^{1} v(t) \psi_{\alpha_{3}, \beta_{3}, \gamma_{3}}(t) \mathrm{d} t \geqslant\left(\lambda_{\alpha_{3}, \beta_{3}, \gamma_{3}}+\varepsilon\right) \lambda_{\alpha_{3}, \beta_{3}, \gamma_{3}}^{-1} \int_{0}^{1} v(t) \psi_{\alpha_{3}, \beta_{3}, \gamma_{3}}(t) \mathrm{d} t
$$

and thus $\int_{0}^{1} v(t) \psi_{\alpha_{3}, \beta_{3}, \gamma_{3}}(t) \mathrm{d} t=0$. Hence, we see $v(t) \equiv 0$, i.e., $\mathscr{M}_{3}=\{0\}$. Consequently,

$$
\begin{equation*}
v \nRightarrow A v \quad \forall v \in \partial B_{r} \cap P . \tag{34}
\end{equation*}
$$

In addition, by (H5), there exist $\varepsilon \in\left(0, \lambda_{\alpha_{4}, \beta_{4}, \gamma_{4}}\right)$ and $c_{2}>0$ such that

$$
\begin{equation*}
f\left(t, x_{1}, x_{2}, x_{3}\right) \leqslant\left(\lambda_{\alpha_{4}, \beta_{4}, \gamma_{4}}-\varepsilon\right)\left(\alpha_{4} x_{1}+\beta_{4} x_{2}+\gamma_{4} x_{3}\right)+c_{2} \quad \forall x_{i} \geqslant 0, t \in[0,1] . \tag{35}
\end{equation*}
$$

Let $\mathscr{M}_{4}:=\{v \in P: v \leqslant A v\}$. We shall prove that $\mathscr{M}_{4}$ is bounded in $P$. Indeed, if $v \in \mathscr{M}_{4}$, then we have

$$
\begin{equation*}
v(t) \leqslant\left(\lambda_{\alpha_{4}, \beta_{4}, \gamma_{4}}-\varepsilon\right) \int_{0}^{1} G_{\alpha_{4}, \beta_{4}, \gamma_{4}}(t, s) v(s) \mathrm{d} s+\frac{c_{2}}{\alpha(\alpha-1) \Gamma(\alpha)} . \tag{36}
\end{equation*}
$$

Multiply (36) by $\psi_{\alpha_{4}, \beta_{4}, \gamma_{4}}(t)$ on both sides and integrate over $[0,1]$ and use (15), (16) to obtain

$$
\int_{0}^{1} v(t) \psi_{\alpha_{4}, \beta_{4}, \gamma_{4}}(t) \mathrm{d} t \leqslant\left(\lambda_{\alpha_{4}, \beta_{4}, \gamma_{4}}-\varepsilon\right) \lambda_{\alpha_{4}, \beta_{4}, \gamma_{4}}^{-1} \int_{0}^{1} v(t) \psi_{\alpha_{4}, \beta_{4}, \gamma_{4}}(t) \mathrm{d} t+\frac{c_{2}}{\alpha(\alpha-1) \Gamma(\alpha)}
$$

and then

$$
\int_{0}^{1} v(t) \psi_{\alpha_{4}, \beta_{4}, \gamma_{4}}(t) \mathrm{d} t \leqslant \frac{\varepsilon^{-1} \lambda_{\alpha_{4}, \beta_{4}, \gamma_{4} c_{2}}}{\alpha(\alpha-1) \Gamma(\alpha)} .
$$

It follows from Lemma 6 that

$$
\begin{equation*}
\|v\| \leqslant \frac{\varepsilon^{-1} \omega_{\alpha_{4}, \beta_{4}, \gamma_{4}}^{-1} \lambda_{\alpha_{4}, \beta_{4}, \gamma_{4} c_{2}}}{\alpha(\alpha-1) \Gamma(\alpha)} \tag{37}
\end{equation*}
$$

for all $v \in \mathscr{M}_{4}$. Choosing $R>\sup \left\{\|v\|: v \in \mathscr{M}_{4}\right\}$ and $R>r$, we have

$$
\begin{equation*}
v \nless A v \quad \forall v \in \partial B_{R} \cap P . \tag{38}
\end{equation*}
$$

Now Lemma 7 implies that $A$ has at least one fixed point on $\left(B_{R} \backslash \bar{B}_{r}\right) \cap P$. Equivalently, (1) has at least one positive solution. This completes the proof.

### 3.2 Uniqueness of positive solutions

In order to obtain our main results in this subsection, we first offer some lemmas. From now on, we always assume that (H1)' holds.

Lemma 9. If $v(t) \in C[0,1]$ is a positive fixed point of $A$ in (12), then there exist two positive constants $a_{v}$ and $b_{v}$ such that $a_{v} \rho(t) \leqslant v(t) \leqslant b_{v} \rho(t)$, where $\rho(t)=$ $\int_{0}^{1} G_{1}(t, s) \mathrm{d} s$.
Proof. The continuity of $G_{1}, G_{2}$ and $v$ implies that there exists $M>0$ such that $|v(t)| \leqslant$ $M$ and $\left|\int_{0}^{1} G_{i}(t, s) v(s) \mathrm{d} s\right| \leqslant M$ for all $t \in[0,1]$. Taking

$$
\begin{aligned}
& a_{v}=\min _{\left(t, x_{1}, x_{2}, x_{3}\right) \in[0,1] \times[0, M]^{3}} f\left(t, x_{1}, x_{2}, x_{3}\right)>0, \\
& b_{v}=\max _{\left(t, x_{1}, x_{2}, x_{3}\right) \in[0,1] \times[0, M]^{3}} f\left(t, x_{1}, x_{2}, x_{3}\right)>0 .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
a_{v} \rho(t) & \leqslant v(t)=(A v)(t) \\
& =\int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) v(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) v(\tau) \mathrm{d} \tau, v(s)\right) \mathrm{d} s \\
& \leqslant b_{v} \rho(t)
\end{aligned}
$$

This completes the proof.
Lemma 10. Suppose that $(\mathrm{H} 1)^{\prime}$, (H4)-(H7) hold. Then the operator $A$ has exactly one positive fixed point.
Proof. By Theorem 2, $A$ has at least one positive fixed point. It then remains to prove that $A$ has at most one positive fixed point. Indeed, if $v_{1}$ and $v_{2}$ are two positive fixed points of $A$, then

$$
v_{i}(t)=\int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) v_{i}(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) v_{i}(\tau) \mathrm{d} \tau, v_{i}(s)\right) \mathrm{d} s
$$

where $i=1,2$. By Lemma 9 , there exist four positive numbers $a_{i}, b_{i}$ for which $a_{i} \rho(t) \leqslant$ $v_{i}(t) \leqslant b_{i} \rho(t)$ for $t \in[0,1]$ and $i=1,2$. Clearly, $v_{2} \geqslant\left(a_{2} / b_{1}\right) v_{1}$.

Let $\gamma_{0}:=\sup \left\{\gamma>0: v_{2} \geqslant \gamma v_{1}\right\}(\neq \emptyset)$. Then $\gamma_{0}>0$ and $v_{2} \geqslant \gamma_{0} v_{1}$. We shall claim that $\gamma_{0} \geqslant 1$. Suppose the contrary. Then $\gamma_{0}<1$ and

$$
\begin{aligned}
v_{2}(t) & \geqslant \int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) \gamma_{0} v_{1}(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) \gamma_{0} v_{1}(\tau) \mathrm{d} \tau, \gamma_{0} v_{1}(s)\right) \mathrm{d} s \\
& =\int_{0}^{1} G_{1}(t, s) g(s) \mathrm{d} s+\gamma_{0}^{\mu} v_{1}(t)
\end{aligned}
$$

where

$$
\begin{aligned}
g(s)= & f\left(s, \int_{0}^{1} G_{1}(s, \tau) \gamma_{0} v_{1}(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) \gamma_{0} v_{1}(\tau) \mathrm{d} \tau, \gamma_{0} v_{1}(s)\right) \\
& -\gamma_{0}^{\mu} f\left(s, \int_{0}^{1} G_{1}(s, \tau) v_{1}(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) v_{1}(\tau) \mathrm{d} \tau, v_{1}(s)\right)
\end{aligned}
$$

(H6) implies that $g \in P \backslash\{0\}$ and there is a $a_{3}>0$ such that $\int_{0}^{1} G_{1}(t, s) g(s) \mathrm{d} s \geqslant a_{3} \rho(t)$ by Lemma 9. Consequently, $v_{2}(t) \geqslant a_{3} \rho(t)+\gamma_{0}^{\mu} v_{1}(t) \geqslant\left(a_{3} / b_{1}\right) v_{1}(t)+\gamma_{0} v_{1}(t)$, which contradicts the definition of $\gamma_{0}$. As a result, $\gamma_{0} \geqslant 1$ and $v_{2} \geqslant v_{1}$. Similarly, $v_{1} \geqslant v_{2}$. Hence, $v_{1}=v_{2}$. This completes the proof.

Theorem 3. Let all the conditions in Lemma 10 hold and $v^{*}(t)$ be the unique positive solution of $A$. Then for any $v_{0} \in P \backslash\{0\}$, we have $A^{n} v_{0} \rightarrow v^{*}(n \rightarrow \infty)$ uniformly in $t \in[0,1]$.
Proof. Clearly, $\rho(t)=\int_{0}^{1} G_{1}(t, s) \mathrm{d} s$ is a bounded function on [ 0,1$]$. Then by Lemma 9, there exist $a_{\rho}, b_{\rho}>0$ such that

$$
\begin{aligned}
a_{\rho} \rho(t) & \leqslant \int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) \rho(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) \rho(\tau) \mathrm{d} \tau, \rho(s)\right) \mathrm{d} s \\
& :=\eta(t) \leqslant b_{\rho} \rho(t) .
\end{aligned}
$$

Let $\beta_{1}(t)=\delta \eta(t)$ with $0<\delta<\min \left\{1 / b_{\rho}, a_{\rho}^{\mu /(1-\mu}\right\}$. Then we can choose $0<\varepsilon<$ $\min \left\{1, a_{\rho}\right\}$, and

$$
\begin{aligned}
& \left(A \varepsilon \beta_{1}\right)(t) \\
& =\int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) \varepsilon \beta_{1}(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) \varepsilon \beta_{1}(\tau) \mathrm{d} \tau, \varepsilon \beta_{1}(s)\right) \mathrm{d} s \\
& = \\
& \quad \int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) \frac{\varepsilon \beta_{1}(\tau)}{\rho(\tau)} \rho(\tau) \mathrm{d} \tau\right. \\
& \left.\quad \int_{0}^{1} G_{2}(s, \tau) \frac{\varepsilon \beta_{1}(\tau)}{\rho(\tau)} \rho(\tau) \mathrm{d} \tau, \frac{\varepsilon \beta_{1}(s)}{\rho(s)} \rho(s)\right) \mathrm{d} s \\
& \geqslant
\end{aligned}
$$

Thus we have $A \varepsilon \beta_{1} \geqslant \varepsilon \beta_{1}$. On the other hand, let $\beta_{2}(t)=\xi \eta(t)$ with $\xi>\max \left\{1 / a_{\rho}\right.$, $\left.b_{\rho}^{\mu /(1-\mu)}\right\}$. Taking $\bar{\varepsilon}>\max \left\{1, b_{\rho}\right\}$, we find

$$
\begin{aligned}
\bar{\varepsilon} \beta_{2}(t) \geqslant & \bar{\varepsilon}^{\mu} \xi \eta(t) \\
= & \bar{\varepsilon}^{\mu} \xi \int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) \rho(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) \rho(\tau) \mathrm{d} \tau, \rho(s)\right) \mathrm{d} s \\
\geqslant & \bar{\varepsilon}^{\mu} \xi \int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} \frac{G_{1}(s, \tau) \rho(\tau) \bar{\varepsilon} \beta_{2}(\tau)}{\bar{\varepsilon} \beta_{2}(\tau)} \mathrm{d} \tau\right. \\
& \left.\int_{0}^{1} \frac{G_{2}(s, \tau) \rho(\tau) \bar{\varepsilon} \beta_{2}(\tau)}{\bar{\varepsilon} \beta_{2}(\tau)} \mathrm{d} \tau, \frac{\rho(s) \bar{\varepsilon} \beta_{2}(s)}{\bar{\varepsilon} \beta_{2}(s)}\right) \mathrm{d} s
\end{aligned}
$$

$$
\begin{aligned}
\geqslant & \bar{\varepsilon}^{\mu} \xi \bar{\varepsilon}^{-\mu}\left(\xi b_{\rho}\right)^{-\mu} \\
& \times \int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) \bar{\varepsilon} \beta_{2}(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) \bar{\varepsilon} \beta_{2}(\tau) \mathrm{d} \tau, \bar{\varepsilon} \beta_{2}(s)\right) \mathrm{d} s \\
\geqslant & \int_{0}^{1} G_{1}(t, s) f\left(s, \int_{0}^{1} G_{1}(s, \tau) \bar{\varepsilon} \beta_{2}(\tau) \mathrm{d} \tau, \int_{0}^{1} G_{2}(s, \tau) \bar{\varepsilon} \beta_{2}(\tau) \mathrm{d} \tau, \bar{\varepsilon} \beta_{2}(s)\right) \mathrm{d} s \\
= & \left(A \bar{\varepsilon} \beta_{2}\right)(t)
\end{aligned}
$$

Hence, $A \bar{\varepsilon} \beta_{2} \leqslant \bar{\varepsilon} \beta_{2}$.
(H7) implies that $A$ is an increasing operator. It follows from Lemma 8 that $A$ has the smallest fixed point $v_{* *}$ and the largest fixed point $v^{* *}$ in $\left[\varepsilon \beta_{1}, \bar{\varepsilon} \beta_{2}\right]$, respectively. Based on this, we first show $v^{*} \in\left[\varepsilon \beta_{1}, \bar{\varepsilon} \beta_{2}\right]$. Indeed, for all $n \in \mathbb{N}_{+}$, we have

$$
\begin{equation*}
\varepsilon \beta_{1} \leqslant A^{n} \varepsilon \beta_{1} \leqslant A^{n} \bar{\varepsilon} \beta_{2} \leqslant \bar{\varepsilon} \beta_{2} . \tag{39}
\end{equation*}
$$

Let $n \rightarrow \infty$ in (39), we see $\varepsilon \beta_{1} \leqslant v_{* *} \leqslant v^{*} \leqslant v^{* *} \leqslant \bar{\varepsilon} \beta_{2}$. For all $\varepsilon \beta_{1} \leqslant v_{0} \leqslant \bar{\varepsilon} \beta_{2}$ and $n \in \mathbb{N}_{+}$, we have $v_{0} \in P \backslash\{0\}$ and

$$
\begin{equation*}
A^{n} \varepsilon \beta_{1} \leqslant A^{n} v_{0}=v_{n} \leqslant A^{n} \bar{\varepsilon} \beta_{2} . \tag{40}
\end{equation*}
$$

By Theorem 2 and Lemma 10, we know that $A$ has only a positive fixed point, i.e., $\lim _{n \rightarrow \infty} A^{n} \varepsilon \beta_{1}=\lim _{n \rightarrow \infty} A^{n} \bar{\varepsilon} \beta_{2}=v^{*}$, and thus $\lim _{n \rightarrow \infty} A^{n} v_{0} \rightarrow v^{*}$. This completes the proof.

To facilitate computations for the following examples, let $\alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}, \gamma_{1}=\gamma_{2}$, $\alpha_{3}=\alpha_{4}, \beta_{3}=\beta_{4}, \gamma_{3}=\gamma_{4}$ in (H2)-(H5).

Example 1. Let $\alpha=2.5, \alpha_{1}=\Gamma^{2}(\alpha)=9 \pi / 16 \approx 1.77, \beta_{1}=\Gamma(2 \alpha)=24, \gamma_{1}=$ $\Gamma(\alpha)=3 \sqrt{\pi} / 4 \approx 1.33$. Then by Lemma 5 , we get $0.23 \leqslant r\left(L_{\alpha_{1}, \beta_{1}, \gamma_{1}}\right) \leqslant 2.47$, and $0.40 \leqslant \lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}} \leqslant 4.35$.

Let

$$
f\left(t, x_{1}, x_{2}, x_{3}\right)=\frac{1}{4}\left|\sin \left(\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3}\right)\right|+\left(\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3}\right)^{2}
$$

Then

$$
\begin{aligned}
\liminf _{\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3} \rightarrow+\infty} & \frac{\frac{1}{4}\left|\sin \left(\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3}\right)\right|+\left(\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3}\right)^{2}}{\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3}} \\
=\infty>\lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}}, &
\end{aligned}
$$

and

$$
\begin{aligned}
& \quad \limsup _{\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3} \rightarrow 0^{+}} \frac{\frac{1}{4}\left|\sin \left(\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3}\right)\right|+\left(\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3}\right)^{2}}{\alpha_{1} x_{1}+\beta_{1} x_{2}+\gamma_{1} x_{3}} \\
& \quad=\frac{1}{4}<\lambda_{\alpha_{1}, \beta_{1}, \gamma_{1}}
\end{aligned}
$$

uniformly for $t \in[0,1]$. All conditions of Theorem 1 hold. Therefore, (1) has at least one positive solution.
Example 2. Let $\alpha=2.5, \alpha_{3}=\Gamma^{2}(\alpha)=9 \pi / 16 \approx 1.77, \beta_{3}=\Gamma(2 \alpha-2)=2, \gamma_{3}=$ $\Gamma(\alpha-1)=\sqrt{\pi} / 2 \approx 0.89$. Then from Lemma 5 we have $0.10 \leqslant r\left(L_{\alpha_{3}, \beta_{3}, \gamma_{3}}\right) \leqslant 0.43$, and $2.33 \leqslant \lambda_{\alpha_{3}, \beta_{3}, \gamma_{3}} \leqslant 10$.

Let

$$
f\left(t, x_{1}, x_{2}, x_{3}\right)=\mathrm{e}^{t}+\ln \left(1+\left(\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3}\right)\right)
$$

Then

$$
\liminf _{\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3} \rightarrow 0^{+}} \frac{\mathrm{e}^{t}+\ln \left(1+\left(\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3}\right)\right)}{\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3}}=\infty>\lambda_{\alpha_{3}, \beta_{3}, \gamma_{3}}
$$

and

$$
\limsup _{\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3} \rightarrow+\infty} \frac{\mathrm{e}^{t}+\ln \left(1+\left(\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3}\right)\right)}{\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3}}=0<\lambda_{\alpha_{3}, \beta_{3}, \gamma_{3}}
$$

uniformly for $t \in[0,1]$. Hence, (H4), (H5) hold, and Theorem 2 implies that (1) has at least one positive solution.
Example 3. Let $\alpha=2.5, \alpha_{3}=\Gamma^{2}(2 \alpha-2)=4, \beta_{3}=\gamma_{3}=\Gamma(\alpha-2)=\sqrt{\pi} \approx 1.77$. By Lemma 5, we can obtain $\lambda_{\alpha_{3}, \beta_{3}, \gamma_{3}} \in[1.48,4.90]$.

Let

$$
f\left(t, x_{1}, x_{2}, x_{3}\right)=e^{t}+\sqrt{\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3}}
$$

Similar with Example 2, we can show (H4) and (H5) hold. On the other hand, for any $\kappa \in(0,1)$, we have $\sqrt{\kappa} \leqslant 1$ and

$$
\begin{aligned}
& \sqrt{\kappa}\left[\mathrm{e}^{t}+\sqrt{\alpha_{3} x_{1}+\beta_{3} x_{2}+\gamma_{3} x_{3}}\right] \\
& \quad=\sqrt{\kappa} \mathrm{e}^{t}+\sqrt{\alpha_{3} \kappa x_{1}+\beta_{3} \kappa x_{2}+\gamma_{3} \kappa x_{3}} \leqslant \mathrm{e}^{t}+\sqrt{\alpha_{3} \kappa x_{1}+\beta_{3} \kappa x_{2}+\gamma_{3} \kappa x_{3}} .
\end{aligned}
$$

As a result, (H6) is also satisfied. In addition, (H1)' and (H7) automatically hold. Hence, from Theorem 3, (1) has a unique positive solution.

## References

1. Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311:495-505, 2005.
2. M. El-Shahed, Positive solutions for boundary value problems of nonlinear fractional differential equation, Abstr. Appl. Anal., 2007, Article ID 10368, 2007.
3. D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Notes Rep. Math. Sci. Eng., Vol. 5, Academic Press, San Diego, CA, 1988.
4. W. Jiang, Eigenvalue interval for multi-point boundary value problems of fractional differential equations, Appl. Math. Comput., 219:4570-4575, 2013.
5. D. Jiang, C. Yuan, The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear Anal., Theory Methods Appl., Ser. A, 72:710-719, 2010.
6. W. Jiang, B. Wang, Z. Wang, The existence of positive solutions for multi-point boundary value problems of fractional differential equations, Physics Procedia, 25:958-964, 2012.
7. A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., Vol. 204, Elsevier, Amsterdam, 2006.
8. M. Krasnoselski, P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin, Heidelberg, 1984.
9. M. Krein, M. Rutman, Linear operators leaving invariant a cone in a Banach space, Trans. Am. Math. Soc., 10:199-325, 1962.
10. I. Podlubny, Fractional Differential Equations, Math. Sci. Eng., Vol. 198, Academic Press, San Diego, CA, 1999.
11. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon (1993).
12. Y. Wang, L. Liu, Y. Wu, Positive solutions for a nonlocal fractional differential equation, Nonlinear Anal., Theory Methods Appl., 74:3599-3605, 2011.
13. J. Xu, Z. Yang, Multiple positive solutions of a singular fractional boundary value problem, Appl. Math. E-Notes, 10:259-267, 2010.
14. J. Xu, Z. Wei, Y. Ding, Positive solutions for a boundary value problem with RiemannLiouville fractional derivative, Lith. Math. J., 52(4):462-476, 2012.
15. J. Xu, Z. Wei, W. Dong, Uniqueness of positive solutions for a class of fractional boundary value problem, Appl. Math. Lett., 25:590-593, 2012.

[^0]:    *This research was supported by the NNSF-China (11371117), Shandong Provincial Natural Science Foundation (ZR2013AM009).

