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Abstract. A control system for set-point control of microbial cultivation process parameters is
developed, in which a tendency model is applied for controller adaptation to process nonlinearity
and time-varying operating conditions. The tendency model is updated on-line and introduced into
control algorithm for prediction of steady-state control action and returning of feedback controller.
The control system was tested for controlling dissolved oxygen concentration in batch operating
mode bioreactor under extreme operating conditions. In simulation experiments, the control system
demonstrates fast adaptation, robust behaviour and significant improvement in control performance
compared to that of fixed gain controller.

Keywords: adaptive control, PI control, mathematical model, microbial cultivation process,
dissolved oxygen.

1 Introduction

Maintaining in bioreactors a specific state of microorganisms’ culture is commonly imple-
mented by set-point control of key technological parameters, in particular, concentrations
of feeding substrates. Accurate control of technological parameters reduces the process
deviations that often result in lost or poor product quality. However, the set-point control
in batch operating mode bioreactors is not a trivial control problem due to nonlinearity
and nonstationarity of bioprocesses. Because of significant variations in process dynamics
over the course of microbial cultivation, the ordinary control systems with fixed gain
linear controllers are not adequate to cope with the accurate control task.

Various approaches have been proposed for controlling microbial cultivation process
parameters under time-varying operating conditions. The controller gain scheduling tech-
nique has been applied for design of batch bioreactor controllers with the oxygen uptake
rate (OUR) as scheduling variable [4]. The control systems of pH with the carbon diox-
ide evolution rate (CER) as scheduling variable [8] and dissolved oxygen concentration
(DOC) with OUR as scheduling variable [12] have been applied in recombinant protein
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production processes. Adaptation of PI controller parameters in DOC control system
based on using a first principle model is shown [13]. Authors [11] developed DOC control
system, in which the PID controller gain is adapted using a heuristic rule based on super-
vision in a moving window of three performance indices: the output error covariance,
the average value of error, and the input covariance. Authors [6] applied the self-tuning
generalized minimum variance controller and the autoregressive moving average with
exogenous input (ARMAX) model for controlling DOC in batch bioreactor. Authors [1]
presented a feed forward-feedback controller designed to keep glucose concentration
at fixed set-point during fed-batch process of recombinant protein production. In the
feed-forward part of the controller an extended Kalman filter is introduced to estimate
the process variables that are used for calculation of the feed-forward control action.
Authors [14] developed control systems of pH and DOC based on using artificial neural
network (ANN) models. The forward ANN is trained off-line to predict dynamics of the
controlled process and the inverse ANN is used as a direct feedback controller. Authors
[9] reported application of model-based geometric control algorithm for controlling DOC
in bioreactors. The algorithm incorporates two components – an estimator that predicts the
system states and parameters one time step ahead, and a controller that uses the predicted
states to compute the control action minimizing the predicted error. Application of a non-
linear model predictive controller for controlling glucose concentration in a fed-batch
bioreactor is presented in [5]. The control algorithm includes solving the model-based
optimization problem at each time discretization step. Authors [3] proposed a cascade
control system for controlling the DOC in fed-batch fungal cultivation process, which
incorporates auxiliary measurements (OUR, CER and volume) to improve the control
performance. In the control system, the substrate feed rate is used as manipulated variable
and the inner control loop controls the OUR. In [17], an adaptive control system of
fed-batch bioreactor is presented, which realizes a heuristic adaptation of PID controller
parameters based on analysis of the control error. The adaptation, however, is available if
the control error exceeds particular level.

Capability of the proposed control systems in many cases is investigated and illus-
trated by experiments carried out at typical cultivation process conditions with slow rate
of process state change. However, testing of the control system performance under ex-
treme operating conditions is required to better evaluate and compare advantages and
shortcomings of various approaches.

The reasoned sight is that better performance can be expected by using control sys-
tems, which exploit more available information about controlled process. Thus, a relevant
objective persists to develop and improve universal and reliable control systems for ac-
curate control of cultivation process parameters that employ a priori knowledge of the
controlled process and available on-line measurements. This objective is consistent with
the Process Analytical Technology (PAT) initiative [10] and the efforts of steering the PAT
initiative towards realistic and attainable industrial applications.

In this contribution, an adaptive control system is developed based on exploiting
a tendency model of the cultivation process dynamics and on-line measurements of pro-
cess variables applied for updating the model-based control algorithm. Capability of the
control system is demonstrated by computer simulation of the system performance for
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controlling the DOC in batch operating mode bioreactor under extreme conditions. The
results are compared with those of a standard PI controller and the gain scheduling-based
adaptive control system developed for the DOC control in [12].

2 Development of adaptive control system

Development of the adaptive control algorithm is based on an assumption that the basic
dynamics of controlled process can be described by a simple mass balance model

V
dc

dt
= −R+Q, (1)

where c is concentration of desired substance (controlled variable); V is working vol-
ume of bioreactor; R and Q are consumption and compensation rates of the substance,
respectively; and t is time.

The consumption rate R, along with the other factors, commonly depends on a level
of the controlled substance concentration. At higher levels, the controlled substance does
not influence the consumption rate. At lower levels, it becomes a limiting factor of mi-
croorganisms’ culture growth and thus decreases the consumption rate. Dependence of
the rate R on the concentration c is usually described by the Monod model [16]

R(c) = R0
c

c+ kc
, (2)

where R0 is the substance consumption rate under unlimited (with respect to controlled
variable) conditions, kc is a constant specific to particular substance and culture. Appli-
cation of the model in control algorithm supposes on-line estimation of R.

The compensation rate Q is related with the control variable u by a particular func-
tional relationship Q = Q(u, c,x), where x is a vector of measurable process variables.

With the above assumptions, the state model (1) takes the following structure:

V
dc

dt
= −R(c) +Q(u, c,x). (3)

Model (3), although limited, by updating it on-line through continuous incorporation
of new process data (u(tk), c(tk),x(tk), tk is the updating time), is able to reveal tenden-
cies of the process dynamics variations.

Control action that holds the controlled variable at desired set-point (c(tk) = cset(tk),
(dc/dt)t=tk = 0) has to satisfy the steady-state condition

−R(tk) +Q
(
u, sset(tk),x(tk)

)
= 0, (4)

so, the stabilizing control action (u0) at time point tk can be calculated from equation (4).
The control action u0 based on condition (4) is essentially a feed-forward action that
takes into account variations of process variables. However, the calculated value u0 is
unavoidably corrupted by the model inaccuracy and the measurement errors. An error
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of the calculated control action u0 can be eliminated by feedback controller adjusted to
operate in the vicinity of current state point.

Linearization of (3) around the process state point at time tk with respect to variables
c and u leads to the following equation:

V (tk)
dc

dt
∼=
[
−R(c) +Q(u, c,x)

]
t=tk

+

[
−∂R(c)

∂c
+
∂Q(u, c,x)

∂c

]
t=tk

∆c

+

[
∂Q(u, c,x)

∂u

]
t=tk

∆u, (5)

where ∆c, ∆u denote small deviations of c and u form the current state point. Parameters
of the linear equation (3) at time tk are calculated using measured values of process
variables c(tk), u(tk), x(tk) and the indirectly estimated value R(tk), which is usually
calculated from the measurements of relevant variables.

In the vicinity of process state at time point tk

V (tk)

(
dc

dt

)
t=tk

=
[
−R(c) +Q(u, c,x)

]
t=tk

, (6)

the process dynamics can be described by linear differential equation

V (tk)

[
dc

dt
−
(

dc

dt

)
t=tk

]
= V (tk)

d∆c

dt
∼=
(
∂R

∂c
+
∂Q

∂c

)
t=tk

∆c+

(
∂Q

∂u

)
t=tk

∆u (7)

or by a first-order transfer function model

G∆c/∆u(s) =
∆c(s)

∆u(s)
=

K∆c/∆u(tk)

T∆c/∆u(tk)s+ 1
, (8)

where

K∆c/∆u(tk) =

[
−∂Q
∂u

/(
−∂R
∂c

+
∂Q

∂c

)]
t=tk

, (9)

T∆c/∆u(tk) =

[
−V
/(

−∂R
∂c

+
∂Q

∂c

)]
t=tk

, (10)

s is the Laplace operator; ∆c(s), ∆u(s) are the Laplace transforms of ∆c and ∆u;
K∆c/∆u(tk), T∆c/∆u(tk) are gain coefficient and time constant at time point tk, respec-
tively, u0(tk) is value of control variable satisfying condition (4).

Values of the dynamic parameters K∆c/∆u(tk) and T∆c/∆u(tk) depend on process
state and can vary at each time point, therefore, adaptation of process controller is needful
to cope with the process dynamics variations.

Adaptation of the feedback controller is performed with the reference to the resultant
transfer function model of the controlled process, in which along with the process dy-
namics, the time-invariant dynamics of the control system elements (measurement device,
etc.) is taken into account. The model is updated on-line with the measured or estimated
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Figure 1. Adaptive set-point control system.

values of process variables (cset(tk), u0(tk), x(tk), R(tk)) and then reduced to a typical
structure transfer function model in order to directly apply well-developed PI and PID
controller tuning rules for simple dynamic models [2, 16]. In this way, the controller
parameters are recalculated on-line at each time discretization point in accordance with
the estimated values of the dynamic model parameters. The above controller adaptation
procedure safeguards against instability of the closed-loop control system as the tuning
rules guarantee a sufficient stability margin.

The adaptive set-point control can be implemented by the control system presented in
Fig. 1.

Substantial advantage of the presented control system is instantaneous adaptation of
process controller to time-varying operating conditions.

3 Application example: Control of dissolved oxygen concentration
in batch operating mode bioreactor

Dissolved oxygen concentration (DOC) is one of the most important technological param-
eters of aerobic cultivation processes influencing physiological state of microorganisms’
culture and production of desired product. Control of DOC in bioreactors is performed by
manipulating stirring speed and (or) air flow rate. In the application example, the proposed
control system (Fig. 1) is adopted for set-point control of DOC in batch operating mode
bioreactor. The basic dynamics of the DOC control process in bioreactor can be described
by a tendency model (1), in which

R = OUR, (11)

Q(u, c,x) = OTR = k1KLa · V (c∗ − c), (12)

where c is DOC, %; c∗ is saturation value of DOC, %; KLa is volumetric oxygen transfer
coefficient from gas to liquid phase, s−1; OUR and OTR are oxygen uptake and transfer
rates, respectively, mmol s−1; V is volume of fermentation broth, L; k1 is proportionality
coefficient, k1 = 0.21 (100 · H), H is Henry’s constant, L mmol−1 and t is time, s.

Nonlinear Anal. Model. Control, 21(2):153–165
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The oxygen transfer coefficient depends on bioreactor design and the properties of
cultural liquid. Oxygen transfer correlations are generally power-law correlations of the
form [16]

KLa = αuβqγ , (13)

where u is stirring speed (control action) s−1; q is air supply rate, L s−1; α, β, γ are
parameters estimated in advance from the batch culture experiments.

The oxygen uptake rate is modelled by the relationship

OUR = OUR0
c

c+ kc
, (14)

where parameter kc is estimated from early experiments.
Assuming quasi-steady state conditions of DOC at moving window ∆T (dc/dt ≈ 0,

∆T is length of moving window), the OTR and OUR are in equilibrium and can be
indirectly estimated on-line using measurements of air supply rate and oxygen percentage
in exhaust gas [7]:

OUR ≈ OTR = k2q(21 − yO2
), (15)

where q is mean value of the air supply rate in moving window, L/s; yO2
is mean value of

oxygen percentage in exhaust gas in moving window, %; k2 is proportionality coefficient,
k2 = 1/100 · vmol, vmol is volume of mmol of gas, L mmol−1.

The saturation value of DOC is estimated using measurements of oxygen percentage
in exhaust gas:

c∗ = 100
yO2

21
. (16)

3.1 Development of control algorithm

With the estimated and measured values of process variables, condition (4) for calculation
of the steady-state control action u0 at time point tk is as follows:

−OUR(tk) + k1αe

[
u0(tk)

]βe
[
q(tk)

]γe
V
[
c∗(tk) − cset(tk)

]
= 0, (17)

u0(tk) =

{
OUR(tk)

k1αe[q(tk)]γeV [c∗(tk) − cset(tk)]

}1/βe

, (18)

where cset is set-point value of DOC, %; αe, βe, γe are pre-estimated values of the
tendency model parameters α, β, and γ, respectively.

The gain coefficient and the time constant of the process transfer function (8) are
calculated from equations (9) and (10), using the functional relationships (2), (11)–(13).
After some algebraic manipulations, the transfer function parameters can be written as

K∆c/∆u(tk) =
βe

u0(tk)A(tk)
, (19)

T∆c/∆u(tk) =
k1V

OUR(tk)A(tk)
, (20)
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A(tk) =
kce

c(tk)[c(tk) + kce]
+

1

c∗(tk) − c(tk)
, (21)

where kce is pre-estimated value of the tendency model parameter kc; c∗(tk) is satu-
ration value of DOC estimated from the oxygen percentage in exhaust gas (16); c(tk)
is measured value of DOC obtained from the dissolved oxygen (DO) electrode. The
DOC control system performance is highly influenced by dynamical characteristic of
DO electrode, which supplies with the feedback signal. Dynamics of the DO electrode
is suitably described by a first-order plus time delay transfer function

Gcel/c(s) =
cel(s)

c(s)
=

exp(−τels)

Tels+ 1
, (22)

where cel is output signal of the DO electrode, %; Tel and τel are time constant and time
delay of DO electrode, respectively, s.

In the presented investigation, dynamics of the motor-stirrer system is assumed to be
fast compared to that of DO electrode, so it is not taken into account in the resultant
transfer function model. Under necessity of considering the dynamics of motor-stirrer
system (in large-scale bioreactors), the resultant transfer function should be extended with
a required term.

By linking the transfer functions of the controlled process (8), (19)–(21) and the DO
electrode (22), the resultant transfer function is obtained that provides with the relevant
information for process control:

G∆cel/∆u(s) = G∆cel/c(s) ·G∆c/∆u(s)

=
K∆c/∆u(tk) exp(−τels)

(T∆c/∆u(tk)s+ 1)(Tels+ 1)
. (23)

The transfer function (23) parameters K∆c/∆u and T∆c/∆u are estimated at each
time discretization point using the functional relationships (19)–(21), respectively, the
estimated value of OUR(tk), the measured values of process variables cset(tk), q(tk),
and the control action value u0(tk) calculated from equation (18). With the updated pa-
rametersK∆c/∆u and T∆c/∆u, the transfer function (23) captures time-varying dynamics
of the controlled process.

In order to apply controller tuning rules, developed for a first-order plus time delay
(FOPTD) model, the process model (23) is approximated by the FOPTD model

G(s) =
K∆c/∆u(tk)

Tpr(tk)s+ 1
exp
(
−τpr(tk)

)
, (24)

in which Tpr(tk) and τpr(tk) are resultant time constant and resultant time delay of the
controlled process at time tk, respectively. The model parameters Tpr(tk) and τpr(tk) are
updated by fitting the FOPTD model (24) to the simulated step response of the process
model (23) at each sampling time. The Smith’s approximation [15] is applied for fitting
the FOPTD model.
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In the control system (Fig. 1), the adaptive feedback controller is realized using the
velocity form of a modified discrete PI control algorithm

u(tk) = u(tk−1) + ∆u(tk), (25)

∆u(tk) = Kc(tk)

{[
b(tk) +

∆t

Ti(tk)

]
cset(tk) − b(tk)cset(tk−1)

−
[
1 +

∆t

Ti(tk)

]
cel(tk) + cel(tk−1)

}
, (26)

where ∆u is an increment/decrement of stirring speed, s−1; Kc is controller gain coeffi-
cient, %−1s−1; Ti is controller integration constant, s; b is set-point weighting; ∆t is time
discretization step of control action, s; cel is measured value of DOC, %.

The controller parameters Kc(ti), Ti(ti), and b(ti) are recalculated at each sampling
instant using updated values of the FOPTD model parameters K∆c/∆u(tk), Tpr(tk),
τpr(tk) and tuning rules developed for the FOPTD model. In the application example,
the Kappa-Tau tuning rules for maximum sensitivity Ms = 2.0 [2] are applied:

Kc(tk) = 0.78
Tpr(tk)

K∆c/∆u(tk)τpr(tk)
exp
[
−4.1 · τ(tk) + 5.7 · τ2(tk)

]
, (27)

Ti(tk) = 0.79 · Tpr(tk) · exp
[
−1.4 · τ(tk) + 2.4 · τ2(tk)

]
, (28)

b(tk) = 0.44 · exp
[
0.78 · τ(tk) − 0.45 · τ2(tk)

]
, (29)

τ(tk) =
τpr(tk)

τpr(tk) + Tpr(tk)
. (30)

It should be stressed that the step set-point change in the control system causes step-
wise change of the control action u0 and simultaneously the control action of the feedback
controller. To obviate the double control action at the set-point change points, the calcu-
lated step change of u0 is subtracted from the total control action. This refinement ensures
good performance of the control system by tracking the set-point.

3.2 Simulation of the control system performance

Performance of the adaptive control system is investigated via computer simulation im-
plemented in Matlab/Simulink environment. In the simulation experiments, the controlled
process is modelled by a set of equations

dq

dt
=

1

Tq
(qset − q), (31)

du

dt
=

1

Tu
(uset − u), (32)
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dca
dt

= −OURv
ca

ca + kc
+ αuβqγ

(
yO2

H
− ca

)
, (33)

dyO2

dt
=

q

V

(
1

ε
− 1

)
(0.21 − yO2

) − αuβqγ
(

1

ε
− 1

)(
yO2

H
− ca

)
vmol, (34)

dael

dt
=

1

Tel1

(
100

caH

0.21
− ael

)
, (35)

dcel

dt
=

1

Tel2
(ael − cel), (36)

where qset is set value of air supply rate, L s−1; uset is set value of stirring speed (control
variable), s−1; yO2 is portion of oxygen in exhaust gas, –; OURv is volumetric oxygen
uptake rate unlimited by DOC, mmol L−1s−1; ca is DOC in absolute units, mmol L−1;
ael is auxiliary variable, %; cel is signal from DO electrode, %; H is Henry’s constant,
L mmol−1; vmol is volume of mmol of gas, L mmol−1); Tq, Tu, Tel1, Tel2 are time
constants of air supply system, motor-stirrer system, and DO electrode, respectively, s;
ε is gas holdup in the gas-liquid dispersion, –.

The model equations (31), (32) represent dynamics of air supply and stirring sys-
tems respectively, equations (33), (34) stand for mass balances on oxygen in liquid and
gaseous phases, respectively, and equations (35), (36) represent second-order dynamics
of DO electrode. Parameters of the model equations are taken from the ranges reported in
literature [16]. The parameter values are given in Table 1.

In the discrete PI control algorithm (25), (26), the sampling time ∆t = 0.2 s was used
throughout the control experiments.

The tendency model parameters that appear in the controller adaptation formulas
(18)–(23) are identified from early experiments. The parameters estimation errors affect
the control action calculation results, so, performance of the control system is investigated
taking into account possible inaccuracy of the predetermined parameter values. In the
simulation experiments, the tendency model parameter values deviate by 5–10% from
the process model parameter values given in Table 1: kce = 1.1%, αe = 0.0016, βe =
2.1, γe = 0.18. A second-order dynamics of the DO electrode (equations (35), (36)) is
approximated by the FOPTD model (22) with the parameter values Tel = 11 s, τel = 2 s.

In the control system simulation experiments, disturbances of the set-point and the
air supply rate step changes under time-varying oxygen uptake rate (load disturbance)
have been applied. Performance of the control system under simulated disturbances is
presented in Fig. 2. Step changes of the set-point (from 10 to 30% occurring at t = 1000 s,
from 30 to 50% occurring at t = 1750 s, from 50 to 20% occurring at t = 2500 s, and from

Table 1. Values of the model (31)–(36) parameters.

H = 0.7906 L mmol−1 V = 45 L
kc = 0.00265 mmol L−1 α = 0.0015
Tel1 = 10 s β = 2.0
Tel2 = 2 s ε = 0.15
Tq = 1 s γ = 0.2
Tu = 1 s vmol = 0.0224 L mmol−1

Nonlinear Anal. Model. Control, 21(2):153–165
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20 to 5% occurring at t = 3500 s) are presented by dotted lines in Fig. 2g, h. Step-changes
of the air supply rate (from 6 to 3 L s−1 occurring at t = 500 s, from 3 to 7 L s−1 occurring
at t = 3000 s, and from 7 to 1 L s−1 occurring at t = 4500 s) are shown in Fig. 2a.
Time profile of the OURv variation, presented in Fig. 2b, is chosen to simulate close to
realistic operating conditions at batch cultivation processes. Adaptation of the controller
parameters Kc, Ti, b to the time-varying operating conditions is demonstrated by the
parameter time trajectories in Fig. 2c–e, respectively. Variation of the control variable u
(stirring speed) is shown in Fig. 2f. Responses of the controlled DOC to the set-point
changes and the disturbances are presented in Fig. 2g.

Performance of the control system was also investigated under process noise added to
the feedback signal and the estimated values of OUR. Responses of the controlled DOC
at 2% multiplicative noise are presented in Fig. 2h.

From Fig. 2c–h, it can be seen that the adaptive control system demonstrates stable
performance, instantaneous adaptation of controller parameters and quite accurate set-
point control under noisy measurements and variations of process disturbances in fairly
wide ranges.

For comparison, performances of the conventional PI control system and the gain-
scheduling adaptive control system [12] have been investigated.

Performance of the control system with a fixed gain PI controller is presented by
dashed lines in Fig. 2c–g. The values of controller tuning parameters are set to mean
values of the adaptive controller parameter variation ranges presented in Fig. 2c–e (in-
dicated by dashed lines, Kc = 0.16 %−1s−1, Ti = 160 s, b = 0.465). It can be seen
from Fig. 2g that the conventional control system exhibits poor performance under time
varying operating conditions. The simulation experiments (not presented) show that by
setting the PI controller parameters that are optimal at the initial conditions of simulated
process, the control system is sluggish and not able to track the set point changes and to
compensate the disturbances at further operating conditions.

In the other case, by setting the controller parameters that are optimal at the end stage,
high amplitude oscillations around the set-point occur at the initial operating conditions.

Performance of the DOC adaptive control system with the gain-scheduled PI con-
troller and the OUR as scheduling variable (Kc = 0.12+0.5·OUR, Ti = 200−500·OUR,
b = 0.465) is shown by dash-dotted line in Fig. 2g. The simulation results demonstrate
that the gain scheduling control system does not ensure an accurate control of the DOC
under fast changing operating conditions.

Comparison of the mean absolute deviations (MAD) of the DOC from the set-point
time-trajectory calculated from the control system performance simulation results proves
obvious advantage of the developed control system (MAD = 0.764%) compared with the
fixed gain PI control system (MAD = 2.185%) and the gain-scheduled control system
(2.035%).

The investigated DOC control system can be implemented in practice by using stan-
dard measurement devices of the air flow rate, the percentage of oxygen in exhaust gas,
and the dissolved oxygen concentration. The adaptive control algorithm can be realized
in industrial distributed process control systems such as Siemens PCS7, Emerson PM
System DeltaV, etc.
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Figure 2. Performance of the DOC control system at set-point and air supply rate step changes and permanent
change of oxygen uptake rate. Shown here are time profiles of simulated disturbances: air supply rate (a),
OUR (b); adaptation of controller parameters: gain (c), integration time constant (d), and set-point weighting
parameter (e); stirring speed (control action) (f); DOC controlled at set-point (g), (h).
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It should be stressed that the presented approach of the control systems design for
microbial cultivation processes is versatile and can be directly applied in development
of control systems of various biotechnological parameters: pH, dissolved carbon dioxide
concentration, glucose and glutamine concentrations, etc.

4 Conclusions

In this contribution, an adaptive control system is developed for controlling cultivation
process parameters at desired set-point under permanent and sudden changes in process
dynamics. The proposed control system exploits a priori knowledge of the controlled
process variable relationships and on-line measurements of relevant variables.

The control system adaptation algorithm uses information contained in a simple first-
principles model that is updated on-line with the measured values of process variables and
applied at each control discretization step for prediction the steady-state control action and
retuning parameters of feedback controller.

The control system has been tested by controlling the dissolved oxygen concentration
in batch operating mode bioreactor. In simulation experiments performance of the control
system was investigated under extreme operating conditions, noisy measurements and
inaccuracy of the tendency model parameter estimates. The investigation results show
that even the dynamic model of a limited accuracy applied in the proposed control system
provides with relevant information for controller adaptation. The control system demon-
strates fast adaptation and robust behavior by tracking the set-point under sudden changes
in operating conditions.
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