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Abstract. Here we introduce certain multivalued maps and use them to obtain minimum distance
between two closed sets. It is a proximity point problem, which is treated here as a problem
of finding global optimal solutions of certain fixed point inclusions. It is an application of set-
valued analysis. The results we obtain here extend some results and are illustrated with examples.
Applications are made to the corresponding single valued cases.
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1 Introduction

In the paper, we address a problem of finding the distance between the two closed sets by
using multivalued non-self mappings from one set to others. The problem is known as the
proximity point problem, which is considered here in the context of metric spaces. Here it
is an application of set-valued analysis. It is considered as a global optimization problem,
which seeks a solution by finding the global best approximation solution of a fixed point
inclusion. Technically, the problem is described as follows.

LetA andB be two nonempty subsets of a metric space (X, d). A pair (a, b) ∈ A×B
is called a best proximity pair if d(a, b) = dist(A,B)= inf{d(x, y): x ∈ A and y ∈ B}.
If T is a mapping from A to B, then d(x, Tx) > dist(A,B) for all x ∈ A. A point p ∈ A
is called a best proximity point (with respect to T ) if at the point p, the function d(x, Tx)
attains its global minimum and the global minimum value is dist(A,B), that is,

d(p, Tp) = dist(A,B). (1)
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The following are the concepts from set-valued analysis, which we use in this paper. Let
(X, d) be a metric space. Then

N(X) = {A: A is a nonempty subset of X},
B(X) = {A: A is a nonempty bounded subset of X},

CB(X) = {A: A is a nonempty closed and bounded subset of X},
and

C(X) = {A: A is a nonempty compact subset of X}.

For a nonempty subset Y of X , CB(Y ) denotes the set of nonempty closed and bounded
subsets of Y . Clearly, C(X) ⊆ CB(X) ⊆ B(X) ⊆ N(X).

D(x,B) = inf
{
d(x, y): y ∈ B

}
, where B ∈ N(X) and x ∈ X,

and
H(A,B) = max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)
}
, where A,B ∈ CB(X).

H is known as the Hausdorff metric on CB(X) [24]. Further, if (X, d) is complete, then
(CB(X), H) is also complete.

Let A and B be two nonempty subsets of a metric space (X, d) and T : A→ CB(B)
a multivalued mapping. A point x∗ ∈ A is called a best proximity point of T if
D(x∗, Tx∗) = inf{d(x∗, y): y ∈ Tx∗} = dist(A,B) [2]. This is a natural generalization
of the concept defined in (1). A fixed point x of a multivalued mapping T is given by
the following inclusion relation: x ∈ Tx. Now, there may not be a fixed point of the
multivalued mapping in general. Here the task in the best proximity point problem is to
find a global minima of the function x → D(x, Tx) by constructing an approximate
solution of the inclusion relation x ∈ Tx to satisfy D(x, Tx) = dist(A,B).

In the singled valued case, the problem reduces to finding an optimal approximation
solution of a fixed point equation. There are several works on proximity point problems
as, for examples, [4,6,9,11,12,14,15,22,25]. References [2,10,13,18,27,28] are examples
of such problems, which are set-valued mappings.

Best proximity point theorems are different from best approximation theorems. The
best approximation theorems provide with best approximate solutions, which need not be
globally optimal. For instance, let us consider the following Ky Fan’s best approximation
theorem.

Theorem 1. (See [16].) Let A be a nonempty compact convex subset of a normed linear
space X and T : A→ X be a continuous function. Then there exists x ∈ A such that

‖x− Tx‖ = d(Tx,A) = inf
{
‖Tx− a‖: a ∈ A

}
.

The element x in the above theorem need not give the optimum value of ‖x−Tx‖. On
the other hand, the best proximity point theorems assert that the approximate solution is
also optimal, that is, a best proximity point theorem explores the possibility of finding the
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global minima of the real valued function x→ d(x, Tx) by constraining an approximate
solution of x = Tx, or x ∈ Tx in the multivalued case, to satisfy d(x, Tx) = dist(A,B).

In this paper, we define multivalued α-proximal admissible mapping and multivalued
α-ψ-proximal contraction. We investigate some proximity point problems with the help of
multivalued α-ψ-proximal contractive mappings. We use weak P -property in our results.
Supporting examples are also discussed. We give applications of our theorems to obtain
results in the single-valued cases.

Recently, in two papers, the P -property and the weak P -property have been utilized
for proving proximity point results in [3] and [5], respectively. The authors of these papers
have proved their results through applications of fixed point theorems. Our approach as
mentioned in the above is different from those in [3] and [5]. Moreover, our result is not
related to those in the above two papers.

2 Mathematical preliminaries

Let A and B be two nonempty subsets of a metric space (X, d). Then A0 and B0 are
given by

A0 =
{
x ∈ A: d(x, y) = dist(A,B) for some y ∈ B

}
and

B0 =
{
y ∈ B: d(x, y) = dist(A,B) for some x ∈ A

}
.

It is to be noted that for every x ∈ A0, there exists y ∈ B0 such that d(x, y) =
dist(A,B) and, conversely, for every y ∈ B0, there exists x ∈ A0 such that d(x, y) =
dist(A,B).

In the following, we give the definitions of P -property and weak P -property.

Definition 1. (See [25].) Let A and B be two nonempty subsets of a metric space (X, d)
with A0 6= ∅. Then the pair (A,B) is said to have the P -property if for any x1, x2 ∈ A0

and y1, y2 ∈ B0,

d(x1, y1) = dist(A,B), d(x2, y2) = dist(A,B)

=⇒ d(x1, x2) = d(y1, y2).

In [1], Abkar and Gabeleh show that every nonempty, bounded, closed and convex
pair of subsets of a uniformly convex Banach space has the P -property. Some nontrivial
examples of a nonempty pair of subsets, which satisfies the P -property are given in [1].

The notion of weak P -property was first introduced by Gabeleh [17].

Definition 2. (See [17].) Let (A,B) be a pair of nonempty subsets of a metric space
(X, d) with A0 6= ∅. Then the pair (A,B) is said to have the weak P -property if and only
if for x1, x2 ∈ A0 and y1, y2 ∈ B0,

d(x1, y1) = dist(A,B), d(x2, y2) = dist(A,B)

=⇒ d(x1, x2) 6 d(y1, y2).

Nonlinear Anal. Model. Control, 21(3):293–305
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In the study of proximity point problems, P -property and weak P -property for a pair
of subsets are used in a number of works [11, 12, 17, 19, 25, 29].

Nadler [24] established the following lemma.

Lemma 1. (See [24].) Let (X, d) be a metric space and A,B ∈ CB(X). Let q > 1.
Then for every x ∈ A, there exists y ∈ B such that d(x, y) 6 qH(A,B).

The following is a consequence of Lemma 1.

Lemma 2. Let A and B be two nonempty subset of a metric space (X, d) and T : A →
CB(B) be a multivalued mapping. Let q > 1. Then for a, b ∈ A and x ∈ Ta, there exists
y ∈ Tb such that d(x, y) 6 qH(Ta, Tb).

In [24], Nadler stated that Lemma 1 is also valid for q > 1 if A,B ∈ C(X). Here we
present the lemma with a proof.

Lemma 3. Let (X, d) be a metric space and A,B ∈ C(X). Let q > 1. Then for every
x ∈ A, there exists y ∈ B such that d(x, y) 6 qH(A,B).

Proof. Let A,B ∈ C(X) and x ∈ A. Since A,B ∈ C(X) implies A,B ∈ CB(X), by
Lemma 1 the result is true if q > 1. So, we shall prove the result for q = 1. Now,

H(A,B) = max
{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)
}
.

From the definition, p = D(x,B) = inf{d(x, b): b ∈ B} 6 H(A,B). Then there exists
a sequence {yn} in B such that d(x, yn) → p as n → ∞. Since B is compact, {yn}
has a convergent subsequence {yn(k)}. Hence there exists y ∈ X such that yn(k) → y as
k →∞. As B is compact, it is closed. Then y ∈ B. Now, limn→∞ d(x, yn) = p implies
that limk→∞ d(x, yn(k)) = p, that is, d(x, y) = p = D(x,B) 6 H(A,B). Hence the
proof is completed.

The following is a consequence of Lemma 2.

Lemma 4. Let A and B be two nonempty compact subsets of a metric space (X, d) and
T : A → C(B) be a multivalued mapping. Let q > 1. Then for a, b ∈ A and x ∈ Ta,
there exists y ∈ Tb such that d(x, y) 6 qH(Ta, Tb).

In [26], Samet et al. introduced the concept of α-admissible mappings and utilized
these mappings to prove some fixed point results in metric spaces. α-admissible mappings
has been used in several fixed point and best proximity point results [7, 8, 20, 23]. Jleli
and Samet [21] extend the concept of α-admissible mappings to α-proximal admissible
mappings.

Definition 3. (See [21].) LetA,B be two nonempty subsets of a metric space (X, d). Let
T : A→ B and α : A×A→ [0,∞). The mapping T is called α-proximal admissible if
for all x1, x2, u1, u2 ∈ A,

α(x1, x2) > 1, d(u1, Tx1) = dist(A,B), d(u2, Tx2) = dist(A,B)

=⇒ α(u1, u2) > 1.
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Definition 4. (See [21].) LetA,B be two nonempty subsets of a metric space (X, d). Let
T : A → B and α : A × A → [0,∞). Let ψ : [0,∞) → [0,∞) be a nondecreasing and
continuous function with

∑∞
n=1 ψ

n(t) <∞ and ψ(t) < t for each t > 0. The mapping T
is called α-ψ-proximal contraction if

α(x, y)d(Tx, Ty) 6 ψ
(
d(x, y)

)
for all x, y ∈ A.

In the following, we define two definitions in which we extend the idea of α-proximal
admissible mapping and α-ψ-proximal contraction to the set-valued cases.

Definition 5. Let A, B be two nonempty subsets of a metric space (X, d). Let T : A →
N(B) and α : A × A → [0,∞). The multivalued mapping T is called multivalued
α-proximal admissible if for x1, x2, u1, u2 ∈ A, y1 ∈ Tx1 and y2 ∈ Tx2,

α(x1, x2) > 1, d(u1, y1) = dist(A,B), d(u2, y2) = dist(A,B)

=⇒ α(u1, u2) > 1.

Definition 6. Let A, B be two nonempty subsets of a metric space (X, d). Let T : A→
C(B) and α : A × A → [0,∞). Let ψ : [0,∞) → [0,∞) be a nondecreasing
and continuous function with

∑∞
n=1 ψ

n(t) < ∞ and ψ(t) < t for each t > 0. The
multivalued mapping T is called multivalued α-ψ-proximal contraction if

α(x, y)H(Tx, Ty) 6 ψ
(
d(x, y)

)
for all x, y ∈ A.

Remark 1. Definitions 5 and 6 reduce to Definitions 3 and 4, respectively, when Tx is
singleton set for every x ∈ A.

Definition 7. Let T : X → CB(Y ) be a multivalued mapping, where (X, ρ), (Y, d) are
two metric spaces and H is the Hausdorff metric on CB(Y ). The mapping T is said to
be continuous at x ∈ X if H(Tx, Txn)→ 0 whenever ρ(x, xn)→ 0 as n→∞.

Definition 8. Let A, B be two nonempty subsets of a metric space (X, d) and T : A →
N(B) a multivalued mapping. A point x∗ ∈ A is called best proximity point of T if
D(x∗, Tx∗) = dist(A,B).

3 Main results

Theorem 2. Let (X, d) be a complete metric space and (A,B) be a pair of nonempty
closed subsets of X such that A0 is nonempty. Let T : A → C(B) be a continuous
multi-valued mapping such that:

(i) Tx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the weak P -property;
(ii) T is multivalued α-proximal admissible mapping;

(iii) there exist x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that d(x1, y0) = dist(A,B)
and α(x0, x1) > 1;

(iv) T is multivalued α-ψ-proximal contraction.

Then T has a best proximity point in A.

Nonlinear Anal. Model. Control, 21(3):293–305
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Proof. By condition (iii), there exist x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that

d(x1, y0) = dist(A,B) and α(x0, x1) > 1.

By Lemma 4 and condition (iv), corresponding to y0 ∈ Tx0, there exists y1 ∈ Tx1 such
that

d(y0, y1) 6 α(x0, x1)H(Tx0, Tx1) 6 ψ
(
d(x0, x1)

)
.

Since y1 ∈ Tx1 ⊆ B0, there exists x2 ∈ A0 such that d(x2, y1) = dist(A,B). Now,
x0, x1, x2 ∈ A0 ⊆ A and y0 ∈ Tx0, y1 ∈ Tx1 such that α(x0, x1) > 1, d(x1, y0) =
dist(A,B), d(x2, y1)=dist(A,B). Then it follows from condition (ii) that α(x1, x2)>1.
Thus, we have

d(x2, y1) = dist(A,B) and α(x1, x2) > 1.

Again, by Lemma 4 and condition (iv), corresponding to y1 ∈ Tx1, there exists y2 ∈ Tx2
such that

d(y1, y2) 6 α(x1, x2)H(Tx1, Tx2) 6 ψ
(
d(x1, x2)

)
.

Since y2 ∈ Tx2 ⊆ B0, there exists x3 ∈ A0 such that d(x3, y2) = dist(A,B). So,
x1, x2, x3 ∈ A0 ⊆ A and y1 ∈ Tx1, y2 ∈ Tx2 such that α(x1, x2) > 1, d(x2, y1) =
dist(A,B), d(x3, y2)=dist(A,B). Then it follows from condition (ii) that α(x2, x3)>1.
Thus, we have

d(x3, y2) = dist(A,B) and α(x2, x3) > 1.

By Lemma 4 and condition (iv), corresponding to y2 ∈ Tx2, there exists y3 ∈ Tx3 such
that

d(y2, y3) 6 α(x2, x3)H(Tx2, Tx3) 6 ψ
(
d(x2, x3)

)
.

Continuing this process, we construct two sequences {xn} and {yn} respectively inA0 ⊆
A and B0 ⊆ B such that for n = 0, 1, 2, . . . ,

yn ∈ Txn, (xn+1, yn) = dist(A,B) and α(xn, xn+1) > 1,

and also
d(yn, yn+1) 6 α(xn, xn+1)H(Txn, Txn+1) 6 ψ

(
d(xn, xn+1)

)
. (2)

Since, d(xn+1, yn) = dist(A,B) and d(xn, yn−1) = dist(A,B) for all n > 1, it follows
by the weak P -property of the pair (A,B) that

d(xn, xn+1) 6 d(yn−1, yn) for all n ∈ N. (3)

Applying (2) repeatedly and using (3) and the monotone property of ψ, we have

d(xn, xn+1) 6 d(yn−1, yn) 6 α(xn−1, xn)H(Txn−1, Txn)

6 ψ
(
d(xn−1, xn)

)
6 ψ

(
d(yn−2, yn−1)

)
6 ψ

(
α(xn−2, xn−1)H(Txn−2, Txn−1)

)
6 ψ2

(
d(xn−2, xn−1)

)
6 · · · 6 ψn

(
d(x0, x1)

)
.
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Then by a property of ψ, we have∑
n

d(xn, xn+1) 6
∑
n

ψn
(
d(x0, x1)

)
<∞.

This shows that {xn} and {yn} are Cauchy sequences inX . From the completeness ofX ,
there exist x∗, y∗ ∈ X such that

xn → x∗ and yn → y∗ as n→∞. (4)

Since A and B are closed and {xn} and {yn} are sequences in A and B, respectively, we
have x∗ ∈ A and y∗ ∈ B.

Now,
d(xn+1, yn) = dist(A,B) for all n ∈ N.

Taking limit as n→∞, we obtain

d(x∗, y∗) = dist(A,B). (5)

Now, we claim that y∗ ∈ Tx∗.
Since yn ∈ Txn, we have

D(yn, Tx
∗) 6 H(Txn, Tx

∗).

Taking limit as n→∞ in the above inequality, and using (4) and the continuity of T , we
have

D(y∗, Tx∗) = lim
n→∞

D(yn, Tx
∗) 6 lim

n→∞
H(Txn, Tx

∗) = 0.

Since Tx∗ ∈ C(B), Tx∗ is compact and hence Tx∗ is closed, that is, Tx∗ = Tx∗. Now,
D(y∗, Tx∗) = 0 implies y∗ ∈ Tx∗ = Tx∗.

Now, using (5), we have

D(x∗, Tx∗) 6 d(x∗, y∗) = dist(A,B) 6 D(x∗, Tx∗),

, which implies that D(x∗, Tx∗) = dist(A,B), that is, x∗ is a best proximity point of T
in A.

In the next theorem, we replace the continuity assumption of T with another condition
involving α.

Theorem 3. Let (X, d) be a complete metric space and (A,B) be a pair of nonempty
closed subsets of X such that A0 is nonempty. Assume that if {xn} is a sequence in A
such that α(xn, xn+1) > 1 for all n and xn → x ∈ A as n → ∞, then there exists
a subsequence {xn(k)} of {xn} such that α(xn(k), x) > 1 for all k. Let T : A → C(B)
be a multi-valued mapping such that conditions (i)–(iv) of Theorem 2 are satisfied. Then
T has a best proximity point in A.

Proof. Arguing like in the proof of Theorem 2, we construct two sequences {xn} and
{yn} respectively in A and B such that:

α(xn, xn+1) > 1,

xn → x∗ ∈ A and yn → y∗ ∈ B as n→∞

Nonlinear Anal. Model. Control, 21(3):293–305
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and
d(x∗, y∗) = dist(A,B).

By the assumption, there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x∗)>1
for all k. Since yn(k) ∈ Txn(k) for all k > 1, applying condition (iv), we get

D
(
yn(k), Tx

∗) 6 H
(
Txn(k), Tx

∗) 6 α
(
xn(k), x

∗)H(Txn(k), Tx∗)
6 ψ

(
d
(
xn(k), x

∗)).
Taking the limit as k → ∞ in the above inequality and using the continuity of ψ, we
obtain D(y∗, Tx∗) = 0. Then arguing like in the proof of Theorem 2, we have that
D(x∗, Tx∗) = dist(A,B), that is, x∗ is a best proximity point of T in A.

Since every pair (A,B) having the weak P -property, also satisfies the P -property, we
have the following corollaries.

Corollary 1. Let (X, d) be a complete metric space and (A,B) be a pair of nonempty
closed subsets of X such that A0 is nonempty. Let T : A → C(B) be a continuous
multi-valued mapping such that:

(i) Tx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the P -property;
(ii) T is multivalued α-proximal admissible mapping;

(iii) there exist x0, x1 ∈ A0 and y0 ∈ Tx0 ⊆ B0 such that d(x1, y0) = dist(A,B)
and α(x0, x1) > 1;

(iv) T is multivalued α-ψ-proximal contraction.

Then T has a best proximity point in A.

Corollary 2. Let (X, d) be a complete metric space and (A,B) be a pair of nonempty
closed subsets of X such that A0 is nonempty. Assume that if {xn} is a sequence in A
such that α(xn, xn+1) > 1 for all n and xn → x ∈ A as n → ∞, then there exists
a subsequence {xn(k)} of {xn} such that α(xn(k), x) > 1 for all k. Let T : A → C(B)
be a multi-valued mapping such that conditions (i)–(iv) of Corollary 1 are satisfied. Then
T has a best proximity point in A.

Example 1. Let X = R2. The metric d on X is given by

d(x, y) = |x1 − x2|+ |y1 − y2|, x = (x1, y1), y = (x2, y2) ∈ X.

Let
A =

{
(−1, 1), (1, 1), (0, 2)

}
,

B =
{
(−4, v): − 4 6 v 6 0

}
∪
{
(4, v): − 4 6 v 6 0

}
∪
{
(u, v): − 4 < u < 4, v = −4

}
,

A0 =
{
(−1, 1), (1, 1)

}
and B0 =

{
(−4, 0), (4, 0)

}
.

http://www.mii.lt/NA



Best proximity point results in set-valued analysis 301

Notice that

d
(
(−1, 1), (−4, 0)

)
= dist(A,B) = 4, d((1, 1), (4, 0)) = dist(A,B) = 4

and
d
(
(−1, 1), (1, 1)

)
= 2, d

(
(−4, 0), (4, 0)

)
= 8.

This shows that the pair (A,B) satisfies the weak P -property.
Let T : A→ C(B) be defined as follows:

Tx =


{(−4, 0)} if x = (−1, 1),
{(4, 0)} if x = (1, 1),

{(u, v): − 4 6 u 6 4, v = −4} if x = (0, 2).

Let α : A×A→ [0,∞) be defined as follows:

α(x, y) =

{
2 if x = y,

0 if x 6= y.

Let ψ : [0,∞)→ [0,∞) be defined as ψ(t) = ct, 0 < c < 1. Then all the conditions
of Theorem 2 are satisfied. Here (−1, 1), (1, 1) are the best proximity points of T in A.

Example 2. We take the metric space (X, d) as considered in Example 1. Let

A =
{
(u, v): u = −1, 1 6 v 6 2

}
∪
{
(u, v): − 1 6 u 6 1, v = 2

}
∪
{
(u, v): u = 1, 1 6 v 6 2

}
,

B =
{
(u, v): 4 6 u 6 8, −4 6 v 6 0

}
∪
{
(u, v): − 8 6 u 6 −4, −4 6 v 6 0

}
,

A0 =
{
(−1, 1), (1, 1)

}
and B0 =

{
(−4, 0), (4, 0)

}
.

Noticed that

d
(
(−1, 1), (−4, 0)

)
= dist(A,B) = 4, d

(
(1, 1), (4, 0)

)
= dist(A,B) = 4

and
d
(
(−1, 1), (1, 1)

)
= 2, d

(
(−4, 0), (4, 0)

)
= 8.

This shows that the pair (A,B) satisfies the weak P -property.
Define the mapping T : A→ C(B) by

Tx =



{(−4, 0)} if x = (−1, 1),
{(4, 0)} if x = (1, 1),

{(u, v): u = −8, −4 6 v 6 0} if x ∈ {(a, b): a = −1, 1 < b 6 2
}
,

{(u, v): − 8 6 u 6 −4, v = 4} if x ∈ {(a, b): − 1 < a 6 1, b = 2},
{(u, v): u = 8, −4 6 v 6 0} if x ∈ {(a, b): a = 1, 1 < b < 2}.

Nonlinear Anal. Model. Control, 21(3):293–305
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We define the mapping α : A×A→ [0,∞) by

α(x, y) =

{
2 if x = y ∈ {(−1, 1), (1, 1)},
0 otherwise.

Let ψ : [0,∞)→ [0,∞) be defined as ψ(t) = ct, 0 < c < 1. Here all the conditions
of Theorem 3 are satisfied and it is seen that (−1, 1) and (1, 1) are the best proximity
points of T in A.

Remark 2. In each of the above examples (Examples 1 and 2), the pair (A,B) does not
satisfy the P -property and hence Corollaries 1 and 2 are not applicable to Examples 1
and 2, respectively. Therefore, Theorems 2 and 3 properly contain Corollaries 1 and 2,
respectively.

4 Application to single-valued mappings

In this section, we obtain some best proximity point results for single-valued mappings
by an application of the corresponding results of previous section.

Theorem 4. Let (X, d) be a complete metric space and (A,B) be a pair of nonempty
closed subsets of X such that A0 is nonempty. Let T : A→ B be a continuous mapping
such that:

(i) T (A0) ⊆ B0 and (A,B) satisfies the weak P -property;
(ii) T is α-proximal admissible mapping;

(iii) there exist x0, x1 ∈ A0 such that d(x1, Tx0) = dist(A,B) and α(x0, x1) > 1;
(iv) T is α-ψ-proximal contraction.

Then T has a best proximity point in A.

Proof. We know that for every x ∈ X , {x} is compact in X . Now, we define multivalued
mapping S : A→ C(B) as Sx = {Tx} for x ∈ A. The continuity of T implies that S is
continuous.

By condition (i) of the theorem, Sx = {Tx} ⊆ B0 for each x ∈ A0.
Let x1, x2, u1, u2 ∈ A, y1 ∈ Sx1 = {Tx1} and y2 ∈ Sx2 = {Tx2} such that

α(x1, x2) > 1, d(u1, y1) = dist(A,B) and d(u2, y2) = dist(A,B).

Then it follows that for x1, x2, u1, u2 ∈ A,

α(x1, x2) > 1, d(u1, Tx1) = dist(A,B) and d(u2, Tx2) = dist(A,B).

By condition (ii) of the theorem, we have α(u1, u2) > 1. So, we have that for x1, x2,
u1, u2 ∈ A, y1 ∈ Sx1 and y2 ∈ Sx2,

α(x1, x2) > 1, d(u1, y1) = dist(A,B), d(u2, y2) = dist(A,B)

=⇒ α(u1, u2) > 1,

that is, S is a multivalued α-proximal admissible mapping.

http://www.mii.lt/NA
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Suppose there exist x0, x1∈A0 such that d(x1, Tx0)=dist(A,B) and α(x0, x1)>1.
Let y0 ∈ Sx0 = {Tx0} ⊆ B0. Then d(x1, Tx0) = dist(A,B) means d(x1, y0) =
dist(A,B). Therefore, by condition (iii) of the theorem, we have that there exist x0, x1 ∈
A0 and y0 ∈ Sx0 ⊆ B0 such that d(x1, y0) = dist(A,B) and α(x0, x1) > 1.

Let x, y ∈ A. Then using condition (iv) of the theorem, we have

α(x, y)H(Sx, Sy) = α(x, y)d(Tx, Ty) 6 ψ
(
d(x, y)

)
,

that is, S is a multivalued α-ψ-proximal contraction.
So, all the conditions of Theorem 2 are satisfied and hence S has a best proximity

point x∗ in A. Then D(x∗, Sx∗) = dist(A,B), that is, d(x∗, Tx∗) = dist(A,B), that is,
x∗ is a best proximity point of T in A.

Theorem 5. Let (X, d) be a complete metric space and (A,B) be a pair of nonempty
closed subsets of X such that A0 is nonempty. Assume that if {xn} is a sequence in A
such that α(xn, xn+1) > 1 for all n and xn → x ∈ A as n → ∞, then there exists
a subsequence {xn(k)} of {xn} such that α(xn(k), x) > 1 for all k. Let T : A → B
be a mapping such that conditions (i)–(iv) of Theorem 4 are satisfied. Then T has a best
proximity point in A.

Proof. Like in the proof of Theorem 4, we define the multivalued mapping S : A →
C(B). Arguing similarly as in the proof of Theorem 4, we prove that

• Sx ⊆ B0 for each x ∈ A0;
• S is a multivalued α-proximal admissible mapping;
• there exist x0, x1 ∈ A0 and y0 ∈ Sx0 ⊆ B0 such that d(x1, y0) = dist(A,B) and
α(x0, x1) > 1;
• S is a multivalued α-ψ-proximal contraction.

So, all the conditions of Theorem 3 are satisfied and hence S has a best proximity point
x∗ in A. Then D(x∗, Sx∗) = dist(A,B), that is, d(x∗, Tx∗) = dist(A,B), that is, x∗ is
a best proximity point of T in A.

Corollary 3. Let (X, d) be a complete metric space and (A,B) be a pair of nonempty
closed subsets of X such that A0 is nonempty. Let T : A→ B be a continuous mapping
such that:

(i) T (A0) ⊆ B0 and (A,B) satisfies the P -property;
(ii) T is α-proximal admissible mapping;

(iii) there exist x0, x1 ∈ A0 such that d(x1, Tx0) = dist(A,B) and α(x0, x1) > 1;
(iv) T is α-ψ-proximal contraction.

Then T has a best proximity point in A.

Proof. The proof is similar to that of Theorem 4.

Corollary 4. Let (X, d) be a complete metric space and (A,B) be a pair of nonempty
closed subsets of X such that A0 is nonempty. Assume that if {xn} is a sequence in A
such that α(xn, xn+1) > 1 for all n and xn → x ∈ A as n → ∞, then there exists
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a subsequence {xn(k)} of {xn} such that α(xn(k), x) > 1 for all k. Let T : A → B be
a mapping such that conditions (i)–(iv) of Corollary 3 are satisfied. Then T has a best
proximity point in A.

Proof. The proof is similar to that of Theorem 5.

Remark 3. Corollaries 3 and 4 are respectively Theorems 3.1 and 3.2 of Jleli and Samet
[21].

5 Conclusion

This paper is an application of multifunctions to a global optimality problem. Fixed point
methods in set-valued analysis is used since this problem is viewed here as that of finding
an optimal approximate solution of a fixed point inclusion. For this purpose, new types
of set-valued contractive functions are introduced. This approach to finding minimum
distance between two sets may be adopted in future works.

Acknowledgment. The authors gratefully acknowledge the suggestions made by the
learned referee.
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