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Abstract. This paper is concerned with a nonlocal reaction-diffusion equation with the nonlocal
source and interior absorption with Dirichlet conditions or Neumann conditions. We investigate
the critical blow-up exponents of the problem by constructing adequate supersolutions and
subsolutions. Moreover, we show that the blowup rate is the same as the corresponding ODE under
the appropriate hypotheses.
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1 Introduction

In this work we analyze some features of the blow-up phenomenon arising in nonlocal
diffusion problems associated to the nonlocal Laplacian equation. More precisely, we
will study the Neumann problem in Ω × (0, T )

ut =

∫
Ω

J(x− y)
(
u(y, t)− u(x, t)

)
dy +

∫
Ω

uq dx− kup, x ∈ Ω, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,
(1)

and the Dirichlet problem in RN × (0, T ),

ut =

∫
RN

J(x− y)
(
u(y, t)− u(x, t)

)
dy +

∫
Ω

uq dx− kup, x ∈ Ω, t ∈ (0, T ),

u(x, t) = 0, x ∈ RN \Ω, t ∈ (0, T ), u(x, 0) = u0(x), x ∈ Ω,
(2)

where Ω ( ⊃ B1) is a bounded connected C1 domain, B1 is the the unit ball, k, p, q > 0,
the kernel J ∈ C(RN ) verifies J > 0 in B1, J = 0 in RN \ B1, J(−z) = J(z) with
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Critical exponents for a nonlocal reaction-diffusion equation 601

∫
B1
J(z) dz = 1, and the initial datum u0(x) is a nonnegative, nontrivial, bounded and

continuous function. In model (2), we prescribe the values of u outside Ω, which is the
analogous of prescribing the so called Dirichlet boundary conditions for the classical heat
equation. However, the boundary data is not understood in the usual sense (see [1, 8]).

Nonlocal evolution equations of the form

∂

∂t
u(x, t) = J ∗ u− u(x, t) =

∫
RN

J(x− y)u(y, t) dy − u(x, t) (3)

have been widely used to model the dispersal of a species recently (see [2,3,4,5,7,9,10,11]
and references therein). More precisely, as stated in [11], if u(x, t) and J(x − y) are
thought to be the density of a species at the point x at time t and the probability distribution
of jumping from location y to location x, respectively, then

∫
RN J(x− y)u(y, t) dy is the

rate at which individuals are arriving to position x from all other places, and −u(x, t) =
−
∫
RN J(x − y)u(x, t) dy is the rate at which they are leaving location x to travel to all

other sites. It is well known that equation (3) and the classical heat equation ut = ∆u have
some similar properties, such as the maximum principle and perturbations propagate with
infinite speed [11]. Lately, the blow-up problem for a nonlocal diffusion equation with
a reaction term

ut =

∫
Ω

J(x− y)
(
u(y, t)− u(x, t)

)
dy + up(x, t) (4)

were considered in [16] with Neumann boundary conditions and nonnegative and non-
trivial initial data. They found the a critical exponent p = 1, namely, if p > 1, the
corresponding solution to (4) (with Neumann boundary conditions) blows up. Conversely,
if p 6 1, every solution to (4) is global. More recently, Zhou et al. [21] investigated
a nonlocal problem of the following form:

ut =

∫
Ω

J(x− y)
(
u(y, t)− u(x, t)

)
dy + δeu(x, t) (5)

with Neumann boundary conditions and nonnegative and nontrivial initial data. They
showed the local existence and uniqueness of the solution to (5). Furthermore, under
appropriate hypotheses, they gave the estimates of the blow-up rate and obtained that the
blow-up set is a single point x = 0 for radially symmetric solution with a single maximum
at the origin. It is noted that, by invoking the regularizing effect, Souplet and Wang et
al. [17, 18] studied the blow-up properties of solutions for the Dirichlet (or Neumann)
boundary value problem of the reaction-diffusion equation

ut = d∆u+

∫
Ω

uq(x, t) dx− kup

with p, q > 1 and k, d > 0. For other related results, which concerned the blow-up
or extinction of solutions for reaction-diffusion equation with the nonlocal source and
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602 J. Zheng

Figure 1

interior absorption, one can see [12, 15, 19, 20, 22] and references therein. In this paper,
under the appropriate hypotheses k, p, q > 0, we discuss systems (2) and (1) and obtain
the critical blow-up exponents and the blow-up rate based on the first principal eigenvalue
of the nonlocal heat equation, and thus avoid using the regularizing effect, since there
is no regularizing effect in general [6]. Unfortunately, due to the lack of compactness of
the minimizer sequence [10], our method cannot be used to solve the blow-up for the
nonlocal p-Laplacian equation with a reaction term, which was discussed by Ferreira and
Pérez-Llanos [10].

Motivated by the above works, the purpose of this paper is to analyze the blow-up
phenomenon for problems (1) and (2), that is, we want to show that problems (1) and (2)
share many important properties with the corresponding reaction diffusion equation

ut = ∆u+

∫
Ω

uq dx− kup, x ∈ Ω, t ∈ (0, T ),

∂u

∂n
= 0, x ∈ ∂Ω, t ∈ (0, T ), u(x, 0) = u0(x), x ∈ Ω,

(6)

and

ut = ∆u+

∫
Ω

uq dx− kup, x ∈ Ω, t ∈ (0, T ),

u(x, t) = 0, x ∈ ∂Ω, t > 0, u(x, 0) = u0(x), x ∈ Ω,
(7)

such as blow-up condition and blow-up rates [17, 18]. Through the main points, we can
obtain that there exists a critical curvilinear line q∗ = max(p, 1) such that the (q, p)-
parameter plane is divided into three parts, with the bottom part corresponding to all
global and bounded solution and the top part of the line corresponding to blow-up for
large initial data (global and bounded for small data). Moreover, there exists a critical
point on this line such that the line is also divided into three parts, which exhibit different
features of blow-up phenomenon (see Fig. 1).

http://www.mii.lt/NA



Critical exponents for a nonlocal reaction-diffusion equation 603

Before giving our main results, we will give some preliminary lemmas, which plays
a crucial role in the following proofs.

Let ψ(x) satisfy∫
RN

J(x− y)
(
ψ(y)− ψ(x)

)
dy = −λψ(x), x ∈ Ω,

ψ(x) = 0, x 6∈ Ω̄.
(8)

Due to Theorem 2.1 of [14], problem (8) admits a unique eigenvalue λ1 := λ1(Ω)
associated to a positive eigenfunction ψ ∈ C(Ω̄). In the following, we will always assume

m = min
Ω̄

ψ(x) > 0 and M = max
Ω̄

ψ(x) > 0. (9)

Lemma 1. (See [18, Lemma 3.1].) Let f(t) satisfy the following ODE problem:

f ′(t) = fq(t)|Ω| − kfp(t), t > 0,

f(0) = f0 > 0, p, q > 1.
(10)

(i) If q < p, then f(t) exists globally.
(ii) If p = q = 1, or p = q > 1 and |Ω| < k, then f(t) exists globally; if p = q > 1

and |Ω| > k, then f(t) blows up in finite time.
(iii) If q > p, then there exists f∗ > 0 such that f(t) exists globally when f0 < f∗

and f(t) blows up in finite time when f0 > f∗.

Now our main results can be stated as follows.

Theorem 1 [Global existence of Dirichlet problem].
(i) If q 6 1, then every solution to problem (2) is global.

(ii) If p > q > 1, then every solution to problem (2) is global.
(iii) If p = q > 1 and |Ω| 6 k, then every solution to problem (2) is global.
(iv) If q > p > 1, then problem (2) has global solutions for any conveniently small

initial data.
(v) If q = p > 1 and |Ω| > k, then problem (2) has global solutions for any

conveniently small initial data.

Theorem 2 [Blow-up and blow-up rate of Dirichlet problem].
(i) If q = p > 1 and k is small enough such that 0 < kMp <

∫
Ω
ψq(x) dx holds,

then the solution of problem (2) blows up in finite time for initial data sufficiently
large, where M and ψ(x) are given by (9) and (8), respectively. Moreover, let
k < |Ω| and u be a solution to problem (2), which blows up at time T . Then,

lim
t→T

(T − t)1/(p−1)
∣∣u(t)

∣∣
∞ =

[
(p− 1)

(
|Ω| − k

)]−1/(p−1)
. (11)
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(ii) If q > p > 1, then the solution of problem (2) blows up in finite time for any
conveniently large initial data. Moreover, let u be a solution to problem (2), which
blows up at time T . Then,

lim
t→T

(T − t)1/(q−1)
∣∣u(t)

∣∣
∞ =

[
(q − 1)

∣∣Ω∣∣]−1/(q−1)
. (12)

Theorem 3 [Global existence and blow-up for Neumann problem].

(i) If p > q > 1, then problem (1) exists globally.
(ii) If p = q = 1, or p = q > 1 and |Ω| 6 k, then problem (1) exists globally; if

p = q > 1 and |Ω| > k, then problem (1) blows up in finite time provided that
u0(x) is not identically zero.

(iii) If q > p > 1, then problem (1) has global solution when u0(x) < f∗, and the
solution of problem (1) blows up in finite time when u0(x) > f∗.

(iv) If q < 1, then every solution to problem (1) is global.

Theorem 4 [Blow-up rate of Neumann problem]. Let q > p > 1 or q = p > 1, and
|Ω| > k and u be a solution to problem (1), which blows up at time T . Then

lim
t→T

(T − t)1/(q−1)
∣∣u(t)

∣∣
∞ =

[
(q − 1)

(
|Ω| − k

)]−1/(q−1)
. (13)

Remark 1.

(i) From Theorem 1 we derive: if min{p, q} 6 1, then the nonnegative solution
of (2) cannot blow up for any continuous and nonnegative initial data.

(ii) By Theorem 3, if min{p, q} 6 1, the nonnegative solution of (1) cannot blow up
for any continuous and nonnegative initial data.

(iii) It follows from Theorems 2 and 4 that the diffusion term (nonlocal source and
interior absorption) plays no role and the blow-up rate is given by the ODE ut =
|Ω|uq (q > p > 1) and ut = (|Ω| − k)up (q = p > 1).

The rest of the paper is organized as follows. In Section 2, we prove the existence of
local solutions for problems (1) and (2) and show a comparison principle for the solutions.
In Section 3, we deal with the conditions ensuring blow-up versus global existence of
solutions to problems (1) and (2). Also in Section 3, the blow-up rate of solutions of
problems (1) and (2) are given.

2 Local existence of solutions and main properties

Without loss of generality, we only prove the existence and uniqueness of the solution of
problem (2). And we will use the Banach fixed point theorem, which comes from [10]
and [16] after some modification.

Let t0 > 0 be fixed and consider the Banach space Xt0 = C([0, t0];C(Ω̄)) with the
norm

‖w‖Xt0
= max

06t6t0

∥∥w(·, t)
∥∥
L∞(Ω̄)

= max
06t6t0

max
Ω̄

∣∣w(x, t)
∣∣.

http://www.mii.lt/NA
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We will obtain the solution of problem (2) as a fixed point of the operator F : B0 → B0

defined by

Fw0(w)(x, t) = w0(x) +

t∫
0

∫
RN

J(x− y)
(
w(y, s)− w(x, s)

)
dy ds

+

t∫
0

∫
Ω

∣∣w(x, s)
∣∣q−1

w(x, s) dxds− k
t∫

0

∣∣w(x, s)
∣∣p−1

w(x, s) ds,

where p, q > 0 and B0 := B(u0, 2‖u0‖L∞). The following lemma is the main ingredient
of the proof of the main results.

Lemma 2. The operator Fu0
is well defined and mapping B0 into B0. Moreover, let

w, z ∈ B0. Then there exists a positive constant C = C(J,Ω, u0, p, q, k) such that∥∥Fu0(w)(x, t)− Fu0(z)(x, t)
∥∥
Xt0

6 Ct‖w − z‖Xt0
. (14)

Thus, Fu0 is a strict contraction in the ball B0 provided t0 is small enough.

Proof. Since the convolution in space with the function J is uniformly continuous, it is
easy to see that Fu0

(w) is continuous as the function of x. We first prove that the operator
Fu0

maps B0 into B0. For any (x, t) ∈ Ω × [0, t0], we have∣∣Fu0
(w)(x, t)− u0(x)

∣∣
6

∣∣∣∣∣
t∫

0

∫
RN

J(x− y)
(
w(y, s)− w(x, s)

)
dy ds

∣∣∣∣∣
+

t∫
0

∫
Ω

∣∣w(x, s)
∣∣q dxds+ k

t∫
0

∣∣w(x, s)
∣∣p ds

6 2‖J‖L∞ |Ω|‖w‖Xt0
+ k

t∫
0

∣∣w(x, s)
∣∣p ds+

t∫
0

∫
Ω

∣∣w(x, s)
∣∣q dx ds

6
(
2‖J‖L∞ |Ω|‖w‖Xt0

+ ‖w‖qXt0
|Ω|+ k‖w‖pXt0

)
t,

which assures that Fu0(w) is continuous at t = 0. And for any w ∈ B0, we conclude
Fu0

(w) ∈ B0. Thus, Fu0
maps B0 into B0.

On the other hand, for any (x, t1), (x, t2) ∈ Ω × [0, t0], taking into account that w
vanishes outside Ω, we have∣∣Fu0

(w)(x, t2)− Fu0
(w)(x, t1)

∣∣
6

∣∣∣∣∣
t2∫
t1

∫
RN

(
w(y, s)− w(x, s)

)
dy ds

∣∣∣∣∣+

t2∫
t1

∫
Ω

∣∣w(x, s)
∣∣q dxds+ k

t2∫
t1

∣∣w(x, s)
∣∣p ds

Nonlinear Anal. Model. Control, 21(5):600–613
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6

t2∫
t1

∫
RN

J(x− y)
∣∣w(y, s)− w(x, s)

∣∣dy ds+

∣∣∣∣∣
t2∫
t1

∫
Ω

∣∣w(x, s)
∣∣q dxds

∣∣∣∣∣
+ k

∣∣∣∣∣
t2∫
t1

∣∣w(x, s)
∣∣p ds

∣∣∣∣∣
6
(
2‖J‖L∞ |Ω|‖w‖Xt0

+ ‖w‖qXt0
|Ω|+ k‖w‖pXt0

)
|t2 − t1

∣∣
6 max

{
2‖J‖L∞ , |Ω|, k

}(
‖w‖Xt0

+ ‖w‖qXt0
+ ‖w‖pXt0

)
|t2 − t1|,

which shows that Fu0
(w) is continuous in time for any t ∈ [0, t0].

To prove the estimate (14), we argue as follows: for any (x, t) ∈ Ω × [0, t0], it holds∣∣Fu0
(w)(x, t)− Fu0

(z)(x, t)
∣∣

6

t∫
0

∫
RN

∣∣J(x− y)
[
w(y, s)− z(y, s)−

(
w(x, s)− z(x, s)

)]∣∣dy ds

+

t∫
0

∫
Ω

∣∣wq(x, s)− zq(x, s)∣∣ dx ds+ k

t∫
0

∣∣wp(x, s)− zp(x, s)∣∣ds
6 2‖J‖L∞ |Ω|‖w − z‖Xt0

t+ max
{
q|Ω|, kp

}(
ξp−1 + ξq−1

)
‖w − z‖Xt0

t

= Ct‖w − z‖Xt0
, (15)

where C = max{q|Ω|, kp}(ξp−1 + ξq−1) + ‖J‖L∞ and ξ 6 max{‖w‖Xt0
, ‖z‖Xt0

}.
The arbitrariness of (x, t) ∈ Ω × [0, t0] gives the desired estimate (14).

Finally, choosing t0 such thatCt0 < 1, (14) ensures that Fu0(w) is a strict contraction
in the ball B0 ⊂ Xt0 and thus completes the proof of this Lemma.

Employing the above Lemmas, we derive

Theorem 5. For every u0 ∈ C(Ω̄), problem (2) admits a unique solution u ∈ C([0, T );
C(Ω̄)). Moreover, if the maximal existence time T < ∞, then the solution blows up in
L∞(Ω̄)-norm, that is,

lim sup
t→T

∥∥u(x, t)
∥∥
L∞(Ω̄)

= +∞. (16)

Proof. It follows from Lemma 2 that Fu0
is a strict contraction inB0 for t0 small enough.

By the Banach’ theorem fixed point theorem there exists only one fixed point of Fu0 in
B0. This proves the existence and uniqueness of solution of (2) in the time interval [0, t0].
To continue we may take u(x, t0) as initial data and obtain a unique solution of (2) in the
time interval [0, t1]. If ‖u‖Xt1

<∞, taking as initial datum u(·, t1) ∈ C(Ω̄) and arguing
as before, it is possible to extend the solution up to some interval [0, t2) for certain t2 > t1.
Hence, we can conclude that if the maximal time of the existence of the solution, T , is

http://www.mii.lt/NA
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finite, then the solution blows up in L∞(Ω̄)-norm, that is,

lim sup
t→T

∥∥u(x, t)
∥∥
L∞(Ω̄)

= +∞.

Otherwise, the solution of problem (2) is global.

Definition 1. A nonnegative function ū ∈ C1([0, T );C(Ω̄)) is a supersolution of prob-
lem (2) (respectively of (1)) if it satisfies

∂

∂t
ū(x, t) >

∫
A

J(x− y)
(
ū(y, t)− ū(x, t)

)
dy +

∫
Ω

ūq dx− kūp, (x, t) ∈ QT

ū(x, 0) > u0(x), x ∈ Ω,

(17)

where QT := Ω × (0, T ). A = RN in case problem (2) (respectively A = Ω for prob-
lem (1)). The subsolution is defined similarly by reversing the inequalities. Furthermore,
if u is a supersolution as well as a subsolution, then we call it a solution of problem (2)
or (1).

Lemma 3. Let u be a supersolution of problem (2) (or (1)). Then if u0 > 0, we have
u(x, t) > 0 for (x, t) ∈ Ω × [0, T ).

Proof. Without loss of generality, we only prove the solution of problem (2) satisfying
u(x, t) > 0 for (x, t) ∈ Ω × [0, T ). By an approximation procedure we restrict ourselves
to consider strict inequalities for the supersolution. Indeed, we can take ū(x, t) + δt + δ
(δ > 0) as a strict supersolution and take limit as δ → 0 at the end.

Arguing by contradiction, we assume that there exist a first time t0 and some point
x0 ∈ Ω at which ū(x0, t0) = 0, and then u(y, t0) > 0 for all y ∈ Ω. Therefore, we derive

∂

∂t
ū(x0, t0) >

∫
Ω

J(x0 − y)(ū
(
y, t0)− ū(x0, t0)

)
dy

−
∫

RN\Ω

J(x0 − y)ū(x0, t0) dy +

∫
Ω

ūq(y, t0) dy − kūp(x0, t0)

=

∫
Ω

J(x0 − y)ū(y, t0) dy +

∫
Ω

ūq(y, t0) dy > 0,

which contradicts with (∂/∂t)ū(x0, t0) 6 0.

Applying Lemma 3, we can get

Lemma 4. Let ū, u be super and subsolutions to (2) (or (1)), respectively. Then ū(x, t) >
u(x, t) for every (x, t) ∈ Ω × [0, T ).

Nonlinear Anal. Model. Control, 21(5):600–613
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3 The proof of main results

Once the existence of the solutions to problem (2) and (1) is established, we begin to
analyze the critical blow-up exponents for nonnegative solutions. As the first step, we
discuss the existence of global solutions to problem (2).

3.1 Blow-up versus global existence for the Dirichlet problem

In this section, we will use super and subsolution techniques to derive some conditions on
the existence or nonexistence of global solution.

Proof of Theorem 1. The idea of the proof is to construct the suitable supersolution of
problem (2). Indeed, assume that u(x, t) is the solution of (2) with the initial datum u0(x).
Suppose that ϕ satisfies

−
∫
RN

J(x− y)
(
ϕ(y)− ϕ(x)

)
dy = 1, x ∈ Ω,

ϕ(x) = 0, x 6∈ Ω̄.
(18)

Due to Theorem 1 of [13], there is a unique positive solution of the problem (18). Now,
choose γ conveniently small such that

γ > γp
(∫
Ω

ϕp(x) dx− kϕp(x)

)
if p > 1 and |Ω| > k. (19)

For the above γ, we choose initial datum u0(x) such that maxx∈Ω̄ u0(x) 6 γm, where
m is given by (9). Let

ū =



max{(‖u0‖L∞ + 1)/m, (
∫
Ω
ψq dx/(λ1m))1/(1−q)}ψ(x) if q < 1,

(‖u0‖L∞ + 1)e2|Ω|t if q = 1,

max{‖u0‖L∞ + 1, (|Ω|/k)1/(p−q)} if p > q > 1,

‖u0‖L∞ + 1 if p = q > 1 and |Ω| 6 k,

(|Ω|/k)1/(p−q) if q > p > 1 and (|Ω|/k)1/(p−q) > ‖u0‖L∞ .
γϕ(x) if q = p > 1 and |Ω| > k,

where ψ is given by (8). Then we can prove that ū is a global supersolution of (2). To this
end, if q < 1, it holds that

Pū = ūt(x, t)−
[ ∫
RN

J(x− y)
(
ū(y, t)− ū(x, t)

)
dy +

∫
Ω

ūq dx− kūp
]

> λ1

(∫
Ω
ψq dx

λ1m

)1/(1−q)(
1− λ1m∫

Ω
ψq dx

∫
Ω
ψq(x) dx

λ1ψ

)
ψ(x) > 0,

http://www.mii.lt/NA
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which implies that problem (2) has global solution. The assertion can be proved similarly
for the other cases, and thus the proof of this theorem is completed.

The following two lemmas play an important role in the proof of Theorems 2 and 4.

Lemma 5. Let u be a solution to (2) (or (1)), which blows up at time T .

(i) If q > p > 1, then

max
x∈Ω

u(x, t) >
[
(q − 1)|Ω|

]−1/(q−1)
(T − t)−1/(q−1). (20)

(ii) If q = p > 1 and 0 < k < |Ω|, then

max
x∈Ω

u(x, t) >
[
(p− 1)

(
|Ω| − k

)]−1/(p−1)
(T − t)−1/(p−1). (21)

Proof. (i) Without loss of generality, we only prove case (i) for problem (2). The main
idea we use is a recent method introduced by Pérez-Llanos and Rossi in [16]. For any
fixed t ∈ (0, T ), let x0 ∈ Ω̄ be such that maxx∈Ω̄ u(·, t) = u(x0, t). Thanks to the
fact that the blowing-up solutions to problem (2) verify that u(x, t) > 0, u 6≡ 0 in Ω
and u(x, t) ≡ 0, x 6∈ Ω, we derive from (2) that maxx∈RN u(·, t) = maxx∈Ω u(·, t) =
u(x0, t). Consequently, at this point, the following estimate follows:

ut(x0, t) =

∫
RN

J(x0 − y)u(y, t) dy +

∫
Ω

uq(x, t) dx− kup(x0, t)− u(x0, t), (22)

which, together with u(y, t) 6 u(x0, t) (for any y ∈ RN ), implies that

ut(x0, t) =

∫
RN

J(x0 − y)u(y, t) dy +

∫
Ω

uq(x, t) dx− kup(x0, t)− u(x0, t)

6 u(x0, t) +

∫
Ω

uq(x, t) dx− kup(x0, t)− u(x0, t)

6 uq(x0, t)|Ω|.

Integrating the above inequality from (t, T ) and taking into account that q > 1, we derive

u(x0, t) >
[
(q − 1)|Ω|

]−1/(q−1)
(T − t)−1/(q−1), (23)

that is,
max
x∈Ω

u(x, t) >
[
(q − 1)|Ω|

]−1/(q−1)
(T − t)−1/(q−1). (24)

Using the same arguments as in the proof of case (i), we can derive the result of case (ii).
We complete the proof of the Lemma.

Lemma 6. Assuming u is a solution to (2) (or (1)), which blows up at time T .

Nonlinear Anal. Model. Control, 21(5):600–613



610 J. Zheng

(i) If q > p > 1, then

max
x∈Ω

u(x, t) 6
[
(q − 1)|Ω|

]−1/(q−1)
(T − t)−1/(q−1). (25)

(ii) If q = p > 1 and 0 < k < |Ω|, then

max
x∈Ω

u(x, t) 6
[
(p− 1)

(
|Ω| − k

)]−1/(p−1)
(T − t)−1/(p−1). (26)

Proof. (i) Without loss of generality, we only prove case (i) for problem (2). For (ii), it is
very similar, we omitted it. For any t < T̃ < T , we have that ū = [(q−1)|Ω|]−1/(q−1)×
(T̃ − t)−1/(q−1) is a supersolution of (2) provided that

|u0|∞ 6
[
(q − 1)|Ω|

]−1/(q−1)
(T̃ − t)−1/(q−1),

where u0 is the initial data of (2). In fact,

Pū = ūt(x, t)−
[ ∫
RN

J(x− y)
(
ū(y, t)− ū(x, t)

)
dy +

∫
Ω

ūq dx− kūp
]

>
1

q − 1

[
(q − 1)|Ω|

]−1/(q−1)
(T̃ − t)−q/(q−1)

−
[
(q − 1)|Ω|

]−q/(q−1)
(T̃ − t)−q/(q−1)|Ω|

= (q − 1)−q/(q−1)
[
|Ω|
]−1/(q−1)

(T̃ − t)−q/(q−1)

− (q − 1)−q/(q−1)
[
|Ω|
]−1/(q−1)

(T̃ − t)−q/(q−1) = 0.

Therefore, by comparison principle, we derive u(x, t) 6 ū = [(q − 1)|Ω|]−1/(q−1) ×
(T̃ − t)−1/(q−1) for any (x, t) ∈ Ω × (0, T ). This implies that

max
x∈Ω

u(x, t) 6
[
(q − 1)|Ω|

]−1/(q−1)
(T̃ − t)−1/(q−1). (27)

Now, letting T̃ → T in (27), we have

max
x∈Ω

u(x, t) 6
[
(q − 1)|Ω|

]−1/(q−1)
(T − t)−1/(q−1). (28)

The proof is now completed.

Proof of Theorem 2. The proof is divided into two different cases.

(i) q = p > 1. Assume that k is small enough such that

kMp <

∫
Ω

ψq(x) dx.

http://www.mii.lt/NA
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Let w(x, t) = g(t)ψ(x), where g(t) satisfies the following ODE problem:

g′(t) +
kMp −

∫
Ω
ψp(x) dx

M
gp(t) + λ1g(t) = 0, t ∈ (0, T ),

g(0) = g0 > 0
(29)

with g0 > 1 and large enough. By p > 1 and hypothesis (29) we have that g(t) is not
decreasing, and there exists 0 < T ∗ < +∞ such that limt→T∗ g(t) = +∞. Hence, we
can infer that w(x, t) is the subsolution of (2) provided that g0 6 minx∈Ω̄ u0(x)/M . In
fact, with the help of q = p, we readily find that

Pw = wt(x, t)−
[ ∫
RN

J(x− y)
(
w(y, t)− w(x, t)

)
dy +

∫
Ω

wp dx− kwp
]

6 ψ(x)

[
g′(t) +

kMp −
∫
Ω
ψp(x) dx

M
gp(t) + λ1g(t)

]
= 0.

Thanks to Lemma 4 and taking u0 conveniently large, we derive that u(x, t) > w(x, t)
for any x ∈ Ω and t < T ∗. Since w blows up in finite time T ∗, we have that u blows up
in finite time T̃ 6 T ∗.

(ii) q > p > 1. Suppose that u(x, t) is the solution of (2) with the initial datum u0(x)
and

B =

[
kMp

2
∫
Ω
ψq(x) dx

]1/(q−p)

.

By q > p > 1 we can choose A > 0 appropriately large such that

λ1M +ApMp −Aq
∫
Ω

ψp(x) dx 6 0,

Am >

[
kMp

2
∫
Ω
ψq(x) dx

]1/(q−p)

= B.

Setting w(x, t) = Aψ(x). Then by the arguments as those in the proof of the first case of
Theorem 1, we can getw(x, t) is the subsolution of (2) provided that minx∈Ω̄ u0(x)/M >
A. Invoking Lemma 4 to (2), we derive

u(x, t) > Aψ(x) >

[
kMp

2
∫
Ω
ψq(x) dx

]1/(q−p)

.

Therefore, u(x, t) satisfies

ut −
∫
RN

J(x− y)
(
u(y, t)− u(x, t)

)
dy − kMp

2
∫
Ω
ψp(x) dx

∫
Ω

up dx+ kup > 0,
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that is, u is the supersolution of

vt −
∫
RN

J(x− y)
(
v(y, t)− v(x, t)

)
dy − kMp

2
∫
Ω
ψp(x) dx

∫
Ω

vp dx+ kvp = 0. (30)

On the other hand, according to the results of the above (the case p = q), we can conclude
that the solution of problem (30) blows up. Thus, it follows from the comparison principle
that the solution u(x, t) of (2) blows up in finite time.

Now we discuss the blow-up rate, that is, the speed at which solution blows up.
Applying Lemmas 5 and 6, we can derive the blow-up rate.

In the following, we deal with blow-up versus global existence of solutions to prob-
lem (1).

3.2 Blow-up versus global existence for the Neumann problem

In this section, we analyze the blow-up phenomenon arising in the Neumann problem (1).

Proof of Theorem 3. The idea of the proof is to construct the suitable supersolution of
problem (1). Indeed, assume that u(x, t) is the solution of (1) with the initial datum u0(x).

The proof is divided into two different cases.
(i) q < 1. Let z(t) be the solution of

z′(t) = zq(t)|Ω|, t > 0,

z(0) = z0 > 0, q < 1.
(31)

Obviously, z(t) is a supersolution of problem (1). Therefore, by the comparison principle,
every solution to problem (1) is global.

(ii) Other cases. Let f(t) be the solution of (10). It is clear that f(t) can be taken as
a comparison function of problem (1). Hence, we can get the conclusion.

Proof of Theorem 4. Employing Lemmas 5 and 6, we can easily derive the blow-up
rate.
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