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Abstract. In this paper, an almost learning curve (ALC) model is presented. This provides a more
accurate approximation of the production data than the traditional log-linear learning curve model.
The proposed ALC model is based on the solution of differential equations and still has all the
necessary log-linear learning curve function properties. The ALC model was tested on the wiring
harness manufacturer production data. Findings suggest that the ALC model approximates data
accurately and is superior to the classical learning curve (CLC) for various manufacturing situations.
Moreover, the use of the ALC showed an additional insight into the analysis of learning and skill
development.

Keywords: mathematical modeling, differential equation, optimization of data fitting, learning
curve.

1 Introduction

The performance of a manual task improves as the task is repeated until maximum per-
formance is reached. Mathematically the learning is defined by a certain function i.e.
learning curve (in this article classical learning curve – CLC) which shows a time (or
cost) decrement as the argument (number of units) increases. This learning phenomenon
was firstly reported by Wright [30] after studying the assembly of airplanes. Since then,
CLC has become an important industrial engineering topic and has been used for pre-
dicting future costs, analyzing and controlling the performance and efficiency of certain
individuals, groups, organizations etc. The usage of CLC has spread from industrial
manufacturing to other fields, such as healthcare institutions, military, education, training
and other sectors, however, manufacturing, especially manual assembly based industry,
is at the top of the interest. Initially, CLC was used to predict and forecast operating
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time and production cost decrement as production continues [3]. Since manufacturing is
shifting from mass production with high production volume and low diversity to LEAN
production and Mass Customization with small production quantity and almost endless
variety of products, the manual assembly based production systems are encountering
serious issues, mainly caused by the never ending learning phase; quantities are just too
small to complete it and the time designated for learning constitutes a major part of the
total task processing time [19]. As reported in various articles [1], this is the reason why
CLC problems are re-emerging as the important issue among production researchers. This
new production environment has several remarkable aspects such as prototype production,
order quantity fluctuations, demand based production, production orders in random and
long-time intervals. Therefore, traditional CLC models became inapplicable for such
situations and there is an obvious need for more accurate models [6].

The goal of this article is to create a versatile CLC model based on the generalized
power model. The new model should be applicable to most manufacturing situations.
Classical power model used by many researchers possess several drawbacks. This model
is unbounded, it lacks flexibility and these reasons make CLC model insufficient to deal
with certain issues in the new production environment, such as planning, scheduling,
optimal order quantity calculation, managing ramp-ups in production etc. The main idea
about new learning curve model is to add one or several additional parameters to the
model, while keeping all the properties of the CLC. These new parameters would im-
prove curve fitting, on the other hand, there would be the possibility to assign for these
parameters an appropriate meaning from the particular manufacturing situation.

The proposed generalized model is based on the solutions of special (with perturba-
tion parameter) differential equations. These solutions define the almost learning curves
(ALC). This definition was proposed by Lowenthal [21]. However, Lowenthal did not de-
termine sufficient conditions for the perturbation parameter values which enable ALC to
have all main properties of the power model (CLC). In this research, sufficient conditions
for the perturbation parameter and other parameters of the ALC are determined. Also,
mathematical analysis of the ALC is performed to explore the versatility possibilities and
establish the foundation of such ALC modeling. Proposed model is tested by experimental
data from the wiring harness manufacturing company.

The article is organized in the following order: the brief review of CLC models is
presented in the following section, mathematical modeling of the ALC is presented in
Section 3, application results and discussion is given in Section 4, and lastly the conclu-
sions are presented in Section 5.

2 Brief review of the CLC models

Wright [30] proposed a cumulative average learning curve (CLC) based on power func-
tion. During the next decades many other models were proposed such as Crawford model,
DeJong model, Plateau model etc. [4, 11]. All mentioned traditional models are widely
applied and available in the literature [1, 2, 4, 6, 11, 31].
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Wright model is the most popular and has very broad application possibilities, how-
ever many drawbacks of this model exists, therefore CLC research is open for improve-
ments. Superiority of power function as the best fit for a production data has been proved
by intensive study and data [23], although some authors [10] proposed exponential func-
tion to define learning. Other authors [20] reported the limitations of the traditional CLC
models and proposed analytical model to calculate impact of knowledge depreciation
and plateauing phenomena to total processing time. Smunt [27] continued to unravel
shortcomings of the conventional CLC by eliminating misunderstandings of the CLC
application and proposed mid-unit CLC model on the result. The research [29] estimated
that errors due to misunderstandings and misapplications of traditional CLC might reach
up to 30% and proposed a theory for the correct application. On the other hand, a
universal calculation algorithm was proposed in work by Janiak and Rudek [17]. This
algorithm avoids major drawbacks of CLC fitting to particular production data, because it
is open to any CLC model. Shortcomings and drawbacks of traditional CLC were being
solved by using a dual phase learning assumption. This was initially reported by Dar-El
et al. [5]. The idea is based on cognitive and motor improvements with different CLC’s
combined into the one model. The proposed model was further improved [13, 15]. Some
other authors [14] emphasized traditional CLC limitations arising with production stops
due to reworks and re-adjustments and also proposed the newly developed model. In
addition to this, Monfared and Jenab [22] proposed a CLC model to be applied in the
demand-based manufacturing, where traditional CLC might be not applicable. Proposed
model consists of double segment CLC with breakpoint.

Another group of researches encompasses forgetting phenomenon. Problems and
stoppages in manufacturing environment are causing a production breaks which appear
as forgetting phenomenon. The work [7] reported significant impact of breaks to the
forgetting. The next research [12] proposed the analytical method to predict this impact
and the performance after forgetting. The comparison of three different potential learning
forgetting models could be found in [16].

The studies [1, 2, 6] declared the need for the multivariate models. Even the Wright
based univariate CLC models dominate in the most literature, the advanced multivariate
learning model was presented recently in the work [25]. It seems that multivariate models
demand for rigorous research, although Badiru in [2] declared limitations of such a model
application. The majority of presented works deal with the individual learning curve.
However, group learning curves (GLC) are also considered [8]. Such curves recall multi-
variate learning models, because they combine different parameters of the individuals to
the general group parameters. Even this GLC model is promising it has limitations related
to quality issues and uncertainty.

Two main conclusions follow from the literature review. First of all, it is clear that
a large variety of different models is available in the literature. The majority of them are
based on classical power model and the major question arise which model to use on par-
ticular manufacturing situation. Recent work [9] proposed a meta-analysis to answer this
question i.e. to facilitate decision of learning curve selection. However, selecting one of
existing models does not improve the model itself and the need to propose better learning
curve model still exists. Such an improvement might be achieved by implementing ALC.
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3 Mathematical problem formulation

In this section, a definition of the classical learning curve (CLC) and almost learning
curve (ALC) as solutions of the differential equations are presented. Since the CLC [27]
is defined as y(x, α, β) = βx−α, β > 0, 0 < α < 1, x > 1, CLC is the solution of
Cauchy problem

Lα(y) = 0, y(1, α) = β, (1)

where Lα(y) = y′ + αx−1y. Let the solution

y(x, α, β) = βx−α (2)

of problem (1) be a definition of CLC. Considering the more general Cauchy problem

Lα(y) = 0, y(x1, α) = y1, (3)

whose solution is
y(x, α) = xα1 y1x

−α, (4)

then β = y(1, α). The properties of the bundle (with respect to the α) of solutions (4)
follows from direct differentiation:

y ∈ C(2)[1,+∞) if x1 > 1, y1 > 0, α ∈ (0, 1),

y(x, α) > 0, y′x(x, α) 6 0, y′′x(x, α) > 0, (5)

ya = lim
x→+∞

yh(x, α) > 0. (6)

Analyzing the Cauchy problem

Lα(w) = εx−r, r > 1, y(x1, α) = y1, (7)

then the function

w(x, α, ε, r) = x
s(α,r)
1

[
c(α, r)− ε
s(α, r)

]
x−α +

ε

s(α, r)
x1−r (8)

is a solution of (7). Here s(α, r) = α+ (1− r), c(α, r) = xr−11 y1s(α, r).
Stating sufficient conditions for parameters α, ε and r such that solution (8) satisfy

(5)–(6). Such solutions are called the ALC. In addition to this, conditions when solu-
tion (8) have positive horizontal asymptote (i.e. plateauing phenomenon [18, 28]). Note
that, under conditions x ∈ [1,+∞), α ∈ (0, 1), r ∈ [1,+∞) and ε ∈ (−∞,+∞),
solution (8) exists and is unique, because α/x, ε/xr ∈ C(0)[1,+∞) [26].

Proposition 1. Under the condition

(α, ε, r) ∈ D1 =
{

1 6 r < 2, α0(r, ε) < α < 1, 0 6 ε 6 c(α, r)
}

(9)

(where α0 = ε(xr−11 y1)−1 + (r − 1)), the Cauchy problem (7) solution (8) is ALC.
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Proof. Introducing the following notation:

C1 =
c(α, r)− ε
s(α, r)

, C2 =
ε

s(α, r)
, C3 =

ε(r − 1)

s(α, r)
, (10)

then from (8) we have

w(x, α, ε, r) = xs1C1x
−α + C2x

1−r, (11)

w′x(x, α, ε, r) = −αxs1C1x
−(α+1) − C3x

−r, (12)

w′′x(x, α, ε, r) = α(α+ 1)xs1C1x
−(α+2) + C3rx

−(r+1). (13)

From (11)–(13) follows that if

C1 > 0, C2 > 0, C3 > 0 (14)

for all x > 1, then functions w > 0, w′x 6 0, w′′x > 0 for all x > 1.
If (α, ε, r) ∈ D1, then ε > 0; c(α, r) > 0, s(α, r) > 0 if α > r − 1; α0 > r − 1 and

c(α, r)− ε > 0.
C1 > 0, because C1 is a strictly monotone increasing with respect to α ((C1)′α =

ε/s(α, r)2 > 0, because ε > 0), and C1 = 0 when α = α0. From s(α, r) > 0 and
(r − 1) > 0 follows that C2 > 0, C3 > 0.

Showing that D1 6= ∅. By integrating the function c(α, r) with respect to α, results in

mesD1 =

1∫
α0

c(α, r) dα > 0, (15)

because c(α, r) > 0 and always exist ε > 0, that 0 < α0 < 1. The equation of horizontal
asymptote for solution (11)

wa = lim
x→+∞

ε

s(α, r)
x1−r =

{
ε/α > 0 if r = 1,

0 if 1 < r < 2.
(16)

Proposition 2. Under the condition

(α, ε, r) ∈ D2(r) =
{
r > 2, 0 < α < α0(r, ε), 0 > ε > c(α, r)

}
, (17)

Cauchy problem (7) solution (8) is ALC.

Proof. If (α, ε, r) ∈ D2, then ε 6 0; c(α, r) 6 0, s(α, r) 6 0 if α 6 r − 1; α0 6 r − 1,
and c(α, r) − ε 6 0. C1 > 0, because C1 is a strictly monotone decreasing with respect
to α ((C1)′α = ε/s(α, r)2 < 0, because ε < 0) and C1 = 0 when α = α0. From
s(α, r) < 0 and (r − 1) > 0 follows that C2 > 0, C3 > 0.
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Figure 1. Domain D1(r) when 1 6 r < 2. Figure 2. Domain D2(r) when r > 2.

Showing that D2 6= ∅. By integrating the function |c(α, r)| with respect to α, results
in

mesD2 =

1∫
α0

∣∣c(α, r)∣∣dα > 0, (18)

because c(α, r) < 0 and always exist ε < 0 that 0 < α0 < 1. The equation of horizontal
asymptote for solution (11)

wa = lim
x→+∞

ε

s(α, r)
x1−r = 0, (19)

because (1− r) < 0.

At the end of the section, calculation examples of domains D1(r) and D2(r) are pre-
sented. If x1 = 4, y1 = 5, ε = 2 and r = 1, then domainD1(r) is trapezoid with vertexes
(α0, 0), (1, 0), (1, c(1, r)), (α0, c(α0, r)) (see Fig. 1). If x1 =4, y1 =5, ε=−8 and r=2,
then domain D2(r) is trapezoid with vertexes (0, c(0, r)), (1, c(α0, r)), (1, c(α0, r)),
(0, 0) (see Fig. 2). Here c(α, r) = xr−11 y1(α+ 1− r) and α0 = ε(xr−11 y1) + (r − 1).

4 Results and discussion

Created ALC models were tested on certain production data that was monitored at the
manufacturing company. The company produces wiring harnessing products for automo-
tive industry. Since the production is mostly manual (automated assembly is just unprof-
itable for low quantity orders) therefore, company is suffering heavy nonlinear assembly
rates at the production processes. This company produces enormous variety of different
harnesses (more than four thousand) for auto industry and the customer demand is fluc-
tuating and changing rapidly for each product and also the demand of particular wiring
harnesses sharply differs from each other: from one piece per year, to several hundred per
month. As a result, several types of manufacturing layouts are applied, from assembly
line to singular prototype production. The company also possesses sophisticated total
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productivity maintenance system (TPM) which enables to collect and analyze variety of
production data and to monitor the whole production cycle: from the beginning to the
phase out of the certain wiring harness. Monitored data is presented in such form:

x(i), y(i), x(i) < x(i+1), i = 1, 2, . . . , N, (20)

where x is number of unit, y is processing time of the xthunit. Let X = (x(1), . . . , x(N))
and Y = (y(1), . . . , y(N)) are experimental data (20).

Let Yopt = (yopt(x
(1)), . . . , yopt(x

(N))) and Wopt = (wopt(x
(1)), . . . , wopt(x

(N)))
are recovered results by using models (3), (7). The accuracy of approximation is measured
by relative norm [24]

δy =
‖Yopt − Y ‖
‖Yopt‖

, δw =
‖Wopt − Y ‖
‖Wopt‖

,

where ‖X‖ =
√∑N

i=1(x(i))2 is Hilbert–Schmidt norm.
To compare the developed ALC model (8) with a traditional CLC model, first of all an

optimal CLC is obtained for the experimental data (20). The optimal parameters of CLC,
i.e. coefficient αy and the number n of the data point xn, which minimizes norm δy , are

arg min
0<α<1

xi, 16i6N

δy =

[
αy
n

]
. (21)

Then the norm δy can be calculated from the solution (4) of the Cauchy problem
y(x(n), αy) = y(n). The optimal parameters of ALC, i.e. αw, εw and rw, which mini-
mizes norm δw, are

arg min
0<α<1
ε∈Di(r)

δw =

αwεw
rw

 , (22)

where Di(r), i = 1, 2, is domain of constraints for αw, εw, rw. Then the norm δw can be
calculated from the solution (8) of the Cauchy problem w(x(n), αw, εw, rw) = x(n). The
accuracy of the data approximation by models CLC and ALC is compared by ∆ = δy/δw.
It is assumed that feasible relative error value is 5%.

The proposed ALC model was tested on numerous of production data sets. Three
situations of the production data analyzed can be defined:

1. Repetitive orders taking place in long time and random intervals;
2. Orders with low volume, prototype production;
3. Orders with high volume.

Since many data sets were analyzed, to show the performance of the ALC model;
three different examples are presented for each group of production data.

The largest group of all of the company’s products is the repetitive orders arriving in
random and longtime intervals. This means that operators are familiar with the product,
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Figure 3. CLC and ALC fitting for repetitive orders taking place in long time and random intervals.

Figure 4. CLC and ALC fitting for orders with low volume (prototype production).

however they do need time to remember the assembly at the beginning of the production
cycle. The typical data set representing this situation is depicted in Fig. 3.

Figure 3 shows, how CLC model results fairly poor approximation to compare with
ALC (see Table 1). CLC improves gradually, however perturbation parameter in ALC
enables to approximate steeper improvement of the operating time.

Other groups of production orders are small order production and prototype produc-
tion. These orders are mostly singular, with quantities up to 20 pieces. The example in
Fig. 4 presents such production data.
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Table 1. Comparison of CLC and ALC approximation results.

Experiment Fig. 3 Fig. 4 Fig. 5
N 10 8 21
n 5 1 10
Prod. qty. 122 14 2210
αy 0.2277 0.2961 0.5057
αw 0.0998 0.2657 0.0000
εw −6.5885 −2.4143 −28.9483
rw 3.7900 5.5750 2.0770
δy 8.80% 2.21% 14.91%
δw 3.47% 1.73% 3.73%
δy/δw 2.54 1.28 4.00

Figure 5. CLC and ALC fitting for orders with high volume.

Please note that on such data, both methods show fairly good results and provide ac-
curate approximation, although, ALC shows slightly better result than CLC (see Table 1).

The last group of significant wiring harnesses is those with high volume orders. These
harnesses possess orders up to several thousand pieces. A typical example of such pro-
duction data is presented in Fig. 5.

Needed to emphasize that in this group the stabilization of operating time exists. This
stabilization is known as the plateauing phenomenon and can obviously be identified in
the high volume orders of this company’s production. In addition, CLC is unsuitable for
such data approximation (relative error is higher than 5%); however ALC shows quite ac-
curate results and confirms the adequacy by falling within the limits of the feasible relative
error value (see Table 1). CLC again improves gradually when perturbation parameter in
ALC enables approximation of assembly time stabilization.

In general, ALC shows significantly better curve fitting results than CLC for all
examples analyzed. In other words, ALC approximates real manufacturing data more ac-
curately. There are several reasons for this result. First of all, the limitations of CLC model
became clearly visible in the new manufacturing environment. Moreover, additional pa-
rameters introduced to ALC made this model more flexible and versatile and resulted

Nonlinear Anal. Model. Control, 21(6):839–850
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more accurate fitting results. Also, in CLC there are two parameters with certain meaning
α – learning slope, β – assembly of the first unit). In ALC, there are more parameters with
open meaning, therefore, these parameters became pure curve fitting parameters. This is
an advantage in curve fitting, on the other hand, it becomes complicated to understand
the particular meaning of each parameter used in ALC. For instance, parameter α in ALC
and CLC only for prototype data is somewhat similar (Table 1), but remaining parameters
are not equal to zero, so they have impact to ALC. It means that parameter α has different
meaning in ALC and CLC. The meaning of the remaining ALC parameters (ε and r)
should be also identified in a view of manufacturing environment.

5 Conclusions

In this paper, an almost learning curve model is presented; model allows more accurate
approximation of production data than traditional CLC model. The proposed ALC model
is based on the solutions of special (with perturbation parameter) differential equations.
Additional variable (perturbation parameter) improves versatility of the production data
fitting. Sufficient conditions for the perturbation parameter and other parameters of ALC
that enable ALC to have all necessary CLC properties are determined.

Proposed ALC model was tested on the wiring harness manufacturer production data.
This company was selected due to the fact that it suffers heavy non-linear production
rates. Three different groups of products were analyzed: repetitive orders taking place in
long time and random intervals; orders with low volume, prototype production; orders
with high volume. For repetitive orders and high volume orders with steeper operating
time improvement and further stabilization, developed ALC model approximated data
definitely better than classical LC. For the small order production (prototypes, small
series) both models LC and ALC delivered fairly the same approximation results. This
proves ALC model versatility.

Use of the ALC showed an additional insight into the analysis of learning and skill
development. Data analysis performed in this research confirmed the adequacy of ALC
model and its superiority over CLC, thus completing the objective of this article. Such
modeling has an important managerial insight, because ALC provides more accurate
data approximation than existing learning curve models. Therefore, these models have
a wide application possibilities in production planning and scheduling, control, batch size
optimization and other production problems.

Even the adequacy of ALC is proved, the application of it has some limitations. First
of all, the perturbation parameter is not fixed. In other words, before the implementation
an excessive data analysis should be performed in order to estimate parameters necessary
for the application. Also, some changes and adjustment for perturbation parameter might
be needed as well. Therefore, additional data analysis is required to fully understand
ALC parameters and their relation with particular manufacturing environment. Moreover,
all the parameters considered in ALC are deterministic, it is important to analyze ALC
performance under uncertainty as well. These topics should be considered for the further
research.
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