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Abstract. The issue of mathematical modelling of non-spherical shapes of particles is considered.
Thus, application of the spherical harmonics (SH) technique in modelling the simplest symmetric
star-shaped particles is demonstrated by applying low-resolution functions. The investigation was
restricted to a circular cylinder and a rectangular parallelepiped, geometrically primitive, but
widespread oblate industrial shapes. The modelling quality was studied by considering selected
error norms and the most important integral characteristics of a particle geometry, including the
surface area and volume. The presented results discovered new features of the spherical harmonic
technique and enhanced understanding of their applicability to describe non-spherical shapes.

Keywords: low-resolution spherical harmonics, symmetric star-shaped particles, circular cylinder,
rectangular parallelepiped.

1 Introduction

Mathematical modelling and information technologies play an important role in many
areas of sciences and engineering. Among many specific applications, particulate solids,
especially granular materials, could be distinguished. They present a huge class of mate-
rials widely used in chemical, pharmaceutical, food and other industries.

An important property of particulate solid is the shape of particle. The research ad-
dressing the characterisation and mathematical description of a particle shape concerns
basically non-spherical shapes. Recently, many different mathematical models, that con-
stitute particle shapes, have been systematically formulated and utilized by applying
computational and information technologies.

One of semi-analytical methods, spherical harmonic functions (SH), have gained
much interest due to their contribution in many fields. The three-dimensional mathemat-
ical analysis of particle shape, using spherical harmonics with application to aggregates
used in concrete, was started by Garboczi [9]. Here, mathematical aspects of spherical
harmonic series were also provided. The investigation of SH, especially in combination
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with the available imaging technique, was continued in a series of works by Garboczi and
his co-workers. The method was successfully applied in the description of sand [15] or
even to quite specific lunar regolith particles [10]. SH principally works with star-shaped
particles and various shape indicators were considered in [3, 11]. Contribution of other
authors could also be pointed out [7, 18].

Computational models of granular solids are developed within the framework of the
discrete element method (DEM). DEM presents the Lagrangian type modelling technique
pioneered by [5] that offers a direct way of investigating solution by tracing the motion of
individual particles numerically, i.e. by computing positions, angular rotations, velocities,
forces, and all other estimates in time. It has been defined that the behaviour of particles
during motion and inter-particle contacts mostly depend on their shapes. The standard
DEM framework was elaborated on the basis of a spherical particle. Critical reviews of
recent developments in DEM with advances in the formulation and implementation of
particle shape models are given in [6,14,16]. The recent study is aimed to demonstrate the
basic features of spherical harmonic modelling methodology, addressing the applicability
of low-resolution spherical harmonics to describe a symmetric particle shape, limited by
the expansion degree L = 3.

The paper is organised as follows. A unified modelling methodology and data struc-
ture, demonstrating the hierarchy of models, is developed and described in Section 2.
A detailed SH analysis of two very popular representative shapes of industrial particles
with sharp edges, i.e. circular cylinder and rectangular parallelepiped, is presented in
Sections 3 and 4, respectively. The comparison of the study of selected shapes of varying
flatness is shown in detail in Section 5, while conclusions are drawn in Section 6.

2 Methodology of spherical harmonics

2.1 A modelling concept

A particle is assumed to be a continuous star-shaped 3D body obeying the symmetry,
where at least one symmetry plane exists. It is described in the local frame of reference,
while two local coordinate systems – Cartesian coordinatesOxyz or spherical coordinates
Orϕθ with their origin positioned in the centre of mass – can be simultaneously applied
to describe the particle. When applying spherical coordinates, the position of a point is
defined by the polar radius r and two polar and azimuthal spherical angles, ϕ and θ,
varying within the limits 0 6 ϕ 6 2π and 0 6 θ 6 π, respectively. The coordinate
frame and positioning of point p, defined by the Cartesian coordinates xp and spherical
coordinates rp, ϕp and θp, are shown in Fig. 1.

The direct relationship allows a parametric evaluation of Cartesian coordinates

x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ. (1)

An inverse relationship to spherical coordinates

r =
(
x2 + y2 + z2

)
, ϕ = tan−1

y

x
, θ = cos−1

z

r
(2)

could also be used.
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Figure 1. Coordinate frame and positioning of
the point p.

Figure 2. Scheme for the numerical integration.

The modelling concept elaborated and applied hereafter operates systematically with
the specified surfaces manifested in terms of three categories, namely, original, reference,
and actual. These different categories are characterised by different mathematical mod-
els, and they are considered at different modelling stages. The original model, denoted
hereafter by S, presents a surface that exactly matches the particle shape. Explicitly, the
original surface in Cartesian coordinates is described as follows:

S(x) = 0. (3)

Referring to spherical coordinates, the original surface is described by the polar ra-
dius r, varying as a function of the polar angles ϕ and θ:

r(ϕ, θ) = SR(ϕ, θ). (4)

Another definition of the surface is referred to as the reference surface, denoted here-
after by R, which is assumed to be a discrete model of the original surface S. Since the
reference surface is only an approximated surface, it is not unique. The definition of the
reference surface assumes the existence of the family of k reference surfaces Rk, each
of which is denoted by subscript k, where k = 1, 2, . . . ,K. The reference surface Rk is
specified as a discrete set xk = {xk1, . . . ,xkp, . . . } consisting of the coordinates xkp of
p = 1, 2, . . . , Nk sampling points.

On the other hand, the reference surface can be formed by applying various modelling
strategies, denoting each particular strategy by a subscript q (q = 1, 2, 3, . . . ). As a result,
a double indexing of reference surfaces is applied, and each of them is denoted as Rqk,
but defined by the vector xqk.

Alternatively, the reference surface Rqk can be considered in spherical coordinates
and defined by the discrete values of the polar radius rqk = {rqk1, . . . , rqkp, . . . }. Using
Eq. (4), the reference surface Rqk can be related to discrete sets of spherical angles ϕqk

and θqk, characterising sampling points as follows:

rqk(ϕqk,θqk) = SR(ϕqk,θqk). (5)
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The actual surface, denoted hereafter by A, presents a semi-analytical approximation
of the original surfaces S, restricting to the description in spherical coordinatesA(ϕ, θ) ≈
SR(ϕ, θ), where the actual model A is presented by a truncated series, containing the
finite number M of terms. Here, each term aifi(ϕ, θ) is the product of unknown coef-
ficients ai and analytically specified polynomials fi(ϕ, θ), where i = 1, 2, . . . ,M . The
scalar product can be presented in the vector form:

A(ϕ, θ) = f(ϕ, θ)T · a. (6)

Here, unknown coefficients form a vector a = {a1, . . . , a2, . . . , aM}T, while polyno-
mials f(ϕ, θ) are formed in the same manner. The complexity level of the approximation
in Eq. (6) is defined by the number Mj of polynomials. Fixing hierarchically different
values of Mj , different actual models Aj(ϕ, θ) with the different complexity, defined by
the subscript j (j = 1, . . . , L), may be developed.

Each of the hierarchically developed actual surfaces Aj describes the original sur-
face S on the basis of the discretely defined reference surfaces Rqk. In summary, each of
the actual surfaces Ajqk(ϕ, θ) ≡ Ajqk(ajqk, fj(ϕqk, θqk)), apart from their complexity
level j, involves the properties of reference model Rqk reflecting the modelling strat-
egy q and the sampling model k. The evaluation procedure is implemented, however, by
approximating the reference surfaces Rqk.

2.2 Spherical harmonics expansion

To develop a modelling technique and to characterize the actual surface of a particle,
the spherical harmonics expansion will be considered. A formal approach to spherical
harmonics may be easily found in purely mathematical [17] or specific particle shape-
oriented applications [7,9]. Spherical harmonics are complex functions, but only the real-
valued terms, obtained by separating imaginary and real parts, are used in this application.
Applying them, the actual surface defined by Eq. (6) is transformed to the SH expression

A(ϕ, θ) ∼=
L∑

l=0

l∑
m=−l

aml Y
m
l (ϕ, θ). (7)

The maximal order of the spherical harmonic expansion is usually defined by an
integer parameter called the expansion degree L. Consequently, each expansion term
aml and Y m

l (ϕ, θ) is characterised by two indices. The subscript l (l = 0, 1, 2, . . . , L)
indicates the expansion degree, while the superscript m (m = −l, . . . , 0, . . . , l) indicates
the order of spherical harmonics.

It is obvious that the expansion degree L predefines the number of actual models j
(j = 1, 2, . . . , L), while the total number of terms is defined as

M =

L∑
l=0

(2l + 1) = (l + 1)2. (8)

The expressions of spherical harmonics expansion are adapted to plane symmetric
shapes of the body. Consequently, the original harmonics were characterized by their
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moduli and were described by the expressions adjusted as follows:

Y m
l (ϕ, θ) =


√

2Cm
l | cos (mϕ)Pm

l (cos θ)| if m > 0,

C0
l |P 0

l (cos θ)| if m = 0,√
2C
|m|
l | sin (|m|θ)P |m|l (cosϕ)| if m < 0,

(9)

where the expression Pm
l (cos θ) stands for associated Legendre polynomials [9], Cm

l is
a normalization constant given by

Cm
l =

√
2l + 1

4π

(l −m)!

(l +m)!
. (10)

The hierarchical structure of spherical harmonics specified by double indices l andm,
used in Eq. (7), should be utilised in Eq. (6) with respect to Eqs. (8)–(10).

2.3 Low-resolution harmonics

Application of spherical harmonics was basically focussed on capturing complex shapes
[7, 10, 12, 18], where the significance of higher resolution harmonics was emphasised. It
is noteworthy that the accuracy of a semi-analytical approximation model is controlled
by a suitable value of expansion degree L of spherical harmonics that depends on particle
shape. We shall examine the capabilities of the method looking for the performance of
low-resolution harmonics as a potential candidate for DEM applications. Several ad-
vantages related to the low-resolution harmonics are expected. They comprise relative
simplicity of the expression, limited with the finite number of terms, but also the unifica-
tion of modelling approach applicable to different shapes. To increase the approximation
accuracy of low-resolution harmonics, adaptive shape-related strategies will be examined.

To meet the simplicity requirements, we limit our investigation to the highest expan-
sion degree L = 3, defined by M = 16 coefficients. Now, the structure of expression
Eq. (6) is illustrated by the sample with L = 3 elaborating i (i = 1, . . . , 16) terms. The
vector of coefficients a = {a1, a2, . . . , ai, . . . , a16}T, relevant to spherical harmonics, is
defined according to Eq. (7). It illustrates a double indexing system and has the follow-
ing structure: a = {a00, a−11 , a01, a

1
1, a
−2
2 , a−12 , a02, a

1
2, a

2
2, a
−3
3 , a−23 , a−13 , a03, a

1
3, a

2
3, a

3
3}T,

while the polynomials fi ≡ Y m
l are formed by harmonic functions in the same manner.

The explicit expressions are presented in Table A.1 in Appendix.

2.4 Calculation of harmonic coefficients

The evaluation of polynomial coefficients Eq. (6) can be considered by exploring a linear
relationship between the reference and actual surfaces. Regarding expression (7) with
respect to Eqs. (8)–(10), Eq. (5) may be written as a linear matrix equation. Considering
an arbitrarily specified reference model Rqk, defined by fixed values of the sampling
points ϕqk and θqk, a linear equation reads as follows:[

Yj(ϕqk,θqk)
]
ajqk = rqk(ϕqk,θqk). (11)
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Here, [Yj ] stands for a rectangular transformation matrix, relating unknown coeffi-
cients ajqk with the discrete values rqk(ϕqk, θqk) of the original surface SR, defined at
the sampling points of the reference model.

The number of columns M of the transformation matrix is predefined by the expan-
sion degree L, obtained according to Eq. (8). The number of rows N is equal to the
number of sampling points. In general, the number of sampling surface points N > M is
large enough to meet the required precision. Generation of this matrix is rather a routine
task, because each column i of the matrix, corresponding to the specified harmonic term,
is filled with the values of harmonic functions Y m

l for the whole range of sampling points.
This evaluation technique has been recently demonstrated in [18].

Mathematical aspects of the approximation problem in Eq. (11) and solution prop-
erties are discussed in [4]. Using the matrix algebra, a solution is obtained by a rather
standard pseudo-inversion procedure

ajqk = [Yjqk]+SR,qk(ϕqk,θqk). (12)

Here, a pseudo-inverse matrix is formally defined by the expression

[Yjqk]+ = [Yjqk]T
(
[Yjqk][Yjqk]T

)−1
. (13)

Whenever the rank is lower, the solution of the above problem is non-unique. Con-
sequently, Eq. (11) yields a non-unique set of coefficients. In this case, the generalised
Moore–Penrose pseudo-inversion approach is applied further in the evaluation of a unique
set of coefficients.

It could be mathematically shown (see [4]), that the pseudo-inversion in Eq. (12)
is equivalent to the least-squares approximation. The quality of approximation could be
estimated by the least-squares error norm.

2.5 Descriptors of a particle shape

Various particle parameters and descriptors can be used for characterizing a particle shape.
Deviation of the actual surface from the original shape is a natural descriptor. When
applying spherical coordinates, such a descriptor D(ϕ, θ) is identified with a continuous
error between the original and actual surface.

The main weakness of the arbitrarily discrete error descriptor is that it minimises
errors at sampling points, while the in-between error is not controlled. For increasing
robustness of descriptors, a reference threshold model, denoted hereafter by the abbrevi-
ation thr, is introduced. It is defined by a dense grid, the number of sampling points Nthr

of which is substantially larger as compared to that of reference models used for approxi-
mation purposes, and locations of these points are different. As a result, deviation of the
actual surface from the original one, described in Eq. (11), is estimated by deviations at
each point p from the reference threshold. An arbitrarily actual surface is characterised by
a discrete descriptor, calculated with respect to the reference threshold

Djqk(ϕthr,θthr) =
[
Yj(ϕthr,θthr)

]
ajqk − rqk(ϕthr,θthr). (14)
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Characterisation of the actual model, obtained using a specified discrete set, is per-
formed further in terms of Euclidean and maximal error norms. The Euclidean norm

‖Djqk‖2 =

(
Nthr∑
p=1

Djqk(ϕp,θp)2

)1/2

(15)

is applied in evaluating the suitability of the model over the entire domain. A more
sophisticated normalized least-squares error norm of surface weighting was used in [7].
The maximum error norm

‖Djqk‖∞ = max
p=1,Nqk

Djqk(ϕp,θp). (16)

characterises the local deviations.
Another category of descriptors, the surface area A and the volume of particle V , are

the most often applied integral quantities. Theoretically, the surface area of the particle
is considered in spherical coordinates by integrating the surface over the entire angular
subdomain. Numerical integration procedure was utilised on the basis of the reference
model, where cells are formed by a polar grid (Fig. 2). Splitting a cell into a patch of four
triangles, the discrete surface is composed of triangles.

Geometry of a triangle is defined by three vectors of three vertices, the point coor-
dinates of which are given by the vectors x1 = {x1, y1, z1}T, x2 = {x2, y2, z2}T, and
x3 = {x3, y3, z3}T. The area of this triangle embedded in a three-dimensional Cartesian
space is expressed as a modulus of the vector product

Atr =
1

2

∥∥(x3 − x1)× (x2 − x1)
∥∥. (17)

Calculation of the volume follows the same path. Since the triangles are already
formed, calculation of the entire volume for the whole body is equal to the sum of all
volumes of pyramids. Applying vector algebra, the volume of a pyramid is calculated as
a mixed triple product of coordinate vectors of the surface triangle

Vpyr =
1

3
x1 · (x2 × x3). (18)

2.6 Modelling strategies for specified shapes

In practical situations, the accuracy of a specified shape described by spherical har-
monics depends not only on the complexity of expansion, but also, even more, on the
suitability of the reference model. The issue on formation of the reference surface Rqk

involves two steps: 2D positioning of sampling points, defined by the vectors ϕqk and
θqk in the ϕθ-subspace, and calculation of surface points in the three-dimensional space
rqk(θqk,ϕqk) applying Eq. (4). The choice of a reference model may be considered as
mathematical parameterization of a mesh representing the surface.

The problem, however, is not strictly mathematical, while the practical implementa-
tion of positioning comprises heuristic arguments formulated in terms of an appropriate
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modelling strategy. Each of the strategies conditionally denoted by a subscript q stands
for a heuristic rule how to construct a grid by generating different sets k (k = 1, 2, . . . ,K)
of sampling points ϕqk and θqk. Each new set of points k + 1 is obtained on the basis of
the previous set k.

For practical implementation of the positioning, several strategies aimed to specify
low-resolution harmonics are elaborated and tested numerically. Each of the strategies
is based on specified assumptions. The grid-based strategies employ a concept of grid
that covers a modelling sub-domain dividing it into cells, while the sampling points are
embedded into nodes of the grid. By applying the sequential refinement strategy, a finer
grid is formed by a regular sub-division of grid cells. The strategy offers a relatively
simple method, however, the discussion presented in [17] points out the difficulties to
predict the size of a cell that satisfies the given tolerance.

An adaptive refinement strategy forms an irregularly shaped family of grids, where
the size of cells varies according to the specified rules. The character of surface should
be taken into account, and the size of grid cells is adapted to match the variation of the
surface.

The Gaussian point strategy is applied to generate a surface using the Gaussian in-
tegration points as sampling points. In general, the Gaussian points present a part of
the numerical Gaussian quadrature integration method. The practical application of this
technique in the particle shape analysis is reported by Garboczi [9], however, it is limited
to a relatively high order quadrature with a large number up to 120 points. The efficiency
of this technique meant for low harmonics is of our interest.

3 SH modelling of a circular cylinder

3.1 Modelling approach

Historically, DEM started with the most suitable shape, i.e. a perfect sphere. Recently,
a circular cylinder and a rectangular parallelepiped (Fig. 3) are frequently used for mod-
elling of particles. The circular cylinder (Fig. 3a), is classified to a specific category of
particle shapes used in DEM [13].

The cylinder refers to the Cartesian coordinates, where the central axis of the cylinder
coincides with the Cartesian axis Oz. The cylinder body is limited by cylinder surface
and two perpendicular cut-planes z = ±c. In Cartesian coordinates, the cylinder surface
is described by the continuous non-smooth function Scyl(x) described by Eq. (C1). The
surface has a sharp circular edge in the section of surface with planes. Alternatively, the
cylinder surface SR,cyl(θ, ϕ) may be in spherical coordinates by Eq. (C2). It is obvious
that this equation is a one-dimensional non-smooth equation with a singularity at the line
θ = θcyl,ed. The value of the singular azimuthal angle is

θcyl,ed = tan−1
a

c
. (19)

In our case, Eq. (19) acquires the value θcyl,ed = tan−1 2 = 0.3524π.
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(a) (b)

Figure 3. Simplest symmetric non-spherical shapes with c = 1 and a = 2: (a) circular cylinder and (b) rectan-
gular parallelepiped.

3.2 Reference models

Modeling of a circular cylinder by low-resolution spherical harmonics of the order L=3
is investigated. Generally, only symmetric part of the cylinder z > 0 is considered.
In spherical coordinates, the surface is interpreted as two-dimensional θ-ϕ subdomain,
where a cylindrical surface is defined by Eq. (C2). A cylinder presents the axi-symmetric
surface SR,cyl(ϕ, θ) ≡ SR,cyl(θ), therefore, it is constant along the polar angle. On the
other hand, spherical harmonics approximation has two-dimensional character, and local
deviations are seen in SH model.

The illustration of numerically generated reference models, obtained by various strate-
gies q with different discretization models k, is given in Fig. 4. Here, the section of
cylinder defined by Eq. (C1) is drawn in Oxz Cartesian plane, where singularity in the
intersection of edges is clearly observed. Nodes positions are characterised by coordinates
x and z.

The refining strategy assumes that angular subdomain is covered with regular grid.
Illustration of the first strategy (q = 1) is given in Fig. 4a.

The second strategy (q = 2) is regular equidistance refining strategy supported with
four sequential schemes containing the data structure of previous sample is illustrated in
Fig. 4b. It presumes regular equidistance subdivision of the cylinder section profile with
constant cell size ∆l = (a + c)/nϕ yielding, however, variable angular size ∆θ. Here,
the sampling point matches exactly the singular intersection point.

The next strategy (q = 3) is selected to illustrate a technique, where the global adap-
tive refining is combined with the local refinement. Presented sample (Fig. 4c) demon-
strates the denser refining in the region near the singular point. The last strategy presents
the Gauss points strategy (q = 4), which is illustrated in Fig. 4d. This positioning presents
actually regular logarithmic refinement at the boundaries of modelling domain disregard-
ing internal singularity.

The reference threshold model denoted by thr is also considered as the most accurate
numerical model, which was obtained by generation of a regular rectangular grid covering
the angular θϕ-plane. The threshold model is characterised by total number of Nthr =
16250 of sampling points.
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(a) (b)

(c) (d)

Figure 4. Illustration of reference models showing locations of sampling points for cylinder generated with
different modelling discretization models k having radially varying number of cells n and various modelling
strategies: (a) strategy q = 1, regular equiangular grid refinement; (b) strategy q = 2, regular equidistant grid
refinement, (c) strategy q = 3, adaptive local grid refinement; (d) strategy q = 4, application of Gauss points.

The global quality is evaluated by Euclidian error norm. The choice of two local
criteria is motivated below showing that the sign of the local deviation has some physical
meaning leading to different particles properties.

3.3 Numerical results and discussion

A detailed comparison of all the above described qk reference models is shown in Ta-
ble 1. The results, obtained by applying the threshold model, are also presented for the
sake of comparison. Two types of descriptors, numerically calculated values and relative
deviations, are listed in the table. The global quality of SH approximation is essentially
evaluated by the normalized Euclidean norm ‖Djqk‖2 (column 5) obtained by Eq. (15).
The relative deviations δLS,jgk (column 6) are obtained with respect to the threshold error
value ‖Dthr‖2 = 0.9539. Additionally, the values of average deviations ‖Djqk‖av =
‖Djqk‖2/Nthr (column 7) are given in order to evaluate the approximation magnitude.
The most suitable values reflecting the minimal least-squares errors are marked with "∗".

Graphical information is also added in Fig. 5 to explain the numerical results. Here,
cross-sectional profiles r(θ), numerically calculated at the polar angle ϕ = 0, are plot-
ted. Exact analytically described profiles are also shown. The comparison of the best
profiles, obtained by various strategies, is illustrated in Fig. 5a. Contribution of the grid
refinements is illustrated in Fig. 5b, where four profiles, obtained by the adaptive grid
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(a) (b)

Figure 5. Illustration of SH approximation of cylinder, obtained by various strategies and different grids:
(a) cross-sectional profiles corresponding to the minimal least square-errors norms obtained by different
modelling strategies; (b) cross-sectional profiles obtained by the adaptive refinement strategy (q = 3).

refinement strategy (q = 3) with different numbers of positioning nodes listed in the
legend, are shown.

On the basis of the values of the least-squares error norms, several observations
could be manifested. It was found that the introduced locally adaptive refinement strategy
(q = 3) yields the minimal global deviations, characterised by quite a low error, about
2%. As to the other two schemes, the regular equidistance refinement (q = 2), yielding
a nearly logarithmic angular variation adaptive refinement of the grid in the vicinity of
the corner, prevails over the equidistance refinement strategy (q = 1). The Gauss point
strategy (q = 4) yields, however, very high errors in the range of 30%.

The global quality of approximation is also evaluated by calculating the surface areaA
and the body volume V . Thereby, the theoretical value of the surface area of cylinder
Acyl is obtained analytically according to Eq. (C4), while Vcyl according to Eq. (C3). The
values of surface areas Ajqk, numerically calculated according to Eq. (17), are listed in
column 10, while the volume values Vjqk, defined numerically by Eq. (18), are listed in
column 12. The relative deviations δA,jqk = |Acyl − Ajqk|/Acyl and δV,jqk = |Vcyl −
Vjqk|/Vcyl are evaluated by comparing both types of theoretical and numerical values.
The results show that volumes are calculated with a very high accuracy and the error
is below 0.01%. The accuracy of the surface area is lower. It has been found that, in
the optimal case, the surface area is obtained with the accuracy 1.3%, which is better
compared to the best least-squares estimation equal to 2.2%.

Instead of Eq. (16), two different, maximal and minimal, error norms were used to
characterise the local approximation quality in the vicinity of specified regions.

The values of local descriptors (Table 1, columns 8–9) illustrate that it is difficult to
find optimal refinement because a finer refinement of the grid not necessarilly improves
the approximation quality. The graphs in Fig. 5b demonstrate that the minimal error δLS ,
obtained by the adaptive strategy, minimises the local errors in the vicinity of the singular
corner, but increases deviation on the edges and especially on the symmetry planes. It is
obvious that the choice of the best strategy is not straightforward, while the smallest error
δLS = 2.3% was obtained with a denser grid. It could be noted that the minimal norm
‖D3qk‖min = 16.23% (column 9 in Table 1) is much higher as compared to the minimal
value that equals to 6.72%.
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(a) (b) (c)

Figure 6. Two-dimensional illustration of SH model quality for cylinder – contour plots of the surface: (a) exact
surface (Eq. (C2)); (b) SH approximation (L = 3); (c) descriptor D3 (L = 3).

To grasp the entire view, three-dimensional images of the particle surface SR(θ, ϕ) are
presented graphically in Fig. 6. Here, contour plots of the particle surface SR(θ, ϕ) over
two-dimensional angular θϕ-domain are shown. The exact surface, obtained by Eq. (C2),
is shown in Fig. 6a, the SH approximation, obtained by the strategy q = 3, is shown in
Fig. 6b. Exact surface is characterised by parallel lines. Approximated surface indicates
the local deviations in polar directions. Quantitatively, the values of radius at boundaries
are equal to cylinder sizes c = 1 and a = 2, while the maximal value

√
5 = 2.24

indicates location of the sharp edge θcyl,ed = 0.3524π obtained according to Eq. (19).
Axial symmetry is reflected by constant angular variation SR(ϕ) = const along the entire
sector 0 6 ϕ 6 π/2. Small, visually hardly detectable deviations of these lines on ϕ = 0
in Fig. 6b indicate numerical errors.

Detailed map of deviations corresponding to the definition of descriptor (14) is pre-
sented in Fig. 6c. It was found that deviations shown in figure have different consequences
for the future DEM applications. The first effect is related to the external deviations of
particle surface characterised by their positive values. They are of major importance in
particles analysis, since they indicate artificial increase of the effective particle volume.
This yields undesirable effects in particle packing problems. The highest value of the
deviations (Fig. 6c) on the cylinder end-section (θ 6 θed) could be interpreted as artificial
increase of cylinder height yielding ∆c = 0.0209. Thus, this deviation yields an increase
of cylinder volume ∆V1 = 2%. The highest values of the cylinder lateral side is ∆a =
0.0366 yielding the increase of volume ∆V2 = 3%. This sample shows that artificial
increase by 5% could be expected.

The other two effects are related to internal, or negative, deviations, which are char-
acterised by the minimum error norm ‖D3qk‖min. The negative deviations observed near
the symmetry axes of the cylinder are related to the loss of convexity of the surface as
a whole. This type of local deviations will have negligible effect for particles contact.
The third effect is attributed to the larger internal deviations detected in the vicinity of
the sharp edges or corners. This effect has positive consequences since concentration of
stresses in the contact of sharp corners may be diminished.
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4 SH modelling of the rectangular parallelepiped

4.1 Modelling approach

The second shape, a rectangular parallelepiped (Fig. 3b), presents a large group of poly-
hedral shapes [2, 16]. A parallelepiped presents a complex shape within three pairs of
mutually parallel planes intersections resulting in sharp edges and vortexes. To reduce
computational expenses, the sharp edges may be smoothed, and polyhedral shapes are
replaced with sphero-polyhedra [8, 16].

A rectangular parallelepiped is considered similarly as previously described cylinder.
The global shape is characterised by two sizes a and c. The surface is centered on the
origin. Considering spherical coordinates, the reference polar angle ϕ = 0 is oriented
along the face diagonal. Consequently, the parallelepiped occupies the subspace between
angles 0 6 ϕ 6 π/2. Finally, the surface of the parallelepiped SR,par(ϕ, θ) is described
by non-smooth Eq. (P2). Concerning azimuthal variation, the angular domain is divided
into two regions by the sharp edge θpar,ed(ϕ). The edge is parallel to the plane Oxy and
is described as follows:

θpar,ed(ϕ) =
tan−1(

√
2a/c)

cosϕ
. (20)

The volume and the surface area are defined by Eq. (P3) and Eq. (P4).
Contrary to the cylinder, rotational symmetry is not held, and the two-dimensional dis-

cretization of the angular subdomain in both angular directions is required. Two strategies
of the azimuthal refinement, assuming equiangular (strategy q = 2) and adaptive (q = 3)
refinements of the grid structure and yielding the minimal approximation error, are used
for further investigation. The illustration of the polar refinement is given in Fig. 7. Here,
the equiangular polar refinement (Fig. 7a) characterised by a constant cell size ∆ϕ and
the adaptive polar refinement (Fig. 7b) combined with the adaptive azimuthal refinement
are shown. The equidistance rectangular treshold model (Fig. 7c) with the total number
Nthr = 16380 of points is generated in order to avoid the coincidence of positioning
points. The points of the threshold model are explored further in the characterisation of
the actual model Ajqk.

Combination of the polar and azimuthal refinement allows constructing four new two-
dimensional strategies. To avoid confusion with previous notations, increased indexes for

(a) (b) (c)

Figure 7. Positioning of the sampling points on the face of a parallelepiped used in different modelling
strategies: (a) equiangular polar refinement strategy; (b) adaptive polar refinement strategy; (c) treshold
refinement.
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new strategies denoted further as q = 5, 6, 7, 8 were applied, i.e. strategy q = 5 means
combination of the equiangular polar and the equiangular azimuthal refinement, strategy
q = 6 means combination of the adaptive azimuthal refinement with equiangular polar
refinement, etc.

4.2 Numerical results and discussion

Numerical testing is aimed to find the best approximation by considering low-resolution
spherical harmonics of order L = 3. In total, q × k = 20 reference models, comprising
five discrete grids with (k = 3, 5, . . . , 8), i.e. 8×8, 12×12, 16×16, 24×24 and 32×32,
sets of sampling points generated by the strategies (q = 5, . . . , 8) were examined.

A detailed comparison of all the above described qk reference models is illustrated
in Table 1. The results, obtained by applying the threshold model, are also presented
for comparison. The relative deviations δLS (column 6) are obtained with respect to the
threshold error value ‖Dthr‖2 = 4.6622.

The global quality of approximation is also evaluated by calculating the surface area
A and the body volume V of parallelepiped. Thus, the theoretical value of the surface area
Apar is obtained analytically according to Eq. (P4), while Vpar – according to Eq. (P3).
The values of the surface area Ajqk, numerically calculated according to Eq. (17), are
listed in column 10, while the volume values Vjqk, defined numerically by Eq. (18), are
listed in column 12. The relative deviations δA,jqk = |Apar − Ajqk|/Apar and δV,jqk =
|Vpar − Vjqk|/Vpar are evaluated by comparing both types of theoretical and numerical
values. The results show that volumes are calculated with a very high accuracy of less
than 1%. The accuracy of the surface area is in the range between 3–5%. Both of them are
smaller as compared to the least-squares error. Cross-sectional profiles in terms of r(θ)
curves plotted at the polar angle ϕ = 0 and ϕ = π/4 are presented graphically in Fig. 8.

To grasp the entire view, the three-dimensional images of the particle surface SR(θ, ϕ)
are presented graphically in Fig. 9 as contour plots over the two-dimensional angular
θϕ-domain. Here, the exact surface is shown in Fig. 9a, the SH model, obtained by the
strategy q = 6, is shown in Fig. 9b. A detailed map of deviations, corresponding to
definition of the descriptor Eq. (14), is presented in Fig. 9c.

(a) (b)

Figure 8. Illustration of parallelepiped approximation by using SH: (a) cross-sectional profiles obtained by
L = 3 expansion degree SH using the strategy q = 6 for different refinements; (b) profiles corresponding to
the best reference models.
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(a) (b) (c)

Figure 9. Two-dimensional illustration of the SH model quality for a parallelepiped – contour plots of the
surface: (a) exact analytical surface; (b) SH approximation by degree L = 3; (c) the descriptor D.

5 Comparison study of low-resolution harmonics for various shapes

In the previous sections, characteristic features of the SH models were demonstrated by
exploring a cylinder and parallelepiped. They were limited, however, to a single set of
two-size parameters, the length c = 1 and cross-sectional size, or thickness, a = 2.
In order to compare various values of a and c, all shapes are described in terms of a
dimensional size parameter R and non-dimensional factors a = a/R and c = c/R,
respectively (see [1]). If the parameter c is considered as a length parameter and perpen-
dicular sizes b = a as cross-sectional perpendicular parameters, the ratio c/a means the
elongation degree kelon = c/a. In the symmetric section, this quantity is also a flatness
degree [1].

The approximated particle shape was characterized by a set of M = 16 coefficients,
corresponding to the expansion degree L = 3. Suitability of lower-resolution harmonics
to description of particles was examined by considering the flattening of initially selected
shapes for specified values of the elongation degree kelon = 1, 0.75, 0.5, 0.4. The earlier
results, obtained for the cylinder and parallelepiped with the elongation kelon = 0.5, are
used as a template for further investigations.

The pictorial summary of models of all shapes is shown in Table 2. Three-dimensional
views show that the approximated models retain the basic features of original shapes,
while local deviations near the axis are observed. Additionally, sharp edges are trans-
formed into locally smooth surfaces. The local variations of the surface are better il-
lustrated by contour plots. The shapes are qualitatively characterised by different error
indicators. The best accuracy is achieved in the approximation of particle volumes, while
the accuracy of surface area correlates with the least-squares error. It could be stated that
generally the cylinder is approximated by spherical harmonics with a higher accuracy
yielding average errors of 2%. The parallelepiped is approximated with the error in the
range of 5%. Scattering of the results could be explained by the shape of spherical har-
monics involved, i.e. each particular figure is approximated by different harmonics, and no
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Table 2. Pictorial summary of different shapes: three-dimensional views, contour plots
of surface deviation, defined by Eq. (14), and relative errors.

0.4 0.5 0.75 1
Cylinder

δA = 2.11% δS = 1.43% δS = 0.56% δS = 1.29%
δV = 1.02% δV = 0.06% δV = 0.52% δV = 1.08%
δLS = 1.70% δLS = 2.26% δLS = 0.69% δLS = 1.51%

Parallelepiped

δS = 1.86% δS = 4.53% δS = 3.20% δS = 1.99%
δV = 0.79% δV = 0.32% δV = 1.13% δV = 0.51%
δLS = 6.72% δLS = 2.02% δLS = 4.49% δLS = 5.08%

regularity is detected. Since the results were obtained by a limited number of positioning,
a higher accuracy could be achieved by a detailed optimization analysis.

6 Concluding remarks

Comprehensive modelling study, presented in this paper, was performed considering the
application of the low-resolution spherical harmonics (SH) limited by the expansion de-
gree L = 3. The quality of approximation was evaluated by global descriptors such as the
least-squares norm, the particle surface area, and the volume. It has been found, however,
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that the low-resolution harmonics are very sensitive to the positions of sampling points,
and the approximation quality increases by applying locally adaptive positioning.

Concerning particular shapes, the cylindrical shapes are approximated with the 2%
error. Due to the presence of sharp edges and vertices, the parallelepiped is approximated
with a lower accuracy characterised by the average 5% error. The scattering of results
could be explained by the different harmonics having different contributions for specified
shapes.

The presented results discovered that low-resolution spherical harmonics yield a sat-
isfactory quality for description of quite complicated shapes with sharp edges. Therefore,
they may be further implemented in the simulation of particulate materials.

Appendix

Table A.1. Low resolution spherical harmonics normalized by factor 1/2
√
π.

Expansion Expansion degree
order L = 0 L = 1 L = 2 L = 3

m = −3 (
√
70/4)| sin3 θ sin 3ϕ|

m = −2 (
√
15/2)| sin2 θ sin 2ϕ| (

√
105/2)| cos θ sin2 θ sin 2ϕ|

m = −1
√
3| sin θ sinϕ|

√
15| cos θ sin θ sinϕ| (

√
42/4)| sin θ(5 cos2 θ − 1) sinϕ|

m = 0 1
√
3| cos θ| (

√
15/2)|(3 cos2 θ − 1)| (

√
7/2)| cos θ(5 cos2 θ − 3)|

m = 1
√
3| sin θ cosϕ|

√
15| cos θ sin θ cosϕ| (

√
42/4)| sin θ(5 cos2 θ − 1) cosϕ|

m = 2 (
√
15/2)| sin2 θ cos 2ϕ| (

√
105/2)| cos θ sin2 θ cos 2ϕ|

m = 3 (
√
70/4)| sin3 θ cos 3ϕ|

Table A.2. Summary of analytical descriptors of particles shapes.

Cylinder

S(x, y, z)

{
x2 + y2 for − c < z < c,

z ± c otherwise
(C1)

SR(ϕ, θ)

{
c/ cos θ for 0 6 θ 6 θed,

a/ sin θ for θed 6 θ 6 π/2
(C2)

V πa2c (C3)
S 2πa(a+ c) (C4)

Parallelepiped

S(x, y, z)


x± a for − a 6 y 6 a,−c 6 z 6 c,

y ± a for − a 6 x 6 a,−c 6 z 6 c,

z ± c for − a 6 x 6 a,−a 6 y 6 a

(P1)

SR(ϕ, θ)


c/ cos θ for ϕ 6 π/4, 0 6 θ 6 tan−1(a/c cosϕ),

a/ sin θ cosϕ for ϕ 6 π/4, tan−1(a/c cosϕ) 6 θ 6 π/2,

c/ cos θ for ϕ > π/4, 0 6 θ 6 tan−1(a/c sinϕ),

a/ sin θ sinϕ for ϕ π/4, tan−1(a/c sinϕ) 6 θ 6 π/2

(P2)

V a2c (P3)
S 4ac+ 2a2 (P4)
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