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Abstract. The iterative methods to solve the system of the difference equations derived from
the nonlinear elliptic equation with integral condition are considered. The convergence of these
methods is proved using the properties of M-matrices, in particular, the regular splitting of an
M-matrix. To our knowledge, the theory of M-matrices has not ever been applied to convergence of
iterative methods for system of nonlinear difference equations. The main results for the convergence
of the iterative methods are obtained by considering the structure of the spectrum of the two-
dimensional difference operators with integral condition.
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1 Introduction

Over the last few decades, in both the theory of differential equations and numerical
analysis, much attention is paid to various types of differential equations with nonlocal
conditions. In particular, a lot of articles appeared on numerical methods for elliptic
equations with integral or other nonlocal conditions.
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In one of the first papers written on this topic [10], the finite difference method for
a linear second order elliptic equation with Bitsadze–Samarskii nonlocal condition was
considered. In this paper, an iterative method for solving a system of difference equations
with a nonlocal condition has been considered possibly for the first time.

Late on, many papers were written in order to justify the finite difference method for
elliptic equations with various types of nonlocal conditions [1, 2, 4–6, 13, 18]. In papers
[25,30], an elliptic equation with an integral condition is solved by the fourth-order finite
difference method.

For a long time, iterative methods for elliptic equations with nonlocal conditions
were not intensively investigated. A certain stimulus to elaborate this topic was given by
research of the spectrum structure of difference operators with nonlocal conditions. Even
in the first articles [24, 28] of the investigation of the spectrum for such operators, it has
been noted that the spectrum structure of both differential and difference operators with
rather simple nonlocal conditions can be quite complex. This structure very sensitively
depends on the parameters and functions under nonlocal conditions.

The results of the spectrum structure analysis have been applied to investigate the
convergence of iterative methods for elliptic equations [24, 29, 30] as well as stability of
difference schemes for parabolic [11, 12, 14, 16, 27] and hyperbolic equations [15, 20].

Other numerical methods for elliptic equations with various types of nonlocal condi-
tions were explored in [17, 19, 21, 22, 35] (see also the references therein).

Many references to the subject matter of numerical methods for elliptic equations with
nonlocal conditions are found in the review article [32].

Iterative methods for systems of nonlinear difference equations with nonlocal condi-
tions were considered in [9, 31] (also see paper [36] close to the subject area).

In many cases, the matrix of system of difference equations approximating an elliptic
equation with nonlocal conditions has the properties typical to M-matrices. Convergence
of iterative method to some systems of linear difference equations using the M-matrix
properties was analysed in [33].

In this paper, we develop further this idea and, according to the M-matrix method-
ology, we investigate the convergence of iterative method for a system of nonlinear dif-
ference equations with a nonlocal condition. M-matrix theory has not been applied to
solution of such systems before. The main aim of this paper is the investigation of conver-
gence of iterative methods. It is worth noting that M-matrix theory allows us to create and
analyze not a single, but a whole family of iterative methods with different conditions.

The remaining part of this paper is organised as follows. In Section 2, a boundary
value problem for a nonlinear differential equation with an integral condition is stated,
and a corresponding system of difference equations is derived. In Section 3, we describe
the main properties of M-matrices. The basic result of the paper – three theorems on
the convergence of iterative methods – are presented in Section 4. In Section 5, the
previously obtained results are generalized, in addition taking into account the structure of
spectrum of difference operators with nonlocal conditions. This enables us to expand the
convergence area of iterative methods. In Section 6, we shortly discuss how the obtained
results can be generalized for elliptic equations with variable coefficients.
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M-matrices for nonlinear elliptic equation with an integral condition 491

2 Statement of the problem

Let us solve a nonlinear elliptic equation in a rectangular domain D = {(x, y) ∈ (0, 1)×
(0, 1) ⊂ R2}

∂2u

∂x2
+
∂2u

∂y2
= f(x, y, u), (x, y) ∈ D, (1)

with the integral condition

u(0, y) = γ

1∫
0

u(x, y) dx+ µ1(y), 0 < y < 1, (2)

and Dirichlet boundary conditions at the remaining three sides of the rectangle:

u(1, y) = µ2(y), 0 6 y 6 1,

u(x, 0) = µ3(x), u(x, 1) = µ4(x), 0 6 x 6 1,
(3)

where γ is the given real parameter. Functions µ2, µ3 and µ4 satisfy the compatibility
conditions µ2(0) = µ3(1) and µ2(1) = µ4(1).

Now we can write a difference problem corresponding to the differential prob-
lem (1)–(3)

δ2
xUij + δ2

yUij = fij(Uij), i, j = 1, . . . , N − 1, (4)

U0j = γh

(
U0j + UNj

2
+

N−1∑
i=1

Uij

)
+ (µ1)j , j = 1, . . . , N − 1, (5)

UNj = (µ2)j , Ui0 = (µ3)i, UiN = (µ4)i, i, j = 0, . . . , N, (6)

where h = 1/N , N is a positive integer, fij(Uij) = f(xi, yj , Uij),

δ2
xUij :=

Ui−1,j − 2Uij + Ui+1,j

h2
, δ2

yUij :=
Ui,j−1 − 2Uij + Ui,j+1

h2
.

If the solution u(x, y) of boundary value problem (1)–(3) is smooth enough, then (4)–(6)
approximates differential problem with truncation error O(h2).

We rewrite the obtained system of difference equations (4)–(6) in the matrix form. To
this end, we express, as usual [26], U0j from equation (5)

U0j = α

N−1∑
i=1

Uij + (µ̃1)j , j = 1, . . . , N − 1, (7)

where

α =
γh

1− γh/2
, (µ̃1)j =

(µ1)j + γh(µ2)j/2

1− γh/2
. (8)
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492 M. Sapagovas et al.

By putting (7) into equation (4) as i = 1, we rewrite system (4), (5) in the following way:

δ2
xUij + δ2

yUij = fij(Uij), i = 2, . . . , N − 1, j = 1, . . . , N − 1, (9)

α
∑N−1

i=1 Uij − 2U1j + U2j

h2
+ δ2

yU1j = f1j(U1j)−
(µ̃1)j
h2

, (10)

j = 1, . . . , N − 1.

Difference equations (9), (10) together with boundary conditions (6) define a system of
equations the order of which and the number of unknowns Uij are (N−1)2. After finding
the solution of this system Uij , i, j = 1, . . . , N − 1, the remaining unknown values of the
solution U0j j = 1, . . . , N − 1, are obtained by (7). So, we have reduced the system of
equations (4)–(6) with nonlocal conditions to the system of equations (9), (10) with the
classical boundary condition (6).

We can write the system of equations (9), (10), (6) in the matrix form

AU+ f(U) = 0, (11)

where A is a matrix of order (N − 1)2, U and f(U) are vectors of order (N − 1)2,
U = {Uij}, f(U) = {fij(Uij)}, i, j = 1, . . . , N − 1, A = Λ − C, Λ = Λ1 + Λ2

is a matrix corresponding to the difference operator −δ2
x − δ2

y in the rectangular domain
with the Dirichlet boundary conditions; C is a matrix composed of the coefficients of
equations (10). More exactly, C is a block matrix

C = diag(C1,C1, . . . ,C1),

where

C1 =
1

h2


α α . . . α
0 0 . . . 0
· · · · · · · · · · · ·
0 0 . . . 0

 ,

the number of blocks of matrix C and order of matrix C1 are N − 1.
Note that C = 0 if γ = 0. If 0 6 γ 6 1, then 0 6 (N − 1)α 6 1, i.e. the matrix

A = Λ −C is diagonally dominant in a weak sense, and A is irreducible for all γ. We
can write system (11) also in the following form:

ΛU−CU+ f(U) = 0. (12)

3 M-matrices and their main properties

We consider several iterative methods for solving the system of difference equations (12).
To prove the convergence of these methods we will use the properties of M-matrices.

Definition 1. A square matrix A = {akl}, k, l = 1, . . . , n, is called an M-matrix if
akl 6 0 when k 6= l and the inverse A−1 exists, whose all elements are non-negative
(A−1 > 0).
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M-matrices for nonlinear elliptic equation with an integral condition 493

We point out several typical properties of M-matrices that will be used to investigate
the convergence of iterative methods. More details can be found in [7], [34].

The definition of M-matrix yields akk > 0.

Property 1. If A1 is an M-matrix and A2 > A1, additionally, all nondiagonal elements
of the matrix A2 are nonpositive, then A2 is also an M-matrix and

A−1
2 6 A−1

1 .

Property 2. If akl 6 0 when k 6= l, then two next statements are equivalent:
(i) A is an M-matrix;

(ii) The real part of each eigenvalue of A is positive: Reλ(A) > 0.

Property 3. If akk > 0, akl 6 0 as k 6= l, and A is diagonally dominant in weak sense
and irreducible, then A is M-matrix and A−1 > 0.

Property 4. If M-matrix A has a regular splitting, i.e. A = B − C, where B−1 > 0,
C > 0, then

%(B−1C) = max
∣∣λ(B−1C)

∣∣ < 1.

Property 5. If A = B1−C1 and A = B2−C2 are two regular splittings of an M-matrix
A and C1 6 C2 (besides C1 6= C2), then

%
(
B−1

1 C1

)
< %
(
B−1

2 C2

)
< 1.

Now let us return to system of difference equations (12).

Lemma 1. The matrix A = Λ−C of system (12) has the following properties:
1. A is an M-matrix if 0 6 γ 6 1;
2. Λ is M-matrix independently of γ;
3. C > 0 as h < 2/γ.

Proof. The diagonal elements of matrix A as 0 6 γ 6 1 and matrix Λ are positive,
nondiagonal elements of them are nonpositive and both matrices are diagonally dominant,
in weak sense, and irreducible. So, according to Property 3, A and Λ are M-matrices.

The conclusion C > 0, follows from definition of this matrix.

In Section 5, it will be proved that the condition 0 6 γ 6 1 is not necessary for A to
be an M-matrix. This condition guarantees that A is diagonally dominant.

4 Iterative methods

In this section, we prove several propositions on the convergence of iterative methods for
a system of nonlinear difference equations by using the properties of M-matrices.

Let us consider system (12). First, we suppose that this system is not necessarily
obtained from boundary value problem (1)–(3), but simply satisfies certain properties.
Namely, assume that for system of equations (12) the following two hypotheses are true:

Nonlinear Anal. Model. Control, 22(4):489–504
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(H1) Λ and A = Λ−C, where C > 0 are the M-matrices; moreover, Λ is diagonally
dominant in a weak sense a irreducible M-matrix.

(H2) For the vector f(U) = {fij(Uij)}, the inequality

0 6 α 6
∂fij(Uij)

∂Uij
< β <∞, i, j = 1, . . . , N − 1,

is true with all real values Uij .

Lemma 2. If hypothesis (H1) and (H2) are true, then there exists a unique solution of
system (12).

Proof. We rewrite (12) in equivalent form

ΛU+ βU = CU− f(U) + βU (13)

or
U = P (U), where P (U) := (Λ+ βI)−1(CU+ βU− f(U)). (14)

We will prove that P (U) is a contraction operator on a linear vector space Rm, m =
(N − 1)2, i.e. the inequality∥∥P (U)− P (V)

∥∥ 6 q‖U−V‖ (15)

is true for all vectors U,V ∈ Rm, 0 6 q < 1. We have

P (U)− P (V) = S(U−V),

where
S(U−V) = (Λ+ βI)−1(C+ βI−D)(U−V),

D is a diagonal matrix with diagonal elements dij (according to hypothesis (H2)):

0 6 α 6 dij =
∂fij(Ũij)

∂Ũij

< β <∞, i, j = 1, . . . , N − 1,

Ũ is some intermediate vector depending on U and V. Hence, it follows

0 6 C+ βI−D 6 C+ βI,

besides, all the diagonal elements of matrices C+βI−D and C+βI are positive. From
(H1) and Properties 1 and 3 we derive

(Λ+ βI)−1 > 0.

Let us define
S1 = (Λ+ βI)−1(C+ βI).

https://www.mii.vu.lt/NA
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Therefore,
0 < S < S1.

According to Perron–Frobenius theorem for positive matrices [7, 34],

%(S) < %(S1).

So, according to Property 4,

A = Λ+ βI− (C+ βI)

is a regular splitting, so
%(S1) < 1.

Let us choose arbitrary ε > 0 and determine the norm ‖S‖∗ of matrix S so that inequality

‖S‖∗ 6 %(S) + ε

be true (see [23, Chap. II.2, §3.4] or [3, Chap. 7.3]). Since %(S) < %(S1) < 1, we can
choose ε > 0 so that

‖S‖∗ 6 q < 1.

So, inequality (15) has proved. According to fixed point theorem, the system of equations
has a unique solution U∗.

Remark 1. If C = 0, the proposition of Lemma 2 is known (see, e.g. [8]). It is worth to
note that in this case, A is symmetric matrix, so ‖S‖∗ = %(S).

Theorem 1. If hypothesis (H1) and (H2) are true, then the iterative method

ΛUn+1 + f
(
Un+1

)
= CUn (16)

converges.

Proof. Let us denote by U∗ the exact solution of (12). By subtracting (16) from the
identity

ΛU∗ + f(U∗) = CU∗

we obtain, for the error Zn = U∗ −Un, the following system of linear equations:

ΛZn+1 +Dn(Z
n+1) = CZn,

in which Dn is a diagonal matrix with diagonal elements

dnij =
∂fij(Ũ

n+1
ij )

∂Uij
.

Thus,
Zn+1 = SnZ

n,

Nonlinear Anal. Model. Control, 22(4):489–504
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where
Sn = (Λ+Dn)

−1C.

Now we define a new vector ∣∣Zn
∣∣ = {∣∣Zn

ij

∣∣}.
It follows from hypothesis (H1) and (H2) and Properties 1 and 3 that

(Λ+Dn)
−1 > 0, Dn > αI, (Λ+Dn)

−1 6 (Λ+ αI)−1 6 Λ−1.

Then ∣∣Zn+1
∣∣ 6 ∣∣(Λ+Dn)

−1C
∣∣∣∣Zn

∣∣ = (Λ+Dn)
−1C

∣∣Zn
∣∣ 6 Λ−1C

∣∣Zn
∣∣.

The splitting A = Λ−C is a regular splitting, therefore, according to Property 4,

%(Λ−1C) < 1

and ∣∣Zn+1
∣∣ 6 %

(
Λ−1C

)n+1∣∣Z0
∣∣→ 0 as n→∞.

Remark 2. We can present the interpretation of iterative method (16). System of dif-
ference equations (12) can be solved by convergent iterative method (16), at each step
of which it is necessary to solve the same system of nonlinear equations with a Dirichlet
condition instead of nonlocal. In this sense, (16) can be interpreted as an external iteration
that needs internal iterations to be realized.

We can rewrite (16) in equivalent form

δ2
xU

n+1
ij + δ2

yU
n+1
ij = fij

(
Un+1
ij

)
, i, j = 1, . . . , N − 1,

Un+1
0j = γh

(
Un+1

0 j + Un
N j

2
+

N−1∑
i=1

Un
i j

)
+ (µ1)j , j = 1, . . . , N − 1,

Un+1
Nj = (µ2)j , Un+1

i0 = (µ3)i, Un+1
iN = (µ4)i, i, j = 0, . . . , N.

Remark 3. In Theorem 1, the regular splitting of matrix A is taken in a natural way, i.e.
A = Λ−C. We can choose several other regular splittings and, based on them, to write
similar nonlinear iterative methods. For example, using the regular splitting

A =
4

h2
I−

(
4

h2
I−Λ+C

)
,

4

h2
I−Λ+C > C > 0,

we derive the following iterative method:

Un+1 +
h2

4
f
(
Un+1

)
= Un +

h2

4

(
−ΛUn +CUn

)
. (17)
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The equivalent coordinate form of the iterative method (17) is as follows:

Un
i−1,j − 2Un+1

ij + Un
i+1,j

h2
+
Un
i,j−1 − 2Un+1

ij + Un
i,j+1

h2
= fij

(
Un+1
ij

)
,

i, j = 1, N − 1,

Un
0j = γh

(
Un

0j + Un
Nj

2
+

N−1∑
i=1

Un
i j

)
+ (µ1)j , j = 1, . . . , N − 1,

Un+1
Nj = (µ2)j , Un+1

i0 = (µ3)i, Un+1
iN = (µ4)i, i, j = 0, . . . , N.

After calculating Un+1
ij , i, j = 1, . . . , N − 1, from this system, we must find Un+1

0j ,
j = 1, . . . , N−1, only from nonlocal conditions. The convergence of this iterative method
is proved quite analogously like in Theorem 1. This method can be interpreted as explicit
nonlinear iterative method.

Now we will create an iterative method of another type to solve system of difference
equations (12), where at each step of iteration it will be necessary to solve a system of
linear equations with a nonlocal condition.

Theorem 2. If hypothesis (H1) and (H2) are true, then the iterative method

ΛUn+1 −CUn+1 + βUn+1 = −f
(
Un
)
+ βUn (18)

converges.

Proof. The structure of proof is close to that of Theorem 1. In this case, Zn = U∗ −Un

is the solution of the linear system

(Λ−C+ βI)Zn+1 = (βI−Dn)Z
n, (19)

where Dn is the same matrix as in the proof of Theorem 1.
Hence,∣∣Zn+1

∣∣ 6 ∣∣(Λ−C+ βI)−1(βI−Dn)
∣∣∣∣Zn

∣∣ 6 (Λ−C+ βI)−1βI
∣∣Zn
∣∣.

The splitting A = (Λ−C+ βI)− βI is a regular splitting, therefore,

%
(
(Λ−C+ βI)−1βI

)
< 1.

It follows that |Zn+1| → 0 as n→ 0.

We can rewrite iterative method (18) as early in the other form

δ2
xU

n+1
ij + δ2

yU
n+1
ij − βUn+1

ij = fij
(
Un
ij

)
− βUn

ij , i, j = 1, N − 1,

Un+1
0j = γh

(
Un+1

0 j + Un+1
N j

2
+

N−1∑
i=1

Un+1
i j

)
+ (µ1)j , j = 1, . . . , N − 1,

Un+1
Nj = (µ2)j , Un+1

i0 = (µ3)i, Un+1
iN = (µ4)i, i, j = 0, . . . , N.

Nonlinear Anal. Model. Control, 22(4):489–504
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In the next theorem, we even more simplify the iterative method, in each step of
iteration of which we will have to solve a system of linear equations without a nonlocal
condition.

Theorem 3. If hypothesis (H1) and (H2) are true for system (12), then the iterative
method

ΛUn+1 + βUn+1 = −f
(
Un
)
+ βUn +CUn (20)

converges.

Proof. The proof is analogously to the proof of previous two theorems.

Remark 4. Analogously to Remark 3, we select another regular splitting of matrix A

A =
4

h2
I+ βI−

(
4

h2
I+ βI−Λ+C

)
,

where
4

h2
I+ βI−Λ+C > βI+C > 0.

On the basis of this regular splitting, we can develop converged explicit iterative
method

Un+1 +
βh2

4
Un+1 = Un +

h2

4

(
βUn −ΛUn +CUn − f

(
Un
))
. (21)

In order to compare the convergence rates of various iterative methods, we use Prop-
erty 5 of M-matrices.

Conclusion 1. Based on Property 5, it is possible to assert that

1. Iterative method (20) of Theorem 3 converges asymptotically slower than
method (16) of Theorem 1 as well as than method (18) of Theorem 2;

2. Iterative method (17) converges asymptotically slower than method (16), and
method (21) slower than method (20).

5 M-matrices and eigenvalue problem

As it was indicated in Section 3, the matrix A = Λ − C of system (12) is an M-matrix
if the condition 0 6 γ 6 1 is true. Under this condition, the matrix A is diagonally
dominant, however, diagonal domination is not a necessary condition of M-matrices.

In this Section, we refuse the restriction 0 6 γ 6 1 and investigate when the matrix A
of the system of difference equations (4)–(6) is an M-matrix under condition γ > 1. To
this end, we need some spectral properties of matrix A.

Let us write the eigenvalue problem for matrix A

AU = λU

https://www.mii.vu.lt/NA
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in the form closer to system (4)–(6) (see, e.g. [26, 33])

δ2
xUij + δ2

yUij + λUij = 0, i, j = 1, . . . , N − 1,

U0j = γh

(
U0j + UNj

2
+

N−1∑
i=1

Uij

)
, j = 1, . . . , N − 1, (22)

UNj = Ui0 = UiN = 0, i, j = 0, . . . , N.

It has been proved [33] that all the eigenvalues of (22), in the case γ > 0, are positive if
and only if 0 6 γ < γ0 ≈ 3.42. The exact value of γ0 is

γ0 =
2 tanh(β0h/2)

h tanh(β0/2)
, (23)

where

β0 =
2

h
ln

(
sin

πh

2
+

√
sin2 πh

2
+ 1

)
.

As γ = γ0, one eigenvalue of matrix A is equal to zero, and if γ > γ0, there exists
a negative eigenvalue. Thus the following statement is true.

Lemma 3. The matrix A of system (4)–(6) is an M-matrix if and only if 0 6 γ < γ0,
where γ0 defined by (23) is approximately γ0 ≈ 3.42 when h is sufficiently small.

Proof. Indeed, if γ > γ0, there exists the negative eigenvalue, which contradicts the
definition of an M-matrix according to Property 2. If γ < 0, then C 6 0, and some
nondiagonal elements are positive. This fact also contradicts the definition of M-matrices.
For 0 6 γ < γ0, we have C > 0 and λ(A) > 0, and A is an M-matrix according to
Property 2.

Conclusion 2. If 0 6 γ < γ0 and hypothesis (H2) is true, then iterative methods (16),
(17), (18), (20) and (21) for system (4)–(6) expressed by form (12) converge. Conclusion
1 is valid for these iterative methods.

6 The case of variable coefficients

The results of Section 4 can be generalized to a differential problem with variable coeffi-
cients. Let us consider the following boundary value problem:(

p(x, y)ux
)
x
+
(
p(x, y)uy

)
y
= f(x, y, u), (x, y) ∈ D = {0 < x, y < 1}, (24)

u(0, y) = γ

1∫
0

α(x)u(x, y) dx+ µ(y), y ∈ (0, 1), (25)

Nonlinear Anal. Model. Control, 22(4):489–504
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with boundary conditions (3). We write for this differential problem the system of differ-
ence equations

δx(pi−1/2,jδx̄Uij) + δy(pi,j−1/2δȳUij) = fij(Uij), i, j = 1, . . . , N − 1, (26)

U0j = h

(
α0U0j + αNUNj

2
+

N−1∑
i=1

αiUij

)
+ (µ1)j , j = 1, N − 1, (27)

where

δxUij :=
Ui+1,j − Uij

h
, δx̄Uij :=

Uij − Ui−1,j

h
,

δyUij :=
Ui,j+1 − Uij

h
, δȳUij :=

Uij − Ui,j−1

h
.

Suppose that the following hypothesis is true:

(H3) α(x) > 0 for x ∈ [0, 1] and
∫ 1

0
α(x) dx 6 % < 1.

Note that if |α′′| 6 M2 < ∞ as x ∈ [0, 1], then it follows from (H3) that, for all
sufficiently small h > 0, the inequality

h

(
α0 + αN

2
+

N−1∑
i=1

αi

)
6 %1 < 1

is true. Now we will write system (26), (27), (6) in a matrix form. We express U0j

from (27)

U0j =

N−1∑
i=1

α̃jUij + (µ̃1)j , j = 1, . . . , N − 1,

where

α̃j =
αjh

1− α0h/2
, (µ̃1)j =

(µ1)j + αNh(µ1)j/2

1− α0h/2
.

By substituting U0j into (26) as i = 1, analogously as in Section 2, we express sys-
tem (26), (27), (6) in a matrix form

A1U+ f(U) = 0 (28)
or

Λ1U−C1U+ f(U) = 0. (29)

The following lemma analogous to Lemma 1 is true.

Lemma 4. If hypothesis (H3) is true, then the matrix A1 = Λ1 −C1 of system (29) has
the following properties:

1. A1 is an M-matrix;
2. Λ1 is an M-matrix independent of α(x);

https://www.mii.vu.lt/NA
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3. C1 > 0 as h is sufficiently small (h < 2/α0 if α0 6= 0; there is any restriction
for h if α0 = 0).

Proof. Lemma 4 is proved just like Lemma 1.

Consequently, if (H2) and (H3) are satisfied, Theorems 1–3 on the convergence of
iterative methods are true for system of difference equations (26), (27), (6), approxi-
mating the boundary value problem (24), (25), (3) with variable coefficients α(x) and
p(x, y) > 0.

Now we consider briefly a particular case of system (4)–(6) when

f(x, y, u) = c(x, y)u+ g(x, y), c(x, y) > 0.

Let us write an eigenvalue problem corresponding to (4)–(6)

δ2
xUij + δ2

yUij − cijUij + λUij = 0, i, j = 1, . . . , N − 1, (30)

U0j = γh

(
U0j + UNj

2
+

N−1∑
i=1

Uij

)
, j = 1, . . . , N − 1, (31)

UNj = Ui0 = UiN = 0, i, j = 0, . . . , N. (32)

When cij = 0, this problem is coincident with problem (22). We express again U0j

from nonlocal conditions (31) (see formula (7)) and substitute these values in difference
equations (30) as i = 1. Thus, we can rewrite the eigenvalue problem (30)–(32) in matrix
form

(A+D)U = λU, (33)

where A is the same matrix as in (11), i.e. A = Λ − C and D > 0 is diagonal matrix
with nonnegative diagonal elements.

If D = 0, according to Lemma 3, A is an M-matrix if and only if 0 6 γ 6 γ0.
The matrix A + D also is an M-matrix (see Property 1). According to Property 2,
Reλ(A+D) > 0. Thus, we have the following statement.

Conclusion 3. The condition 0 6 γ 6 γ0 ≈ 3.42 (see (23)) is a sufficient condition for
the inequality

Reλ(A) > 0 (34)

to be true for all eigenvalues of the eigenvalue problem (30)–(32).

As far as it is known for the authors, property (34) has not be noticed earlier when
considering the eigenvalue problem for difference operators with nonlocal conditions.

7 Conclusions and remarks

Many of the iterative methods for systems of linear equations can be justified on the
basis of M-matrix theory (see, for example, [7]). One of M-matrices advantage is that

Nonlinear Anal. Model. Control, 22(4):489–504
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by using this approach, we do not require the symmetry of the matrix. Symmetry is often
one of the main characteristics of the matrix of the system when we solve the differential
equations with classical boundary conditions (26), (3). But the matrix of the system is
usually nonsymmetric for boundary value problems with nonlocal conditions, except in
very rare cases. Therefore, application of M-matrices theory looks quite natural for such
problems.

The main results of the paper are presented in Sections 4–6. Sufficient conditions of
application of the theory of M-matrices for systems of nonlinear equations are specified
in Lemmas 1, 3, 4.

We use the standard method of finite differences for elliptic equations with integral
condition. For the resulting system of nonlinear equations, the various iterative methods
(implicit and explicit, linear and nonlinear) were proposed. Convergence of all methods
was proved in accordance with a one methodology using the concept of a regular splitting.
To our knowledge, the application of the theory of M-matrices to convergence of iterative
methods was applied for the first time to nonlinear system.

It is important to note that the differential equation (1) and the nonlocal condition (2)
can be interpreted as a model problem, for which we are using a new methodology. This
technique can be applied to much wider class of problems, both taking a more general
equation and other nonlocal conditions or nonstandard finite difference approximation. In
each case, we need to examine the conditions under which the matrix of finite difference
problem be an M-matrix. This methodology can be applied to multidimensional elliptic
and parabolic equations or to more general form of function f(x, y, u) or high accuracy
finite difference scheme. The requirement that domain is rectangular is also not necessary.
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22. S. Sajavičius, Radial basis function method for a multidimensional linear elliptic equation
with nonlocal boundary conditions, Comput. Math. Appl., 67(7):1407–1420, 2014, https:
//doi.org/10.1016/j.camwa.2014.01.014.

23. A.A. Samarskii, A.V. Gulin, Numerical Methods, Nauka, Moscow, 1989 (in Russian).

24. M. Sapagovas, The eigenvalues of some problem with a nonlocal condition, Differ. Equ.,
38(7):1020–1026, 2002, https://doi.org/10.1023/A:1021115915575.

Nonlinear Anal. Model. Control, 22(4):489–504

https://www.mii.lt/na/issues/NA_1804/NA18402.pdf
https://www.mii.lt/na/issues/NA_1804/NA18402.pdf
https://doi.org/10.1134/S0012266112070051
https://doi.org/10.1134/S0012266112070051
https://doi.org/10.1134/S0012266113070070
https://www.mii.lt/na/issues/NA_1902/NA19206.pdf
https://www.mii.lt/na/issues/NA_1902/NA19206.pdf
https://doi.org/10.15388/NA.2014.3.9
https://doi.org/10.15388/NA.2014.3.10
https://doi.org/10.1016/j.camwa.2014.01.014
https://doi.org/10.1016/j.camwa.2014.01.014
https://doi.org/10.1023/A:1021115915575


504 M. Sapagovas et al.

25. M. Sapagovas, Difference method of increased order of accuracy for the Poisson equation with
nonlocal conditions, Differ. Equ., 44(7):1018–1028, 2008, https://doi.org/10.1134/
S0012266108070148.

26. M. Sapagovas, On the stability of a finite-difference scheme for nonlocal parabolic boundary-
value problems, Lith. Math. J., 48(3):339–356, 2008, https://doi.org/10.1007/
s10986-008-9017-5.
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