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Abstract. We obtain some fixed point theorems for mappings acting in b-metric spaces. The
results extend those obtained in [R.P. Agarwal, E. Karapınar, A.-F. Roldán-López-de-Hierro, On an
extension of contractivity conditions via auxiliary functions, Fixed Point Theory Appl., 2015:104,
2015] using families of control functions, here also through conditions that involve α-admissibility
of type S. We furnish an illustrative example to demonstrate the validity of the hypotheses and
the degree of usefulness of our results. As an application, the existence of solution for functional
equations arising in dynamic programming is discussed, followed by suitable examples.
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1 Introduction

Many researchers extended Banach contraction principle by considering more general
contractive mappings on various distance spaces – b-metric spaces [5, 8] are one of the
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examples. Alber and Guerre-Delabrière [3] were the first to introduce weak contractive
conditions in the setup of Hilbert spaces. On the other hand, Khan, Swaleh and Sessa [9]
introduced the concept of an altering distance function, which is a control function that
alters the distance between two points in a metric space. After the appearance of Rhoades
theorem (see [12]), many results have been obtained involving contractivity conditions in
which some families of functions play a key role. In particular, Agarwal et al. [1] unified
most of these results for mappings acting in metric spaces using certain families of altering
distance functions.

The aim of the present manuscript is to study what kind of altering distance functions
might we include in an efficient contractivity condition in the case when we are given
mappings acting in a b-metric space. Moreover, the concept of α-admissibility is used, it
was introduced by Samet et al. [13] and extended by Sintunavarat [14] as α-admissibility
of type S. Using these concepts, we study sufficient conditions on the functions that
appear in very complex contractivity conditions with α-admissibility of type S in the
framework of b-metric spaces.

We furnish an illustrative example to demonstrate the validity of the hypotheses of
our results and necessity of some assumptions. Our results generalize and improve several
fixed point results in metric spaces and b-metric spaces. As an application, the existence of
solution for functional equations arising in dynamic programming is discussed, followed
by suitable examples.

2 Preliminaries

In this section, we will introduce some essential notations, definitions and preliminary
results that will be used in the article. Throughout this paper, we denote by N, R+ and R
the sets of positive integers, nonnegative real numbers and real numbers, respectively.

Recall that a function Λ : R+ → R+ is called an altering distance function [9] if the
following properties hold:

1. Λ is continuous and nondecreasing;
2. Λ(t) = 0 iff t = 0.

Definition 1. (See [8].) Let X be a nonempty set, and let s > 1 be a given real number.
A function d : X ×X → R+ satisfying the following conditions:

(B1) d(x, y) = 0 if and only if x = y;
(B2) d(x, y) = d(y, x);
(B3) d(x, y) 6 s[d(x, z) + d(z, y)]

for all x, y, z ∈ X is called a b-metric on X . The pair (X, d) is called a b-metric space
with coefficient s > 1.

Any metric space is a b-metric space with s = 1, and the class of b-metric spaces
is effectively larger than that of metric spaces. The easiest example of a b-metric space,
which is not a metric space, is (R, d), where d(x, y) = (x−y)2. A more general example
is the following:
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Example 1. Let (X, d) be a metric space, and let the mapping db : X × X → R+ be
defined by db(x, y) = [d(x, y)]p for all x, y ∈ X , where p > 1 is a fixed real number.
Then (X, db) is a b-metric space with coefficient s = 2p−1. The triangular inequality (B3)
can easily be checked using the convexity of function R+ 3 x 7→ xp.

The concepts of b-convergent sequence, b-Cauchy sequence, b-continuity and b-com-
pleteness in b-metric spaces are introduced in the same way as in metric spaces (see,
e.g., [7]). In particular, a function f : X → Y between two b-metric spaces is called
b-continuous at a point x ∈ X if it is b-sequentially continuous at x, that is, if {xn} is
b-convergent to x in X implies that {fxn} is b-convergent to fx in Y .

Each b-convergent sequence in a b-metric space has a unique limit, and it is also
a b-Cauchy sequence. However, a b-metric itself might not be continuous. Hence, the
following lemma about b-convergent sequences is required in the proof of our main
results.

Lemma 1. (See [2].) Let (X, d) be a b-metric space with coefficient s > 1, and let {xn}
and {yn} be b-convergent to points x, y ∈ X , respectively. Then

1

s2
d(x, y) 6 lim inf

n→∞
d(xn, yn) 6 lim sup

n→∞
d(xn, yn) 6 s2d(x, y).

If x = y, then limn→∞ d(xn, yn) = 0. Moreover, for each z ∈ X , we have

1

s
d(x, z) 6 lim inf

n→∞
d(xn, z) 6 lim sup

n→∞
d(xn, z) 6 sd(x, z).

The concept of α-admissibility was first introduced by Samet et al. [13] and extended
as admissibility of type S by Sintunavarat [14] in the framework of metric spaces and
b-metric spaces, respectively.

Definition 2. (See [13, 14].) Let X be a nonempty set, let α : X × X → R+ and
f : X → X be two mappings, and s > 1 be a given real number. Then we say that

(i) the mapping f is α-admissible if

x, y ∈ X and α(x, y) > 1 =⇒ α(fx, fy) > 1;

this is denoted as f ∈ P(X,α);
(ii) the mapping f is α-admissible of type S if

x, y ∈ X and α(x, y) > s =⇒ α(fx, fy) > s;

this is denoted as f ∈ Ps(X,α);
(iii) f is a weak α-admissible mapping if

x ∈ X and α(x, fx) > 1 =⇒ α(fx, ffx) > 1;

this is denoted as f ∈ WP(X,α);
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(iv) f is a weak α-admissible mapping of type S if

x ∈ X and α(x, fx) > s =⇒ α(fx, ffx) > s;

this is denoted as f ∈ WPs(X,α).

Remark 1. (See [14].) It is easy to see that the following assertions hold:

1. α-admissibility⇒ weak α-admissibility, that is,

P(X,α) ⊂ WP(X,α).

2. α-admissibility of type S ⇒ weak α-admissibility of type S, that is,

Ps(X,α) ⊂ WPs(X,α).

None of these inclusions can be reversed. Moreover, P(X,α) 6= Ps(X,α), that is, the
classes of α-admissible mappings and α-admissible mappings of type S are, in general,
independent.

3 Main results

Before discussing our main result, we will introduce the following four families of func-
tions. They are defined in a similar way as in the paper [1], but adapted for the use in
b-metric spaces. In what follows, s > 1 will be a given real number.

Let G1 be the family of all functions φ : Rn+ → R+ with n > 2 such that, for all
r, z3, z4, . . . , zn ∈ R+:

(G11) φ is continuous in its first two arguments;
(G12) φ(r, 0, z3, z4, . . . , zn) 6 r/(2s);
(G13) φ(r, r, z3, z4, . . . , zn) 6 r if r > 0;
(G14) φ(0, r, z3, z4, . . . , zn) 6 r if r > 0.

Let G2 be the family of all functions φ : Rn+ → R+ with n > 3 such that, for all
q, r, z4, z5, . . . , zn ∈ R+:

(G21) φ is continuous in its first three arguments;
(G22) φ(q, 0, r, z4, z5, . . . , zn) 6 max{q/(2s), r};
(G23) φ(q, q, r, z4, z5, . . . , zn) 6 max{q, r};
(G24) φ(r, 0, 0, z4, z5, . . . , zn) 6 r for all r > 0.

Let G3 be the family of all functions φ : Rn+ → R+ with n > 3 and s > 1 such that,
for all q, r, z4, z5, . . . , zn ∈ R+:

(G31) φ is continuous in its first three arguments;
(G32) φ(r, q, r, z4, z5, . . . , zn) 6 max{q, r};
(G33) φ(0, 0, r, z4, z5, . . . , zn) 6 r if r > 0;
(G34) φ(0, r, 0, z4, z5, . . . , zn) 6 r if r > 0.
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Let G4 be the family of all functions φ : Rn+ → R+ with n > 4 such that, for all
q, r, t, z5, z6, . . . , zn ∈ R+:

(G41) φ is continuous in its first four arguments;
(G42) φ(q, 0, r, t, z5, z6, . . . , zn) 6 max{q/(2s), r, t};
(G43) φ(r, r, r, 0, z5, z6, . . . , zn) 6 r if r > 0;
(G44) φ(r, r, 0, 0, z5, z6, . . . , zn) 6 r if r > 0.

Some examples of functions belonging to these classes (in the case s = 1) are given
in [1]. It is easy to modify these examples to the case when s > 1.

We will present fixed point results for mappings belonging to the classWPs(X,α).
Throughout this paper, Fix(f) denotes the set of all fixed points of a self-mapping f on
a nonempty set X , that is, Fix(f) = {x ∈ X: fx = x}. Also, for all elements x and
y in a b-metric space (X, d) with coefficient s > 1 and the given functions φi ∈ Gi,
i ∈ {1, 2, 3, 4}, we will denote

Ms(x, y) = max
{
d(x, y), d(x, fx), d(y, fy),

φ1
(
d(x, fy), d(fx, y)

)
, φ2

(
d(x, fy), d(fx, y), d(x, y)

)
,

φ3
(
d(x, fx), d(y, fy), d(x, y)

)
,

φ4
(
d(x, fy), d(fx, y), d(x, fx), d(y, fy)

)}
.

Definition 3. Let (X, d) be a b-metric space with coefficient s > 1, let α : X×X → R+

be a given mapping, and let Λ1, Λ2 : R+ → R+ be two altering distance functions. We
say that a mapping f : X → X is an (α,Λ1, Λ2)s-contraction mapping if the following
condition holds:

x, y ∈ X with α(x, y) > s

=⇒ Λ1

(
s4d(fx, fy)

)
6 Λ1

(
Ms(x, y)

)
− Λ2

(
Ms(x, y)

)
(1)

for some functions φi ∈ Gi, i ∈ {1, 2, 3, 4}. We denote by ∆s(X,α,Λ1, Λ2) the collec-
tion of all (α,Λ1, Λ2)s-contraction mappings on a b-metric space (X, d).

Theorem 1. Let (X, d) be a b-complete b-metric space with coefficient s > 1, let Λ1, Λ2 :
R+ → R+ be two altering distance functions, and let α : X×X → R+ and f : X → X
be given mappings. Suppose that the following conditions hold:

(S1) f ∈ ∆s(X,α,Λ1, Λ2) ∩WPs(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) > s;

(S3) α has a transitive property of type S, that is, for x, y, z ∈ X ,

α(x, y) > s and α(y, z) > s =⇒ α(x, z) > s;

(S4) f is b-continuous.

Then Fix(f) 6= ∅.
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Proof. By the given condition (S2) there exists x0 ∈ X such that α(x0, fx0) > s. Define
the sequence {xn} by xn+1 = fxn for all n ∈ N ∪ {0}. If there is n ∈ N ∪ {0} so that
xn = xn+1, then we have xn ∈ Fix(f), and hence, the conclusion holds. So we assume
that xn 6= xn+1 for all n ∈ N ∪ {0}. It follows that

d(xn, xn+1) > 0

for all n ∈ N ∪ {0}. Now, we need to prove that

lim
n→∞

d(xn, xn+1) = 0. (2)

It follows by induction from f ∈ WPs(X,α) and α(x0, fx0) > s that

α(xn, xn+1) > s (3)

for all n ∈ N ∪ {0}. It follows from f ∈ ∆s(X,α,Λ1, Λ2) that inequality (3) implies

Λ1

(
d(fxn, fxn+1)

)
6 Λ1

(
s4d(fxn+1, fxn)

)
6 Λ1

(
Ms(xn, xn+1)

)
− Λ2

(
Ms(xn, xn+1)

)
(4)

for all n ∈ N ∪ {0}. Note that for each n ∈ N ∪ {0}, we have

Ms(xn, xn+1)

= max
{
d(xn, xn+1), d(xn, fxn), d(xn+1, fxn+1),

φ1
(
d(xn, fxn+1), d(fxn, xn+1)

)
,

φ2
(
d(xn, fxn+1), d(fxn, xn+1), d(xn, xn+1)

)
,

φ3
(
d(xn, fxn), d(xn+1, fxn+1), d(xn, xn+1)

)
,

φ4
(
d(xn, fxn+1), d(fxn, xn+1), d(xn, fxn), d(xn+1, fxn+1)

)}
.

Let dn = d(xn, xn+1) for all n ∈ N0. Taking into account the properties of considered
functions in

⋃4
i=1 Gi, we deduce that

d(xn, xn+1) = dn, d(xn, fxn) = d(xn, xn+1) = dn+1,

d(xn+1, fxn+1) = d(xn+1, xn+2) = dn+1,

φ1
(
d(xn, fxn+1), d(fxn, xn+1)

)
= φ1

(
d(xn, xn+2), d(xn+1, xn+1)

)
= φ1

(
d(xn, xn+2), 0

)
G12

6
d(xn, xn+2)

2s
6
d(xn, xn+1) + d(xn+1, xn+2)

2

6 max
{
d(xn, xn+1), d(xn+1, xn+2)

}
= max{dn, dn+1},

φ2
(
d(xn, fxn+1), d(fxn, xn+1), d(xn, xn+1)

)
= φ2

(
d(xn, xn+2), 0, d(xn, xn+1)

) G22

6 max

{
d(xn, xn+2)

2s
, d(xn, xn+1)

}
6 max

{
d(xn, xn+1) + d(xn+1, xn+2)

2
, d(xn, xn+1)

}
6 max{dn, dn+1},
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φ3
(
d(xn, fxn), d(xn+1, fxn+1), d(xn, xn+1)

)
= φ3

(
d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+1)

)
= φ3(dn, dn+1, dn)

G32

6 max{dn, dn+1},

φ4
(
d(xn, fxn+1), d(fxn, xn+1), d(xn, fxn), d(xn+1, fxn+1)

)
= φ4

(
d(xn, xn+2), 0, d(xn, xn+1), d(xn+1, xn+2)

)
G42

6 max

{
d(xn, xn+2)

2s
, d(xn, xn+1), d(xn+1, xn+2)

}
6 max

{
d(xn, xn+1) + d(xn+1, xn+2)

2
, d(xn, xn+1), d(xn+1, xn+2)

}
6 max

{
d(xn, xn+1), d(xn+1, xn+2)

}
= max{dn, dn+1}.

Hence,
Ms(xn, xn+1) = max{dn, dn+1}.

If Ms(xn∗ , xn∗+1) = dn∗+1 for some n∗ ∈ N ∪ {0}, then inequality (4) implies that

Λ1

(
d(xn∗+1, xn∗+2)

)
6 Λ1

(
d(xn∗+1, xn∗+2)

)
− Λ2

(
d(xn∗+1, xn∗+2)

)
,

hence d(xn∗+1, xn∗+2) = 0, which is a contradiction. Therefore, Ms(xn, xn+1) = dn =
d(xn, xn+1) for all n ∈ N ∪ {0}. From (4) we have

Λ1

(
d(xn+1, xn+2)

)
6 Λ1

(
d(xn, xn+1)

)
− Λ2

(
d(xn, xn+1)

)
(5)

for all n ∈ N∪{0}. Since Λ1 is a nondecreasing mapping, {d(xn, xn+1)} is a decreasing
sequence in R. Since {d(xn, xn+1)} is bounded from below, there exists r > 0 such that

lim
n→∞

d(xn, xn+1) = r.

Letting n→∞ in (5), we get

Λ1(r) 6 Λ1(r)− Λ2(r).

This is only possible if Λ2(r) = 0 and thus r = 0. Hence, (2) is proved.
Next, we prove that {xn} is a b-Cauchy sequence in X . Assume to the contrary that

there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} such
that n(k) > m(k) > k and

d(xm(k), xn(k)) > ε > d(xm(k), xn(k)−1) (6)

for all k ∈ N. By (B3) and (6) we get

ε 6 d(xm(k), xn(k)) 6 sd(xm(k), xn(k)−1) + sd(xn(k)−1, xn(k))

< sε+ sd(xn(k)−1, xn(k)). (7)
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Taking the upper limit in (7) as k →∞ and using (2), we get

ε 6 lim sup
k→∞

d(xm(k), xn(k)) 6 sε. (8)

Also from (B3) we obtain

d(xm(k), xn(k)) 6 s
[
d(xm(k), xn(k)+1) + d(xn(k)+1, xn(k))

]
(9)

and
d(xm(k), xn(k)+1) 6 s

[
d(xm(k), xn(k)) + d(xn(k), xn(k)+1)

]
. (10)

Taking the upper limit as k →∞ in (9) and (10), from (2) and (8) we get

ε 6 s
(
lim sup
k→∞

d(xm(k), xn(k)+1)
)

and lim sup
k→∞

d(xm(k), xn(k)+1) 6 s2ε,

i.e.,
ε

s
6 lim sup

k→∞
d(xm(k), xn(k)+1) 6 s2ε. (11)

Similarly, we can show that

ε

s
6 lim sup

k→∞
d(xm(k)+1, xn(k)) 6 s2ε. (12)

Finally, we obtain

d(xm(k)+1, xn(k)+1)

6 s
[
d(xm(k)+1, xm(k)) + d(xm(k), xn(k)+1)

]
6 sd(xm(k)+1, xm(k)) + s2

[
d(xm(k), xn(k)) + d(xn(k), xn(k)+1)

]
.

By taking the upper limit as k →∞ in the above inequality, we have

lim sup
k→∞

d(xm(k)+1, xn(k)+1) 6 s3ε. (13)

Using (B3) again, we have

d(xm(k), xn(k))

6 s
[
d(xm(k), xm(k)+1) + d(xm(k)+1, xn(k))

]
6 sd(xm(k), xm(k)+1) + s2

[
d(xm(k)+1, xn(k)+1) + d(xn(k)+1, xn(k))

]
. (14)

Taking the upper limit as k →∞ in (14), from (2) and (8) we get

ε

s2
6 lim sup

k→∞
d(xm(k)+1, xn(k)+1). (15)

From (13) and (15) we get

ε

s2
6 lim sup

k→∞
d(xm(k)+1, xn(k)+1) 6 s3ε.
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Using the transitivity property of type S of α, we get α(xm(k), xn(k)) > s. Since f ∈
∆s(X,α,Λ1, Λ2), this implies

Λ1

(
s4 d(xm(k)+1, xn(k)+1)

)
= Λ1

(
s4d(fxm(k), fxn(k))

)
6 Λ1

(
Ms(xm(k), xn(k))

)
− Λ2

(
Ms(xm(k), xn(k))

)
, (16)

where

Ms(xm(k), xn(k)) = max
{
d(xm(k), xn(k)), d(xm(k), fxm(k)), d(xn(k), fxn(k)),

φ1
(
d(xm(k), fxn(k)), d(fxm(k), xn(k))

)
,

φ2
(
d(xm(k), fxn(k)), d(fxm(k), xn(k)), d(xm(k), xn(k))

)
,

φ3
(
d(xm(k), fxm(k)), d(xn(k), fxn(k)), d(xm(k), xn(k))

)
,

φ4
(
d(xm(k), fxn(k)), d(fxm(k), xn(k)),

d(xm(k), fxm(k)), d(xn(k), fxn(k))
)}
.

Taking the upper limit as k →∞ in the above inequality and using (2), (8), (11) and (12),
we get

lim sup
k→∞

d(xm(k), xn(k)) 6 sε, lim sup
k→∞

d(xm(k), xm(k)+1) = 0,

lim sup
k→∞

d(xn(k), xn(k)+1) = 0,

lim sup
k→∞

φ1
(
d(xm(k), fxn(k)), d(fxm(k), xn(k))

)
G11

6 φ1

(
lim sup
k→∞

d(xm(k), xn(k)+1), lim sup
k→∞

d(xm(k)+1, xn(k))
)

= φ1
(
s2ε, s2ε

) G13

6 s2ε;

lim sup
k→∞

φ2
(
d(xm(k), fxn(k)), d(fxm(k), xn(k)), d(xm(k), xn(k))

)
G21

6 φ2

(
lim sup
k→∞

d(xm(k), xn(k)+1), lim sup
k→∞

d(xm(k)+1, xn(k)),

lim sup
k→∞

d(xm(k), xn(k))
)

6 φ2
(
s2ε, s2ε, sε

) G23

6 max{s2ε, sε};

lim sup
k→∞

φ3
(
d(xm(k), fxm(k)), d(xn(k), fxn(k)), d(xm(k), xn(k))

)
G31

6 φ3

(
lim sup
k→∞

d(xm(k), xm(k)+1), lim sup
k→∞

d(xn(k), xn(k)+1),

lim sup
k→∞

d(xm(k), xn(k))
)

= φ3(0, 0, sε)
G33

6 sε,

Nonlinear Anal. Model. Control, 22(5):719–737
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lim sup
k→∞

φ4
(
d(xm(k), fxn(k)), d(fxm(k), xn(k)), d(xm(k), fxm(k)),

d(xn(k), fxn(k))
)

G41

6 φ4

(
lim sup
k→∞

d(xm(k), xn(k)+1), lim sup
k→∞

d(xm(k)+1, xn(k)),

lim sup
k→∞

d(xm(k), xm(k)+1), lim sup
k→∞

d(xn(k), xn(k)+1)
)

6 φ4(s
2ε, s2ε, 0, 0)

G44

6 s2ε.

Therefore,

ε = max

{
ε,

ε
s +

ε
s

2s

}
6 lim sup

k→∞
Ms(xm(k), xn(k))

6 max
{
sε, s2ε, s2ε, ε, s2ε

}
= s2ε.

Similarly, we can show that

ε 6 lim inf
k→∞

Ms(xm(k), xn(k)) 6 s2ε.

Taking the upper limit as k →∞ in (16), we have

Λ1(s
2ε) = Λ1

(
s4
(
ε

s2

))
6 Λ1

(
s4 lim sup

k→∞
d(xm(k)+1, xn(k)+1)

)
6 Λ1

(
lim sup
k→∞

Ms(xm(k), xn(k))
)
− Λ2

(
lim inf
k→∞

Ms(xm(k), xn(k))
)

6 Λ1(s
2ε)− Λ2(ε).

This implies that Λ2(ε) = 0 and then ε = 0, which is a contradiction. Therefore, {xn} is
a b-Cauchy sequence.

By b-completeness of the b-metric space (X, d) there exists x ∈ X such that xn → x
as n → ∞. By b-continuity of f we get xn+1 = fxn → fx as n → ∞, and since the
limit of a sequence is unique, we deduce that fx = x. This shows that Fix(f) 6= ∅.

Now we present a result that does not use continuity of the given mapping.

Theorem 2. Let (X, d) be a b-complete b-metric space with coefficient s > 1, let Λ1, Λ2 :
R+ → R+ be two altering distance functions, and let α : X×X → R+ and f : X → X
be given mappings. Suppose that the following conditions hold:

(S1) f ∈ ∆s(X,α,Λ1, Λ2) ∩WPs(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) > s;
(S3) α has a transitive property of type S;
(S̃4) (X, d) is αs-regular, that is, if {xn} is a sequence inX such that α(xn, xn+1)>s

for all n ∈ N and xn → x ∈ X as n→∞, then α(xn, x) > s for all n ∈ N.

Then Fix(f) 6= ∅.
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Proof. As in the proof of Theorem 1, we obtain a b-Cauchy sequence {xn} in the b-com-
plete b-metric space (X, d) satisfying α(xn, xn+1) > s for all n ∈ N. Hence, there exists
x ∈ X such that

lim
n→∞

d(xn, x) = 0. (17)

By the αs-regularity of X we have α(xn, x) > s for all n ∈ N. It follows from f ∈
∆s(X,α,Λ1, Λ2) that

Λ1(s
4d(fxn, fx)) 6 Λ1

(
Ms(xn, x)

)
− Λ2

(
Ms(xn, x)

)
, (18)

where

Ms(xn, x) = max
{
d(xn, x), d(xn, fxn), d(x, fx), φ1

(
d(xn, fx), d(fxn, x)

)
,

φ2
(
d(xn, fx), d(fxn, x), d(xn, x)

)
,

φ3
(
d(xn, fxn), d(x, fx), d(xn, x)

)
,

φ4
(
d(xn, fx), d(fxn, x), d(xn, fxn), d(x, fx)

)}
.

Taking the upper limit as n→∞ in (18) and using Lemma 1, we get

Λ1

(
d(x, fx)

)
6 Λ1

(
s3d(x, fx)

)
= Λ1

(
s4

1

s
d(x, fx)

)
6 Λ1

(
s4 lim sup

n→∞
d(xn+1, fx)

)
6 Λ1

(
lim sup
n→∞

Ms

(
d(xn, x)

))
− Λ2

(
lim inf
n→∞

Ms

(
d(xn, x)

))
6 Λ1

(
d(x, fx)

)
− Λ2

(
d(x, fx)

)
,

which implies that Λ2(d(x, fx)) = 0. It follows that d(x, fx) = 0, equivalently, fx = x
and thus Fix(f) 6= ∅. This completes the proof.

The following example will demonstrate the use of our results.

Example 2. Let X = R+ and d : X ×X → R+ be defined by

d(x, y) = (x− y)2

for all x, y ∈ X . Then (X, d) is a b-complete b-metric space with coefficient s = 2.
Define mappings f : X → X and α : X ×X → [0,∞) by

fx =


0, x ∈ [0, 1),

0.15, x = 1,

ln(3x− 1) otherwise

and α(x, y) =

{
2, 0 6 y 6 x 6 1,

1 otherwise.

Let Λ1, Λ2 ∈ R+ → R+ and φi ∈ Gi, i ∈ {1, 2, 3, 4}, be the functions given by

Λ1(t) =
3t

2
, Λ2(t) =

3t

4
for all t ∈ R+,
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φ1(q, r) = max

{
r,
q + r

4

}
, φ2(q, r, t) =

qr

1 + t
,

φ3(q, r, t) = max{q, r, t}, φ4(q, r, t, u) =
1 + q + r

1 + t+ u
t

for all q, r, t, u > 0. We have to prove that f ∈ ∆s(X,α,Λ1, Λ2).
Let x, y ∈ X be such that α(x, y) > s = 2. Then 0 6 y 6 x 6 1, and relation (1) is

nontrivial only when x = 1 and y ∈ [0, 1). In this case, d(fx, fy) = d(0.15, 0) = 0.0225
and

Ms(x, y) = max

{
(1− y)2, 0.852, y2,max

{
(0.15− y)2, 1 + (0.15− y)2

4

}
,

(y − 0.15)2

1 + (1− y)2
, max

{
0.852, y2, (1− y)2

}
,
1 + 1 + (0.15− y)2

1 + 0.852 + y2
0.852

}
> 0.7225.

Hence,

Λ1

(
s4d(fx, fy)

)
=

3

2

(
16 · 0.152

)
= 0.54 < 0.541875 =

3

4
0.7225

6 Λ1

(
Ms(x, y)

)
− Λ2

(
Ms(x, y)

)
.

This implies that (1) holds and thus f ∈ ∆s(X,α,Λ1, Λ2).
It is easy to see that f ∈ WPs(X,α). Indeed, if x ∈ X is such that α(x, fx) > 2,

then x ∈ [0, 1]. But then 0 6 ffx 6 fx 6 1 and hence α(fx, ffx) > 2.
Also, we can easily see that (X, d) is αs-regular, and there is x0 = 1 such that

α(x0, fx0) = α(1, 0.15) = 2.
Therefore, all the conditions of Theorem 2 are satisfied. Then we can conclude that

Fix(f) 6= ∅ (indeed, 0 ∈ Fix(f)).
Observe that, for x, y > 1, condition (1) might not hold; hence, using of the func-

tion α, is necessary.

Finally, we use Remark 1 to establish the following results for the class Ps(X,α).

Corollary 1. Let (X, d) be a b-complete b-metric space with coefficient s > 1, letΛ1, Λ2 :
R+ → R+ be altering distance functions, and let α : X ×X → R+ and f : X → X be
given mappings. Suppose that the following conditions hold:

(S̃1) f ∈ ∆s(X,α,Λ1, Λ2) ∩ Ps(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) > s;
(S3) α has a transitive property of type S;
(S4) f is b-continuous.

Then Fix(f) 6= ∅.

Corollary 2. Let (X, d) be a b-complete b-metric space with coefficient s > 1, letΛ1, Λ2 :
R+ → R+ be two altering distance functions, and let α : X×X → R+ and f : X → X
be given mappings. Suppose that the following conditions hold:
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(S̃1) f ∈ ∆s(X,α,Λ1, Λ2) ∩ Ps(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) > s;
(S3) α has a transitive property type S;
(S̃4) (X, d) is αs-regular.

Then Fix(f) 6= ∅.

4 Existence theorems for functional equations arising in dynamic
programming

The existence, uniqueness, and iterative approximations of solutions for several classes of
functional equations arising in dynamic programming were studied by a lot of researchers.
The basic form of the functional equation of dynamic programming is given by Bellman
and Lee [6]. Thereafter a lot of work has been done in this direction, and existence
and uniqueness results have been obtained for solutions and common solutions of some
functional equations, as well as systems of functional equations in dynamic programming
with the use of fixed point results. For details, see, e.g., [4, 10, 11] and the references
therein.

We will apply our results to the following dynamic programming problem.
Let X = B(W ) be the set of all bounded real-valued functions on a nonempty set W .

According to the pointwise addition of functions, multiplication by scalar, and with the
norm ‖·‖∞ given by

‖u‖∞ = sup
x∈W

∣∣u(x)∣∣
for all u ∈ X , we have that (X , ‖·‖∞) is a Banach space and the respective convergence
is uniform. The respective distance will be denoted by d∞. If we consider a Cauchy
sequence {un} in X , then it converges uniformly to a function, say h∗, which is bounded,
i.e, u∗ ∈ X .

Moreover, we can define a b-metric db by

db(u, v) =
[
d∞(u, v)

]p
for all u, v ∈ B(W ) and some p > 1. Since (B(W ), d∞) is complete, we deduce that
(B(W ), db) is a b-complete b-metric space with s = 2p−1.

In this section, we study the existence of a solution of the following functional equa-
tion arising in dynamic programming:

q(x) = sup
y∈D

{
g(x, y) +G

(
x, y, q

(
τ(x, y)

))}
, x ∈W, (19)

for the given functions g : W ×D → R, G : W ×D × R → R and τ : W ×D → W ,
where D is a so-called decision space. Consider the operator f : X → X given by

fu(x) = sup
y∈D

{
g(x, y) +G

(
x, y, u

(
τ(x, y)

))}
(20)
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for u ∈ X , x ∈ W ; this mapping is well defined if the functions g and G are bounded.
Also, for some p > 1, s = 2p−1 and φi ∈ Gi, i ∈ {1, 2, 3, 4}, denote

Ms

(
u(x), v(x)

)
= max

{∣∣u(x)− v(x)∣∣p, ∣∣u(x)− fu(x)∣∣p, ∣∣v(x)− fv(x)∣∣p,
φ1
(∣∣u(x)− fv(x)∣∣p, ∣∣fu(x)− v(x)∣∣p),

φ2
(∣∣u(x)− fv(x)∣∣p, ∣∣fu(x)− v(x)∣∣p, ∣∣u(x)− v(x)∣∣p),

φ3
(∣∣u(x)− fu(x)∣∣p, ∣∣v(x)− fv(x)∣∣p, ∣∣u(x)− v(x)∣∣p),

φ4
(∣∣u(x)− fv(x)∣∣p, ∣∣fu(x)− v(x)∣∣p,∣∣u(x)− fu(x)∣∣p, ∣∣v(x)− fv(x)∣∣p)}

for all u, v ∈ X , x ∈W and

Ms(u, v) = sup
x∈W

Ms

(
u(x), v(x)

)
.

Theorem 3. Let f : X → X be given by (20). Suppose that the following hypotheses
hold:

(D1) g :W ×D → R and G(·, ·, 0) :W ×D → R are bounded functions;
(D2) there exists u0 ∈ X such that

u0(x) 6 sup
y∈D

{
g(x, y) +G

(
x, y, u0

(
τ(x, y)

))}
for all x ∈W ;

(D3) there exists λ > 0 such that, for all x ∈W , y ∈ D and t, r ∈ R,∣∣G(x, y, t)−G(x, y, r)∣∣ 6 λ|t− r|;

(D4) the function G is non-decreasing in the third variable and satisfies∣∣G(x, y, u(x))−G(x, y, v(x))∣∣p 6 1

24p−2
Ms

(
u(x), v(x)

)
for some p > 1 and all x ∈W , y ∈ D, u, v ∈ X .

Then the functional equation (19) has a bounded solution.

Proof. First of all, we prove that fu is a bounded function on W , that is, fu ∈ X and the
operator f is well defined. Indeed, let u ∈ X be arbitrary. As u is bounded, there exists
λ1 > 0 such that ∣∣u(x)∣∣ 6 λ1

for all x ∈W . By hypothesis (D1) there exist λ2, λ3 > 0 such that, for all x ∈W and all
y ∈ D, ∣∣G(x, y, 0)∣∣ 6 λ2 and g(x, y) 6 λ3.
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Now by hypothesis (D3), for all x ∈W and all y ∈ D,∣∣g(x, y) +G
(
x, y, u

(
τ(x, y)

))∣∣
6
∣∣g(x, y)∣∣+ ∣∣G(x, y, u(τ(x, y)))∣∣

6
∣∣g(x, y)∣∣+ ∣∣G(x, y, u(τ(x, y)))−G(x, y, 0)∣∣+ ∣∣G(x, y, 0)∣∣

6 λ3 + λ
∣∣u(τ(x, y)∣∣+ λ2 6 λ3 + λλ1 + λ2.

As a result, for all x ∈W , we have that∣∣fu(x)∣∣ = sup
y∈D

∣∣g(x, y) +G
(
x, y, u

(
τ(x, y)

))∣∣ 6 λ3 + λλ1 + λ2.

This implies that fu is a bounded function on W , that is, the operator f is well defined.
Define a function α : X × X → [0,∞) by

α(u, v) =

{
s if u(x) 6 v(x) for all x ∈W,
η otherwise,

(21)

where s = 2p−1 and η ∈ (0, s). It is easy to see that α has a transitive property. It follows
from (D1) that f ∈ Ps(X , α) and so f ∈ WPs(X , α). From (D2) and (21) we get that
α(u0, fu0) > s for some u0 ∈ X . To prove condition (S4) in Theorem 2, let {un} be an
increasing sequence in X ; then by (21), α(un, un+1) > s for all n ∈ N. If un → u ∈ X
as n→∞, then we get in a standard way that un(x) 6 u(x) for any x ∈ W . Therefore,
by (21), α(un, u) > s for all n ∈ N. Thus, condition (S4) holds.

Next, we show that f ∈ ∆s(X,α,Λ1, Λ2). Let u, v ∈ X be such that α(u, v) > s,
that is, u(x) 6 v(x) for all x ∈W ; then from (D4) we have∣∣fu(x)− fv(x)∣∣p = ∣∣∣ sup

y∈D

{
g(x, y) +G

(
x, y, u

(
τ(x, y)

))}
− sup
y∈D

{
g(x, y) +G

(
x, y, v

(
τ(x, y)

))}∣∣∣p
6 sup
y∈D

∣∣G(x, y, u(τ(x, y)))−G(x, y, v(τ(x, y)))∣∣p
6

1

24p−2
M
(
u(x), v(x)

)
implying that

s4db(fu, fv) = s4 sup
x∈W

∣∣fu(x)− fv(x)∣∣p 6 1

4
Ms(u, v).

Now consider control functions Λ1, Λ2 : R+ → R+ given as

Λ1(t) = t, Λ2(t) =
3

4
t, t ∈ R+.

Notice that the last inequality does not depend on x ∈W , and therefore we obtain

Λ1

(
s4db(fu, fv)

)
6 Λ1

(
Ms(u, v)

)
− Λ2

(
Ms(u, v)

)
, u, v ∈ B(W ).
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Thus, all the conditions of Theorem 2 are fulfilled, and there exists a fixed point of f ,
i.e., a bounded solution u∗ ∈ X such that fu∗ = u∗. In other words, for all x ∈W ,

u∗(x) = fu∗(x) = sup
y∈D

{
g(x, y) +G

(
x, y, u∗

(
τ(x, y)

))}
.

This completes the proof.

We state the following consequence of Theorem 3.

Corollary 3. Suppose the following assumptions:

(D1) g :W ×D → R and G(·, ·, 0) :W ×D → R are bounded functions;
(D2) there exists u0 ∈ X such that

u0(x) 6 sup
y∈D

{
g(x, y) +G

(
x, y, u0

(
τ(x, y)

))}
for all x ∈W ;

(D̃3) the function G : W ×D × R → R is non-decreasing in the third variable and
satisfies ∣∣G(x, y, t)−G(x, y, r)∣∣ 6 22/p

16
|t− r|

for some p > 1 and all x ∈W , y ∈ D and t, r ∈ R.

Then the functional equation (19) has a solution u∗ ∈ B(W ).

Proof. We will verify the conditions of Theorem 3. If we take λ = 22/p/16 > 0, then we
have (D3) of Theorem 3. Moreover, for all x ∈W , all y ∈ D and all u, v ∈ B(W ),∣∣u(x)− v(x)∣∣ 6 sup

x∈W

∣∣u(x)− v(x)∣∣ = d∞(u, v).

Then ∣∣G(x, y, u(x))−G(x, y, v(x))∣∣ 6 22/p

16

∣∣u(x)− v(x)∣∣
implies that∣∣G(x, y, u(x))−G(x, y, v(x))∣∣p

6
1

24p−2
∣∣u(x)− v(x)∣∣p 6 1

24p−2
db(u, v) 6

1

24p−2
Ms(u, v),

wherefrom condition (D4) of Theorem 3 follows. Hence, Theorem 3 guarantees that
functional equation (19) has a solution u∗ ∈ B(W ).

Example 3. (Modified according to [4, Ex. 22], adapted for the use in b-metric spaces.)
Consider the functional equation

u(x) = sup
y∈R

{
arctan

(
x+ 2|y|

)
+ ln

(
1 + x+

1

1 + |y|
+

1

8

∣∣∣∣u( x

1 + x+ |y|

)∣∣∣∣)} (22)
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for x ∈ [0, 1]. On comparing equation (22) with equation (19), we see that we have taken
W = [0, 1], D = R, g : [0, 1] × R → R is defined by g(x, y) = arctan(x + 2|y|),
τ : [0, 1] × R → R is defined by τ(x, y) = x/(1 + x + |y|), G : [0, 1] × R × R → R is
defined by G(x, y, t) = ln(1 + x+ 1/|y|+ |t|/8).

After calculations, we have |g(x, y)| 6 π/2 andG(x, y, 0) = ln(1+x+1/(1+|y|)) 6
ln 3 for all x ∈ [0, 1] and all y ∈ R. Hence, assumption (D1) of Corollary 3 is satisfied.
Assumption (D2) is satisfied for u0(x) ≡ 1.

Moreover, for all x ∈ [0, 1] and all y, t, r ∈ R with |t| > |r|, it follows that∣∣G(x, y, t)−G(x, y, r)∣∣
=

∣∣∣∣ ln(1 + x+
1

1 + |y|
+

1

8
|t|
)
− ln

(
1 + x+

1

1 + |y|
+

1

8
|r|
)∣∣∣∣

=

∣∣∣∣ ln 1 + x+ 1
1+|y| +

1
8 |t|

1 + x+ 1
1+|y| +

1
8 |r|

∣∣∣∣ = ∣∣∣∣ ln 1 + x+ 1
1+|y| +

1
8 (|r|+ (|t| − |r|))

1 + x+ 1
1+|y| +

1
8 |r|

∣∣∣∣
=

∣∣∣∣ ln(1 + 1

8

|t| − |r|
1 + x+ 1

1+|y| +
1
8 |r|

)∣∣∣∣ 6 ∣∣∣∣ ln(1 + 1

8

(
|t| − |r|

))∣∣∣∣
=

∣∣∣∣ ln(1 + 1

8

(
|t| − |r|

))∣∣∣∣ = ln

(
1 +

1

8

∣∣|t| − |r|∣∣)
6 ln

(
1 +

1

8
|t− r|

)
6

1

8
|t− r|,

which is assumption (D̃3) of Corollary 3 for p = 2. Therefore, functional equation (22)
has a solution u∗ ∈ B([0, 1]).

Example 4. Let W = [1,∞], D = R+. Consider the functional equation

u(x) = sup
y∈R

{
1 +

1

x+ 2y2
+

1

1 + x2 + y2
+

22/3

16
sin
(
u
(
2x2y

))}
(23)

for x ∈ W . On comparing equation (23) with equation (19), we see that we have g :
[1,∞] × R+ → R+ defined by g(x, y) = 1 + 1/(x + 2y2), τ : [1,∞] × R+ → R+

defined by τ(x, y) = x/(1 + x + |y|), and G : [1,∞] × R+ × R+ → R+ defined by
G(x, y, t) = 1/(1 + x2 + y2) + 22/3/16 sin t.

After calculations, we have |g(x, y)| < 4/3 and G(x, y, 0) = 1/(1 + x2 + y2) < 1/2
for all x ∈ [1,∞] and all y ∈ R+. Hence, assumption (D1) of Corollary 3 is satisfied.
Assumption (D2) is satisfied for u0(x) ≡ 1.

Moreover, for all x ∈ [1,∞] and all y, t, r ∈ R with |t| > |r|, it follows that

∣∣G(x, y, t)−G(x, y, r)∣∣ 6 22/3

16
| sin t− sin r| 6 22/3

16
|t− r|,

which is assumption (D̃3) of Corollary 3 for p = 3. Therefore, functional equation (22)
has a solution u∗ ∈ B([1,∞]).
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5 Conclusion

Condition (1) considered in this paper is a generalized weakly contraction condition that
includes several types of conditions based on various forms of control functions, and the
obtained fixed point results include several results known thus far. In particular, it is shown
that the term (d(x, fy) + d(fx, y))/(2s) usually appearing in contraction conditions can
be replaced by a more general term φ1(d(x, fy), d(fx, y))

Also, our results extend Alber and Guerre-Delabrière [3], Rhoades [12] and Agarwal
et al. [1] fixed point results from metric to the setup of b-metric spaces. Furthermore, as
it has been observed in some studies, fixed point results in b-metric spaces endowed with
partial order, graph, binary relation or cyclic mappings can be derived from results under
some suitable (weak) α-admissible conditions of type S. We have applied our results to
get existence of solution for functional equations arising in dynamic programming.

Acknowledgment. The authors are indebted to the Deputy-Editor-in-Chief, Professor
Romas Baronas and the referee for careful reading and suggestions that helped us to
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