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Abstract. This paper is concerned with a predator–prey model with hyperbolic mortality and prey
harvesting. The parameter regions for the stability and instability of the unique positive constant
solution of ODE and PDE are derived, respectively. Especially, the global asymptotical stability of
positive constant equilibrium of the diffusive model is obtained by iterative technique. The stability
and direction of periodic solutions of ODE and PDE are investigated by center manifold theorem
and normal form theory, respectively. Numerical simulations are carried out to depict our theoretical
analysis.

Keywords: predator–prey model, Hopf bifurcation, global asymptotical stability, iterative
technique, center manifold theorem.

1 Introduction

Predator–prey models are basic differential equation models for describing the interac-
tions between two species and are of great interest to researchers in mathematics and
ecology. Both the functional response and harvesting can affect dynamical properties
of biological and mathematical models. There are many different kinds of functional
response for different kinds of species to model the phenomena of predation such as
Holling I–III type (see [7]), Ivlev type (see [9, 14]), Beddington–DeAngelis type (see [2,
4]), the Crowley–Martin type (see [3]), and the recent well-known ratio dependence type,
which was first proposed by Arditi and Ginzburg (see [1]). For different species, constant
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Global stability and Hopf bifurcation of a diffusive predator–prey model 647

harvesting, proportional harvesting, and nonlinear harvesting are currently investigated
by many authors, see [5, 8, 13].

In paper [17], the authors performed the following predator–prey model with hyper-
bolic mortality:

ut = αu

(
1− u− v

1 + βu

)
, t > 0,

vt = v

(
βu

1 + βu
− h(v)

v

)
, t > 0,

where u, v represent the populations of the prey and predator, respectively, all parameters
are positive, and h(v) is given by

h(v) =
rv2

e+ ηv

for hyperbolic mortality, where r is the death rate of the predator, e and η are coefficients
of light attenuation by water and self-shading in the context of plankton mortality. Please
refer to [17] for the more background of the model. Here notice that when η = 0 and
e 6= 0, it is quadratic mortality; when η 6= 0 and e = 0, it gives the linear mortality;
and when both η and e are not zero, it is a mortality of the hyperbolic type, see [17].
The authors studied the reaction–diffusion model and mainly focused on the formation of
some elementary two-dimensional patterns such as hexagonal spots and stripe patterns.

In paper [11], the authors also considered a predator–prey model with hyperbolic
mortality as follows:

ut = u(1− u)− suv

β + u
, t > 0,

vt = α

(
uv

β + u
− rv2

1 + rv

)
, t > 0.

For the ordinary differential equations and partial differential equations, the authors did
the stability and Hopf bifurcation analysis with α as the bifurcation parameter.

In our another paper [10], we considered the delayed differential equation

ut = u(1− u)− suv

β + u
, t > 0,

vt = α

(
u(t− τ)v

β + u(t− τ)
− rv2

1 + rv

)
, t > 0,

u(t) = u0(t) > 0, t ∈ [−τ, 0],

v(t) = v0(t) > 0, t ∈ [−τ, 0],

(1)

where τ is a time delay due to gestation period of predations. We regarded τ as the
bifurcation parameter and did Hopf bifurcation analysis. Our conclusions declared that
time delay can enrich the dynamics of model. Stationary pattern of the corresponding
diffusive model without time delay is also considered.
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Unlike (1), in this paper, we incorporate a prey harvesting and develop the following
model:

ut = u(1− u)− suv

β + u
− hu, t > 0,

vt = α

(
uv

β + u
− rv2

1 + rv

)
, t > 0,

u(0) = u0 > 0, v(0) = v0 > 0,

(2)

where h is the prey harvesting coefficient.
It is easy to see that when h < 1, problem (2) has three constant equilibria (0, 0),

(1, 0), and (λ, λ/(βr)), where

λ =
1

2

(
1− h− β − s

βr
+

√(
1− h− β − s

βr

)2

− 4β(h− 1)

)
< 1.

The corresponding partial differential equations of (2) with homogeneous Neumann
boundary condition is as follows:

∂u

∂t
− d1∆u = u(1− u)− suv

β + u
− hu, (x, t) ∈ (0, lπ)× (0,∞),

∂v

∂t
− d2∆v = α

(
uv

β + u
− rv2

1 + rv

)
, (x, t) ∈ (0, lπ)× (0,∞),

∂u

∂n
=
∂v

∂n
= 0, x = 0, lπ, t ∈ (0,∞),

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ (0, lπ),

(3)

where n is the outward unit normal vector of the boundary x = 0, lπ. The homoge-
neous Neumann boundary conditions means that this system is self-contained with zero
population flux across the boundary. Parameters d1, d2, called self-diffusion, are positive.

In this paper, we treat λ (or equivalently h) as Hopf bifurcation parameter and do
analysis of stability and Hopf bifurcation to demonstrate the important role of prey har-
vesting in the model. Compared with (1), problem (3) is a special case that the growth
function with harvesting is the combined term u(1 − h) − u2 and τ = 0. We focus on
the important role of the prey harvesting, while paper [10] is concerned with the role of
the time delay, and we also obtain the global asymptotical stability of the unique positive
constant equilibrium of the diffusive model in term of the iteration technique.

The outline of this paper is as follows. In Section 2, after analyzing the characteristic
equations of (2) and (3), we conclude the stability of positive constant solutions and the
existence, stability, and direction of periodic solutions, respectively. Section 3 is devoted
to the global asymptotical stability of the unique positive constant equilibrium of the
diffusive model. Numerical simulations are adopted to depict our theoretical analysis in
Section 4.
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2 Hopf bifurcation

In this section, we analyze the characteristic equations, derive the stability/instability of
(λ, λ/(βr)) and do Hopf bifurcation analysis treating λ as a Hopf bifurcation parameter.

2.1 Hopf bifurcation of ODE

Some computations show that the Jacobian matrix of (2) at (λ, λ/(βr)) can be written as

A =

(
sλ2

rβ(β+λ)2 − λ − sλ
β+λ

αλ
r(β+λ)2 − αβλ

(β+λ)2

)
,

and the two eigenvalues of A satisfy

λ1 + λ2 = T (λ) =
λ[ sλβr − (β + λ)2 − αβ]

(β + λ)2
,

λ1λ2 = D(λ) =
αβλ2(s+ r(β + λ)2)

r(β + λ)4
> 0.

Let

F (λ) =
sλ

βr
− (β + λ)2 − αβ. (4)

If
s

βr
> 2β + β2 + αβ + 1, (5)

that is, F (1) > 0, there exits a λ0 such that T (λ) < 0 when 0 < λ < λ0, and T (λ) > 0
when λ0 < λ < 1, where

λ0 =

s
βr − 2β −

√
( s
βr − 2β)2 − 4β(α+ β)

2
,

which indicates that when 0 < λ < λ0, (λ, λ/(βr)) is locally asymptotically stable.
In what follows, we do Hopf bifurcation analysis choosing λ as a bifurcation param-

eter.
When λ = λ0, we have T (λ) = 0, which implies that Jacobian matrix A has a pair of

imaginary eigenvalues. Let p(λ)± iq(λ) be the eigenvalues of Jacobian matrix A, then

p(λ) =
T (λ)

2
, q(λ) =

√
4D(λ)− T 2(λ)

2
,

and

p′(λ)|λ=λ0 =
λ0

β + λ0

(
−2λ0 − 2β +

s

βr

)

=
λ0

β + λ0

√(
s

βr
− 2β

)2

− 4β(α+ β) > 0.

Collecting the above analysis, we have the following theorem.

Nonlinear Anal. Model. Control, 22(5):646–661
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Theorem 1. Assume that h < 1 and (5) hold.

(i) If 0 < λ < λ0, (λ, λ/(βr)) of problem (2) is locally asymptotically stable;
(ii) If λ0 < λ < 1, (λ, λ/(βr)) of problem (2) is unstable;

(iii) Problem (2) undergoes a Hopf bifurcation at (λ, λ/(βr)) when λ = λ0.

In what follows, we further analyse the stability and direction of Hopf bifurcation. To
this end, similar to the computations in [15], by virtue of translation û = u − λ, v̂ =
v − λ/(βr) and denoting û and v̂ by u and v, respectively, we translate problem (2) into

ut = (u+ λ)(1− λ− u)−
s(u+ λ)(v + λ

βr )

β + u+ λ
− hu− hλ, t > 0,

vt = α

(
(u+ λ)(v + λ

βr )

β + u+ λ
−

r(v + λ
βr )2

1 + r(v + λ
βr )

)
, t > 0.

(6)

Rewrite (6) as (
ut
vt

)
= A

(
u

v

)(
f(u, v, λ)

g(u, v, λ)

)
, (7)

where

f(u, v, λ) =

(
sλ

r(β + λ)3
− 1

)
u2 − sβ

(β + λ)2
uv − sλ

r(β + λ)4
u3

+
sβ

(β + λ)3
u2v + · · · ,

g(u, v, λ) =
αr

(β + λ)3
u2 +

αβ

(β + λ)2
uv − αrβ3

(β + λ)3
v2 +

αλ

r(β + λ)4
u3

+
αr2β4

(β + λ)4
v3 − αβ

(β + λ)3
u2v + · · · .

Set

P =

(
1 0
N M

)
,

where

M =
β + λ

sλ
q(λ), N =

(p(λ) + αβλ
(β+λ)2 )(β + λ)

sλ
.

Then

P−1 =

(
1 0
−N
M

1
M

)
,

and

M0 = M |λ=λ0
=

√
αβrλ2

0(s+ r(β + λ0)2)

sλr(β + λ0)
,

N0 = N |λ=λ0 =
αβλ0

sλ0(β + λ0)
.
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Set (
u

v

)
= P

(
x

y

)
,

then (7) can be rewritten as(
xt
yt

)
= J

(
x

y

)
+

(
F 1(x, y, λ)

F 2(x, y, λ)

)
,

where

J =

(
p(λ) −q(λ)

q(λ) p(λ)

)
,

and

F 1(x, y, λ) =

(
sβN

(β + λ)3
− sλ

r(β + λ)4

)
x3 +

(
sλ

r(β + λ)3
− 1− sβN

(β + λ)2

)
x2

+
sβM

(β + λ)3
x2y − sβM

(β + λ)2
xy,

F 2(x, y, λ) = A30x
3 +A20x

2 +A21x
2y +A11xy +A02y

2 +A03y
3 +A12xy

2,

where

A30 = −N
M

(
sβN

(β + λ)3
− sλ

r(β + λ)4

)
+

1

M

(
αλ

r(β + λ)4
+
αr2β4n3

(β + λ)4
− αβN

(β + λ)3

)
,

A20 = −N
M

(
sλ

r(β + λ)3
− 1− sβN

(β + λ)2

)
+

1

M

(
αβN

(β + λ)2
− αr

(β + λ)3
− αrβ3N2

(β + λ)3

)
,

A21 = − sβN

(β + λ)3
+

1

M

(
3αr2β4N2M

(β + λ)4
− αβN

(β + λ)3

)
,

A11 =
sβN

(β + λ)2
+

αβ

(β + λ)2
− 2Nαrβ3

(β + λ)3
,

A02 = − αrβ3M

(β + λ)3
, A03 =

αM2r2β4

(β + λ)4
, A12 =

3αr2β4MN

(β + λ)4
.

Rewrite (7) in the following polar coordinates form:

ṙ = p(λ)r + a(λ)r3 + · · · ,
θ̇ = q(λ) + c(λ)r2 + · · · ,

(8)

Nonlinear Anal. Model. Control, 22(5):646–661
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then the Taylor expansion of (8) at λ = λ0 yields

ṙ = p′(λ0)(λ− λ0)r + a(λ0)r3 + · · · ,
θ̇ = q(λ0) + q′(λ0)(λ− λ0) + c(λ0)r2 + · · · .

In order to determine the stability of the periodic solutions, we need to calculate the
sign of the coefficient a(λ0), which is given by

a(λ0) =
1

16

(
F 1
xxx + F 1

xyy + F 2
xxy + F 2

yyy

)
+

1

16q(λ0)

(
F 1
xy

(
F 1
xx + F 1

yy

)
− F 2

xy

(
F 2
xx + F 2

yy

)
− F 1

xxF
2
xx + F 1

yyF
2
yy

)
=

1

16

{
6

(
sβN0

(β + λ)3
− sλ

r(β + λ)4

)
+ 2A21 + 6A03

}
+

√
r(β + λ)2

16
√
αβλ2(s+ r(β + λ)2)

{
−
(

sβM0

(β + λ)2
+ 2A20

)
×
(

sλ

r(β + λ)3
− 1− sβN

(β + λ)2

)
−A11(2A20 + 2A02)

}∣∣∣∣
λ=λ0

.

Now from Poincaré–Andronov–Hopf bifurcation theorem, p′(λ0) > 0, and the above
calculation of a(λ0) we summarize our results as follows:

Theorem 2. For problem (2),

(i) If a(λ0) > 0, the periodic solutions bifurcating from (λ, λ/(βr)) at λ = λ0 are
stable, and the direction of the Hopf bifurcation is supercritical;

(ii) If a(λ0) < 0, the periodic solutions bifurcating from (λ, λ/(βr)) at λ = λ0 are
unstable, and the direction of the Hopf bifurcation is subcritical.

2.2 Hopf bifurcation of PDE

In this subsection, we do Hopf bifurcation analysis of problem (3).

Theorem 3. For problem (3),

(i) Assume that h < 1 and (9) hold. If λ ∈ (0, λ∗], (λ, λ/(βr)) is locally asymp-
totically stable; If λ ∈ (λ∗, 1), (λ, λ/(βr)) is unstable, where λ∗ is determined
in (10).

(ii) Assume that h < 1, s/r > 4β2 + αβ and (11) hold. Let Ω be a bounded smooth
domain so that the spectral set S = {µi} satisfies

(S) All the eigenvalues µi are simple for i > 0;

then there exists a n0 such that λ∗ ∈ (λ(n0), λ(n0 + 1)), and there are (n0 + 1) Hopf
bifurcation points satisfying

λ0 = λH(0) > λH(1) > · · · > λH(n0) > λ∗.

https://www.mii.vu.lt/NA
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For every Hopf bifurcation point λH(k), problem (3) undergoes a Hopf bifurcation,
and the bifurcation periodic orbits near (λ, λ/(βr)) can be parameterized in the form
λ(s) = λH(j) + o(s), s ∈ (0, δ) for some small δ, and

u(s)(x, t) = λH(j) + saj cos
(
ω
(
λH(j)

)
t
)
φj(x) + o(s),

v(s)(x, t) =
λH(j)

βr
+ sbj cos

(
ω
(
λH(j)

)
t
)
φj(x) + o(s),

where ω(λH(j)) =
√
Dj(λH(j)) is the corresponding time frequency, φj(x) is the

corresponding spatial eigenfunction, and (aj , bj) is the corresponding eigenvector, that
is to say, [

L
(
λH(j)

)
− iω

(
λH(j)

)
I
][

(aj , bj)
Tφj(x)

]
= (0, 0)T.

Moreover,

(i) The periodic orbits bifurcating from λ = λH(0) are spatially homogeneous,
which coincide with the periodic orbits of the corresponding ODE system;

(ii) The periodic orbits bifurcating from λ = λH(j) are spatially nonhomogeneous,
1 6 j 6 n0.

Proof. Some calculations show that the Jacobian matrix of (3) at (λ, λ/(βr)) can be
written as

An(λ) =

(
sλ2

βr(β+λ)2 − λ− d1
n2

l2 − sλ
β+λ

αλ
r(β+λ)2 − αβλ

(β+λ)2 − d2
n2

l2

)
,

and the eigenvalues of An(λ) satisfy

λ1n + λ2n = Tn(λ) =
λ[ sλβr − (β + λ)2 − αβ]

(β + λ)2
− (d1 + d2)

n2

l2
,

λ1nλ2n = Dn(λ)

=
αβλ2(s+ r(β + λ)2)

r(β + λ)4
− d2

n2

l2

(
sλ2

rβ(β + λ)2
− λ
)

+ d1d2
n4

l4
+ d1

n2

l2
αβλ

(β + λ)2
.

It is easy to see that when λ < λ0, Tn(λ) < 0 always holds.
If

rβ3 + rβλ2
0 +

(
2β2r − s

)
λ0 < 0, (9)

there exists

λ∗ =
s− 2rβ2 −

√
(s− 2rβ2)2 − 4r2β4

2rβ
(10)

such that when λ ∈ (0, λ∗], Dn(λ) > 0 holds for all n, which implies that (λ, λ/(βr))
is locally asymptotically stable. Then the interval of emergence of Hopf bifurcation lies

Nonlinear Anal. Model. Control, 22(5):646–661
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in (λ∗, 1). Tn(λ) = 0 means that (d1 + d2)n2/l2 = (λ/(β + λ)2)F (λ), where F (λ) is
defined in (4).

Let λH be possible Hopf bifurcation value, by [6, 16], to identify λH be the Hopf
bifurcation point, we recall the following sufficient conditions:

(AH) There exists i ∈ N0 := N ∪ {0} such that Ti(λH) = 0 and Di(λH) > 0
hold, and as i 6= j, Tj(λH) 6= 0 and Dj(λH) 6= 0. And the unique pair of
complex eigenvalues τ(λ)± iω(λ) near the imaginary axis satisfy τ ′(λH) 6= 0,
ω(λH) > 0.

After some simple computations, we get that if s/r > 4β2 + αβ, that is, λ0 < β,
λ′(n) < 0 holds. Notice that λ(0) = λ0. Hence, there exists a n0 such that λ∗ ∈ (λ(n0),
λ(n0 + 1)), and there are (n0 + 1) possible Hopf bifurcation points satisfying

λ0 = λH(0) > λH(1) > · · · > λH(n0) > λ∗.

Next, we will show that under some additional conditions, Dj(λH(i)) > 0 for
0 6 i 6 n0 and j ∈ N0, then we must have Di(λH(i)) > 0 and Dj(λH(i)) 6= 0 for
0 6 i 6 n0 and j ∈ N0 as required in condition (AH).

Since T (λH(k))=0, k=0, 1, 2, . . . , n0, and λ′(n)<0, we get that when λ∈(λ∗, λ0],

Dn(λ) =
αβλ2(s+ r(β + λ)2)

r(β + λ)4
− d2

n2

l2

(
sλ2

rβ(β + λ)2
− λ
)

+ d1d2
n4

l4

+ d1
n2

l2
αβλ

(β + λ)2

> d1d2
n4

l4
+
n2

l2

[
d1αβλ∗

(β + λ∗)2
− d2sλ

2
0

rβ(β + λ0)2

]
+
αβλ2

∗(s+ r(β + λ∗)
2)

r(β + λ∗)4

=

(√
d1d2

n2

l2
+

d1αβλ∗
(β+λ∗)2 −

d2sλ
2
0

rβ(β+λ0)2

2
√
d1d2

)2

+
αβλ2

∗(s+ r(β + λ∗)
2)

r(β + λ∗)4
−

[ d1αβλ∗
(β+λ∗)2 −

d2sλ
2
0

rβ(β+λ0)2 ]2

4d1d2
.

If
αβλ2

∗(s+ r(β + λ∗)
2)

r(β + λ∗)4
>

[ d1αβλ∗
(β+λ∗)2 −

d2sλ
2
0

rβ(β+λ0)2 ]2

4d1d2
, (11)

then Dn(λ) > 0 for all n.
Let τ(λ)± iω(λ) be the pair of eigenvalue of An(λ). We verify that

τ ′
(
λH(k)

)
=
T ′n(λH(k))

2
=

λH(k)

(β + λH(k))2

(
−2λH(k)− 2β +

s

βr

)
+
(
β − λH(k)

)
(d1 + d2)

n2

l2
> 0,

ω(λH(k)) =
√
Dn(λH(k)).

So the proof is accomplished by the Hopf bifurcation theorem in [6, 16].
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Remark. Condition s/r > 4β2 + αβ implies that (9) always holds.

Adopting the framework of [6,16], we will compute the direction of Hopf bifurcation
and the stability of periodic solutions bifurcating from (λ, λ/(βr)) at λ = λH(0) = λ0.
We shall follow the same notations and calculations in [6, 16].

We choose

q = (a0, b0)T =

(
1,

sλ2
0

rβ(β+λ0)2 − λ0 − iω0

sλ0

β+λ0

)T

,

q∗= (a∗0, b
∗
0)T =

(
ω0 + i(

sλ2
0

rβ(β+λ0)2 − λ0)

2lπω0
,− sλ0i

2lπω0(β + λ0)

)T

,

where

ω0 =

√
αβλ2

0(s+ r(β + λ0)2)

r(β + λ0)4
.

It is straightforward to compute that

c0 = fuu + 2fuvb0 =
sλ0

r(β + λ0)3
− 1− 2βsb0

(β + λ0)2
,

d0 = guu + 2guvb0 + gvvb
2
0 = − 2αλ0

r(β + λ0)3
+

2αβb0
(β + λ0)2

− 2αrβ3b20
(β + λ0)3

,

e0 = fuu + fuv(b0 + b0) =
sλ0

r(β + λ0)3
− 1− βs

(β + λ0)2
(b0 + b0),

f0 = guu + guv(b0 + b0) + gvv|b0|2

= − 2αλ0

r(β + λ0)3
+

αβ

(β + λ0)2
(b0 + b0)− 2αrβ3

(β + λ0)3
|b0|2,

g0 = fuuu + fuuv(2b0 + b0) = − 6sλ0

r(β + λ0)4
+

2sβ

(β + λ0)3
(2b0 + b0),

h0 = guuu + guuv(2b0 + b0) + gvvv|b0|2b0

=
6αλ0

r(β + λ0)4
− 2αβ

(β + λ0)3
(2b0 + b0) +

6αr2β4

(β + λ0)4
|b0|2b0,

and

〈q∗, Qqq〉 = lπ(a∗0c0 + b∗0d0),

〈q∗, Qqq̄〉 = lπ(a∗0e0 + b∗0f0),

〈q∗, Cqqq̄〉 = lπ(a∗0g0 + b∗0h0),

H11 = Qqq̄ − 〈q∗, Qqq̄〉q − 〈q∗, Qqq̄〉q̄ = 0,

H20 = Qqq − 〈q∗, Qqq〉q − 〈q∗, Qqq〉q = 0,
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which implies that W11 = W20 = 0. Hence,

Re
(
c1(λ0)

)
= Re〈q∗, Qw11q〉+

1

2
Re〈q∗, Cqqq̄〉+

1

2
Re〈q∗, Qw20q̄〉

+ Re

(
i

2w0
〈q∗, Qqq〉 · 〈q∗, Qqq̄〉

)
= Re

(
1

2
〈q∗, Cqqq̄〉+

i

2w0
〈q∗, Qqq〉 · 〈q∗, Qqq̄〉

)
= Re

{
lπ

2
(a∗0g0 + b∗0h0) +

l2π2i

2w0
(a∗0c0 + b∗0d0)(a∗0e0 + b∗0f0)

}
.

Since τ ′(λ0) > 0, from Theorem 2.1 in [16], we have

Theorem 4. For problem (3),

(i) If Re(c1(λ0)) < 0, the direction of Hopf bifurcation at λ = λ0 is forward, that is,
the bifurcating periodic solutions exists for λ > λ0, and the bifurcating periodic
solutions are orbitally asymptotically stable;

(ii) If Re(c1(λ0)) > 0, the direction of Hopf bifurcation at λ = λ0 is backward,
that is, the bifurcating periodic solutions exists for λ < λ0, and the bifurcating
periodic solutions are orbitally asymptotically unstable.

3 Global asymptotical stability of positive constant equilibrium of (3)(3)(3)

In this section, we obtain the global asymptotical stability of (λ, λ/(βr)) using the itera-
tion technique. We first state the following lemma, which is from [12].

Lemma 1. Let f(s) be a positive C1 function for s > 0, and let d > 0, β > 0 be
constants. Further, let T ∈ [0,∞) and w ∈ C2,1(Ω × (T,∞)) ∩ C1,0(Ω̄ × [T,∞)) be
a positive function.

(i) If w satisfies

wt − d∆w 6 (>)w1+βf(w)(α− w), (x, t) ∈ Ω × (T,∞),

∂w

∂n
= 0, (x, t) ∈ ∂Ω × [T,∞),

and the constant α > 0, then

lim sup
t→∞

max
Ω̄

w(·, t) 6 α
(

lim inf
t→∞

min
Ω̄

w(·, t) > α
)
.

(ii) If w satisfies

wt − d∆w 6 w1+βf(w)(α− w), (x, t) ∈ Ω × (T,∞),

∂w

∂n
= 0, (x, t) ∈ ∂Ω × [T,∞),

and the constant α 6 0, then lim supt→∞maxΩ̄ w(·, t) 6 0.
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Theorem 5. If h < 1 and s/r < β2 hold, (λ, λ/(βr)) of problem (3) is globally
asymptotically stable.

Proof. By the maximum principle of parabolic equations, for any initial values (u0(x),
v0(x)) > (0, 0), solutions (u(x, t), v(x, t)) of problem (3) are positive.

From the first equation of problem (3) we have ut − d1∆u 6 u(1 − h − u). By
Lemma 1, we get

lim sup
t→∞

max
Ω̄

u(x, t) 6 1− h := ū1.

Then for any given ε > 0, there exists tε1 � 1 so that for (x, t) ∈ Ω̄ × [tε1,∞), u(x, t) 6
ū1 + ε. In turn, for x ∈ Ω̄, t > tε1, we have

vt − d2∆v 6
αv

(β + 1− h+ ε)(1 + rv)
(1− h+ ε− βrv).

By Lemma 1 and the arbitrariness of ε, we obtain that

lim sup
t→∞

max
Ω̄

v(·, t) 6 ū1

βr
:= v̄1.

Hence, there exists tε2 > tε1 such that for (x, t) ∈ Ω̄ × [tε2,∞), v(x, t) 6 v̄1 + ε.
Consequently, we have that

ut − d1∆u > u

(
1− u− s(v̄1 + ε)

β + u
− h
)

=
u

(β + u)

(
(1− h)β + (1− h− β)u− u2 − s(v̄1 + ε)

)
:=

u

(β + u)
H(u, v̄1 + ε).

If s/r < β2 holds, H(u, v̄1 + ε) = 0 has two roots u1,2 satisfying

u1 =
1− h− β −

√
(1− h− β)2 + 4(1− h)β − 4sv̄1

2
< 0,

u2 =
1− h− β +

√
(1− h− β)2 + 4(1− h)β − 4sv̄1

2
> 0.

Then we get
ut − d1∆u >

u

(β + u)
(u− u1)(u2 − u),

which implies that
lim inf
t→∞

min
Ω̄

u(·, t) > u2 := u1.

Then for 0 < ε < u1, there exists tε3 > tε2 such that for (x, t) ∈ Ω̄ × [tε3,∞), u(x, t) >
u1 − ε.
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Therefore, vt − d2∆v > αv((u1 − ε)/(β + u1 − ε)− rv/(1 + rv)), and we have

lim inf
t→∞

min
Ω̄

v(·, t) > u1

βr
:= v1.

For 0 < ε < v1, there exists tε4 such that when t > tε4 > tε3, v(x, t) > v1 − ε for x ∈ Ω̄.
Meanwhile,

ut − d1∆u 6
u

(β + u)

(
(1− h)β + (1− h− β)u− u2 − s(v1 − ε)

)
=

u

(β + u)
(u− u3)(u4 − u),

where

u3 =
1− h− β −

√
(1− h− β)2 + 4(1− h)β − 4sv1

2
< 0,

u4 =
1− h− β +

√
(1− h− β)2 + 4(1− h)β − 4sv1

2
> 0.

Hence,
lim sup
t→∞

max
Ω̄

u(·, t) 6 u4(v1) := ū2.

Then there exists tε5 such that for (x, t) ∈ Ω̄ × [tε5,∞), u(x, t) 6 ū2 + ε.
Let

ϕ(τ) =
τ

rβ
, ψ(τ) =

1− h− β +
√

(1− h− β)2 + 4(1− h)β − 4sτ

2
,

then ϕ′(τ) > 0, ψ′(τ) < 0. Therefore, the constants ū1, v̄1, u1, v1, ū2 showed above
satisfy

u1 6 lim inf
t→∞

min
Ω̄

u(·, t) 6 lim sup
t→∞

max
Ω̄

u(·, t) 6 ū1,

v1 6 lim inf
t→∞

min
Ω̄

v(·, t) 6 lim sup
t→∞

max
Ω̄

v(·, t) 6 v̄1,

u1 = ψ(v̄1) < ψ(v1) = ū2 < ū1,

v1 = ϕ(u1) < ϕ(ū1) = v̄1.

By virtue of the inductive method, we can construct four sequences {ui}, {ūi}, {vi},
{v̄i} by

vi = ϕ(ui), ϕ(ūi) = v̄i, ui = ψ(v̄i), ψ(vi) = ūi+1

such that

ui 6 lim inf
t→∞

min
Ω̄

u(·, t) 6 lim sup
t→∞

max
Ω̄

u(·, t) 6 ūi,

vi 6 lim inf
t→∞

min
Ω̄

v(·, t) 6 lim sup
t→∞

max
Ω̄

v(·, t) 6 v̄i.
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By the monotonicity of ϕ, ψ, we have

vi−1 < vi = ϕ(ui) < ϕ(ūi) = v̄i < v̄i−1,

ui−1 < ui = ψ(v̄i) < ψ(vi) = ūi+1 < ūi.

We may suppose that

lim
i→∞

ui = u, lim
i→∞

vi = v, lim
i→∞

ūi = ū, lim
i→∞

v̄i = v̄.

Since problem (3) has a unique positive constant equilibrium (λ, λ/(βr)) under
h < 1, then (u, v) = (ū, v̄) = (λ, λ/(βr)) and limt→∞(u(x, t), v(x, t)) = (λ, λ/(βr)).
So the proof is obtained.

4 Numerical simulations

In this section, we will use mathematical software Matlab and show some numerical
simulations to depict our theoretical analysis of the existence of periodic solutions and
the stability of positive constant solution.

For problem (2), we choose h = 0.5, α = 1, β = 1, r = 0.1, s = 0.9, and initial
value (u0, v0) = (0.052, 0.5). After some computations, we can see that λ0 = 0.2984 and
(λ, λ/(βr)) = (0.0523, 0.5324). Then the left part of Fig. 1 shows the local stability of
constant solution, while the right part of Fig. 1 shows the bifurcating periodic solutions.
Here we choose h = 0.1, α = 0.1, β = 0.65, r = 0.15, s = 0.725, and initial
values (u0, v0) = (0.08, 0.8). Then we can conclude that λ0 = 0.0805, (λ, λ/(βr)) =
(0.0805, 0.8257), and a(λ0) = −0.3951 < 0, which mean that the periodic solutions
bifurcating near (0.0805, 0.8257) are unstable and subcritical when λ = 0.0805.

For problem (3), we choose l = 1, d1 = 1, d2 = 2, h = 0.3, α = 0.25, β = 0.65,
r = 0.2, s = 0.75, and initial values (u0, v0) = (0.0658, 0.7254), then λ0 = 0.1350,
λ∗ = 0.0966, and (λ, λ/(βr)) = (0.0785, 0.6037). Then the local stability is depicted in
Fig. 2 when λ < λ0. When we choose that d1 = 1, d2 = 2, l = 1, h = 0.25, α = 0.2,

Figure 1. Convergence to the positive constant solution (0.0523, 0.5324) in the local stability region when
λ < λ0 (left). The periodic solutions bifurcating near (0.0805, 0.8257) are unstable and subcritical when
λ = 0.0805 (right).
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Figure 2. Convergence to the positive constant steady state solution (0.0785, 0.6037) in the local stability
region: component u (left); component v (right).

Figure 3. Convergence to the positive constant steady state solution (0.0785, 0.6037) in the local stability
region: component u (left); component v (right).

β = 0.5, r = 0.15, s = 0.9, and initial values (u0, v0) = (0.0658, 0.7254), then we
can get λ0 = 0.0319, λ∗ = 0.0228, Re(c1(λ0)) = −1.8816 < 0, and (λ, λ/(βr)) =
(0.0318, 0.4244), which indicates that the homogeneous periodic solution bifurcating
from (0.0318, 0.4244) are forward and stable when λ = λ0. Then the periodic solutions
are depicted in Fig. 3.
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