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Abstract. In this study, under some suitable assumptions, we determine an explicit eigenvalue
interval for the existence of positive solution of singular fractional-order nonlinear elastic beam
equation with bending term. Our analysis rely on cone theoretic techniques. Moreover, we consider
some special cases and an example to affirm the applicability of the main result.
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1 Introduction

Recently, fractional differential calculus has attracted a lot of attention by many resear-
chers of different fields, such as: physics, chemistry, biology, economics, control theory,
biophysics, etc. [11,15,16]. Since the fractional integrals and derivatives have more abil-
ities to describe phenomena, it means that they can decrease errors occurring in modeling
of real-life events, thus, studying of fractional systems solutions becomes one of the most
significant challenging part of applied mathematics.

Also, fourth-order differential equations often used to describe the deformation of
elastic beams and so are important in mechanics and engineering problems. Many authors
have investigated fourth-order differential equations with different boundary conditions
(see, for example, [1, 2, 5–7, 9, 17, 19, 25]).

So, due to the importance of fractional differential equations and fourth-order differ-
ential equations, the existence of positive solutions of fractional-order beam equations has
been studied by many authors.

Xu et al. [24], considered the existence of positive solutions for fractional-order beam
equation

Dαu(t) = f
(
t, u(t)

)
, 0 < t < 1, 3 < α 6 4, (1)
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with the boundary condition

u(0) = u(1) = u′(0) = u′(1) = 0,

where f has singularity at x = 0, and D is the Riemann–Liouville fractional derivative.
The authors in [23] investigated the existence of positive solutions of singular super-

linear (or sub-linear) integral boundary value problems (1) with Caputo derivative and the
integral boundary condition

au(0)− bu′(0) = 0, cu(1) + du′(1) = 0,

u′′(0) + u′′′(0) =

1∫
0

u′′(τ) dp(τ),

u′′(1) + u′′′(1) +

1∫
0

u′′(τ) dq(τ) = 0.

Chen and Liu [4] studied the singular Riemann–Liouville fractional-order elastic beam
equation (1) with the following conditions:

lim
t→0

t4−αu(t) = a, lim
t→0

Dα−3u(t) = b,

u(1) = Dα−3u(1) = 0.

Their analysis relies on the well-known Schauder’s fixed-point theorem.
In [14], by using fixed-point theorems on cones in a Banach space, there is discussed

Dαu(t) = f(t, u(t), u′(t)) with the conditions

lim
t→0

t4−αu(t) = lim
t→0

t4−αu′(t) = 0, 0 < t < 1, 3 < α 6 4,

u(1) = u′(1) = 0,

where D is the Riemann–Liouville fractional derivative.
Liu [13] considered the following boundary value problem for nonlinear singular

Riemann–Liouville fractional-order elastic beam equation:

Dαu(t) = f
(
t, u(t), u′(t), u′′(t)

)
, 0 < t < 1, 3 < α 6 4,

lim
t→0

t4−αu(t) = u(1) = 0,

Dα−3u(0) = u′(1) = 0.

Furthermore, the eigenvalue problems are one of the most noteworthy theories such
that they have been concerned by some authors; see [3, 10, 18, 20–22, 27]. For example,
Bai [3] considered the Caputo fractional ordinary differential equation boundary value
problem

Dαu(t) + λh(t)f
(
u(t)

)
= 0, 0 < t < 1, 2 < α 6 3,

u(0) = u′(1) = u′′(0) = 0.
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Jiang [10], by using the fixed-point index theory and Krein–Rutman theorem, studied
the eigenvalue interval of the multi-point boundary value problem

Dαu(t)−Mu = λf
(
t, u(t)

)
, 0 < t < 1, 0 < α < 1,

u(0) =

n∑
i=1

βiu(ξi),

where, M > 0 and 0 < ξ1 < ξ2 < · · · < ξn 6 1 and D is the Caputo fractional
derivative.

Wang et al. [20] gave the eigenvalue interval for the following nonlinear Caputo
fractional differential equation with integral boundary condition:

Dαu(t) + λf
(
t, u(t)

)
= 0, 0 < t < 1, n < α 6 n+ 1, n > 2,

u(0) = u′′(0) = · · · = u(n)(0) = 0,

u(1) = ξ

1∫
0

u(s) ds, 0 < ξ < 2.

Wang and Guo [22], by using the fixed-point theory, investigated the following eigen-
value problem:

Dαu(t) + λf
(
t, u(t)

)
= 0, 0 < t < 1, 1 < α 6 2,

au(0)− bu′(0) = 0,

u(1) =

1∫
0

k(s)g
(
u(s)

)
ds+ µ, µ > 0,

where D is the Caputo fractional derivative.
Therefore, it seems that few papers consider the eigenvalue problem of fractional

differential equations, especially with integral boundary conditions.
Our aim in this paper is to give an eigenvalue interval for the existence of positive

solution of the following nonlinear elastic beam equation with the bending term:

Dαu(t) + λf
(
t, u(t), u′′(t)

)
= 0, 0 < t < 1,

u(0) = u(1) =

1∫
0

k(τ)u(τ) dτ,

u′′(0) + u′′′(0) =

1∫
0

g(τ)u′′(τ) dτ,

u′′(1) + u′′′(1) =

1∫
0

g(τ)u′′(τ) dτ,

(2)

Nonlinear Anal. Model. Control, 22(6):821–840
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where 3 < α 6 4, λ > 0, f ∈ C([0, 1]× [0,∞)× (−∞, 0], [0,∞)) and D is the Caputo
fractional derivative. Also f(t, x, y) may also have singularity at x = 0 and/or y = 0.

The innovation of this study is that the nonlinear term f involves the second-order
derivative of the unknown function u as bending term, which represents bending effect.
Besides, we consider the eigenvalue problem of fractional-order beam equation, which
only a few results exist, so, from this point of view, we generalize some recent works.

Motivated by [12, 23], we first construct Green’s function for problem (2) with the
help of some lemmas and then obtain the property of Green’s function in Section 2. In
Section 3, we specify the range of the eigenvalue λ such that, in this interval, problem (2)
has at least one positive solution. The paper concludes with an illustrative example.

2 Preliminaries and lemmas

In this section, we present some definitions and lemmas, which will be needed later.
Let AC[0, 1] be the space of functions, which are absolutely continuous on [0, 1],

ACn[0, 1] =

{
u: [0, 1]→ R and

(
Dn−1u

)
(t) ∈ AC[0, 1], D =

d

dt

}
.

Definition 1. (See [11].) The Riemann–Liouville fractional integral of order α > 0 is
defined by

Iαu(t) =
1

Γ(α)

t∫
0

(t− s)α−1u(s) ds, t > 0,

provided that the right-hand side is pointwise defined.

Definition 2. (See [11].) If u(t) ∈ ACn[0, 1], then the Caputo fractional derivative of
order α > 0 exists almost everywhere on [0, 1] and is defined as

Dαu(t) =
(
In−αDnu

)
(t).

Remark 1. The following property is well known:

DβIαu(t) = Iα−βu(t), α > β > 0, u(t) ∈ L1(0,∞).

Lemma 1. (See [11].) Let α > 0. If u(t) ∈ ACn[0, 1] or u(t) ∈ Cn[0, 1], then

IαDαu(t) = u(t)−
n−1∑
k=0

u(k)(0)

k!
tk.

Now, we mention the following fixed-point theorem on cones, which will be used to
establish our main theorems.

Let K be a cone in a Banach space E, and let Kr = {x ∈ K: ‖x‖ < r}, ∂Kr =
{x ∈ K: ‖x‖ = r}, and Kr,R = {x ∈ K: r 6 ‖x‖ 6 R}, where 0 < r < R <∞.
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Theorem 1. (See [8].) Let K be a positive cone in a real Banach space E, 0 < r <
R <∞, and let T : Kr,R → K be a completely continuous operator such that

(i) ‖Tx‖ 6 ‖x‖ for x ∈ ∂KR;

(ii) There exists e ∈ ∂K1 such that x 6= Tx+me for any x ∈ ∂Kr and m > 0.

Then T has a fixed point in Kr,R.

Remark 2. If (i) and (ii) are satisfied for x ∈ ∂Kr and x ∈ ∂KR, respectively, then
Theorem 1 is still true.

The following hypotheses will be used in the sequel:

(H1) Let h(t)∈C(0,1) be a given nonnegative function such that
∫ 1

0
(1−s)α−4h(s) ds

exists.
(H2) The nonnegative functions g, k in (2) are in L1[0, 1] such that

0 6 ν :=

1∫
0

g(τ) dτ < 1 and 0 6

1∫
0

k(τ) dτ < 1.

Lemma 2. (See [23].) Assume that (H1) holds. Then the boundary value problem

Dα−2y(t) = h(t), 0 < t < 1, 3 < α 6 4,

y(0) + y′(0) = 0, y(1) + y′(1) = 0
(3)

has a unique solution

y(t) =

1∫
0

Gα(t, s)h(s) ds,

where

Gα(t, s) =


(1−s)α−3(1−t)+(t−s)α−3

Γ(α−2) + (1−s)α−4(1−t)
Γ(α−3) , 0 < s 6 t < 1,

(1−s)α−3(1−t)
Γ(α−2) + (1−s)α−4(1−t)

Γ(α−3) , 0 < t 6 s < 1.
(4)

Lemma 3. Assume that (H1) and (H2) hold, then the integral boundary-value problem

Dα−2y(t) = h(t), 0 < t < 1, 3 < α 6 4,

y(0) + y′(0) =

1∫
0

g(τ)y(τ) dτ, y(1) + y′(1) =

1∫
0

g(τ)y(τ) dτ
(5)

has a unique solution

y(t) =

1∫
0

G2(t, s)h(s) ds,

Nonlinear Anal. Model. Control, 22(6):821–840
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where
G2(t, s) = Gα(t, s) +Hα(t, s) (6)

such that

Hα(t, s) =
1

1− ν

1∫
0

g(τ)Gα(τ, s) dτ, (7)

ν defined in (H2), and Gα(t, s) is given by (4).

Proof. Let w(t) =
∫ 1

0
Gα(t, s)h(s) ds and satisfies

Dα−2w(t) = h(t), w(0) + w′(0) = 0, w(1) + w′(1) = 0.

Let y(t) be a solution of (5), z(t) = y(t)− w(t),

Dα−2z(t) = Dα−2y(t)−Dα−2w(t) = h(t)− h(t) = 0,

z(0) + z′(0) =

1∫
0

g(τ)y(τ) dτ =

1∫
0

g(τ)z(τ) dτ +

1∫
0

g(τ)w(τ) dτ,

z(1) + z′(1) =

1∫
0

g(τ)y(τ) dτ =

1∫
0

g(τ)z(τ) dτ +

1∫
0

g(τ)w(τ) dτ.

(8)

Also, Dα−2z(t) = 0 implies z(t) = c0 + c1t. Substituting z(t) in (8), we obtain that

c0 + c1 =

1∫
0

g(τ)(c0 + c1τ) dτ +

1∫
0

g(τ)w(τ) dτ,

c0 + 2c1 =

1∫
0

g(τ)(c0 + c1τ) dτ +

1∫
0

g(τ)w(τ) dτ.

(9)

By solving the above system, we obtain c1 = 0,

z(t) = c0 =

∫ 1

0
g(τ)w(τ) dτ

1− ν
.

Now,

y(t) = z(t) + w(t) =
1

1− ν

1∫
0

g(τ)w(τ) dτ +

1∫
0

Gα(t, s)h(s) ds

=
1

1− ν

1∫
0

g(τ)

( 1∫
0

Gα(τ, s)h(s) ds

)
dτ +

1∫
0

Gα(t, s)h(s) ds.
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Then y(t) =
∫ 1

0
G2(t, s)h(s) ds such that G2(t, s) = Gα(t, s) +Hα(t, s) and

Hα(t, s) =
1

1− ν

1∫
0

g(τ)Gα(τ, s) dτ.

Lemma 4. (See [26].) Assume that (H2) holds. Then the boundary value problem

−u′′(t) = y(t), 0 < t < 1,

u(0) = u(1) =

1∫
0

k(τ)u(τ) dτ
(10)

has a unique solution u given by

u(t) =

1∫
0

H1(t, τ)y(τ) dτ, (11)

where

H1(t, τ) = G1(t, τ) +
1

1−
∫ 1

0
k(τ) dτ

1∫
0

G1(τ, ξ)k(ξ)dξ, (12)

G1(t, τ) =

{
τ(1− t), 0 < τ 6 t < 1,

t(1− τ), 0 < t 6 τ < 1.
(13)

Lemma 5. Suppose that (H1) and (H2) hold. Then the integral boundary-value problem

Dαu(t) = −h(t), 0 < t < 1, 3 < α 6 4,

u(0) = u(1) =

1∫
0

k(τ)u(τ) dτ,

u′′(0) + u′′′(0) =

1∫
0

g(τ)u′′(τ) dτ,

u′′(1) + u′′′(1) =

1∫
0

g(τ)u′′(τ) dτ

(14)

has a unique solution

u(t) =

1∫
0

H1(t, τ)

( 1∫
0

G2(τ, s)h(s) ds

)
dτ,

where G2(τ, s), H1(t, τ) defined in (6), (12), respectively.

Nonlinear Anal. Model. Control, 22(6):821–840
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Proof. Let y(t) = −u′′(t). Then y(t) satisfies that

Dα−2y(t) = h(t), 0 6 t 6 1,

y(0) + y′(0) =

1∫
0

g(τ)y(τ) dτ, y(1) + y′(1) =

1∫
0

g(τ)y(τ) dτ.

Then, by Lemma 4, the boundary value problem

−u′′(t) = y(t), 0 < t < 1,

u(0) = u(1) =

1∫
0

k(τ)u(τ) dτ
(15)

has a unique solution

u(t) =

1∫
0

H1(t, τ)y(τ) dτ, (16)

and, by Lemma 3, we have

y(t) =

1∫
0

G2(t, s)h(s) ds,

so,

u(t) =

1∫
0

H1(t, τ)

( 1∫
0

G2(τ, s)h(s) ds

)
dτ.

Now, we obtain the properties of the Green’s functions.

Lemma 6. (See [26].) Let (H2) holds. Then

ρG1(τ, τ) 6 H1(t, τ) 6 γG1(τ, τ) 6
γ

4
∀t, τ ∈ (0, 1),

where

ρ =

∫ 1

0
G1(s, s)h(s) ds

1−
∫ 1

0
k(τ) dτ

, γ =
1

1−
∫ 1

0
k(τ) dτ

.

Lemma 7. (See [23].) Let 3 < α 6 4. Then the Green’s functions Gα(t, s), Hα(t, s)
defined by (4), (7) have the following properties:

(P1) Gα(t, s) ∈ C([0, 1]× [0, 1]), Gα(t, s) > 0 for t, s ∈ (0, 1).
(P2) Gα(t, s) > ((1 − t)/2)Mα(s), max06t61Gα(t, s) 6 Mα(s), where Mα(s) =

2(1− s)α−3/Γ(α− 2) + (1− s)α−4/Γ(α− 3), s ∈ [0, 1).
(P3) By (H2), we have Hα(t, s) > 0 for all s ∈ [0, 1].

https://www.mii.vu.lt/NA
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Lemma 8. Let 3 < α 6 4. Then the Green’s function G2(t, s), defined by (6), has the
following properties:

(R1) G2(t, s) ∈ C([0, 1]× [0, 1)), G2(t, s) > 0 for t, s ∈ (0, 1).
(R2) G2(t, s) > ((1− t)/2)Mα(s), max06t61G2(t, s) 6 (1/(1− ν))Mα(s),

Proof. Clearly, property (R1) holds. For (R2), from property (P2) for t ∈ [0, 1], s ∈ [0, 1)
we have

Hα(t, s) =
1

1− ν

1∫
0

g(τ)Gα(τ, s) dτ 6
1

1− ν

1∫
0

g(τ)Mα(s) dτ

=
ν

1− ν
Mα(s).

So,

G2(t, s) = Gα(t, s) +Hα(t, s) 6Mα(s) +
ν

1− ν
Mα(s)

=
1

1− ν
Mα(s).

Also,
G2(t, s) = Gα(t, s) +Hα(t, s)

>
1− t

2
Mα(s) +

1

1− ν

1∫
0

1− τ
2

g(τ)Mα(s) dτ

>
1− t

2
Mα(s).

Taking into account (15) and (11), problem (2) reduces to the following problems:

Dα−2y(t) = λf

(
t,

1∫
0

H1(t, τ)y(τ) dτ,−y(t)

)
,

0 6 t 6 1, 3 < α 6 4,

y(0) + y′(0) = y(1) + y′(1) =

1∫
0

g(τ)y(τ) dτ.

(17)

If y∗ is the solution of (17), then

u(t) =

1∫
0

H1(t, τ)y∗(τ) dτ

is the solution of (2). So, the existence of a solution of problem (2) follows from the
existence of a solution of problem (17).

Nonlinear Anal. Model. Control, 22(6):821–840
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Now, we define an integral operator S : C[0, 1]→ C[0, 1] by

Sy(t) =

1∫
0

H1(t, τ)y(τ) dτ.

Lemma 9. The boundary value problem (2) has a positive solution if and only if the
following integral-differential boundary value problem has a positive solution:

Dα−2y(t) = λf
(
t, Sy(t),−y(t)

)
, 0 < t < 1, 3 < α 6 4,

y(0) + y′(0) = y(1) + y′(1) =

1∫
0

g(τ)y(τ) dτ.
(18)

Proof. If u is a positive solution (2), let u = Sy, then y = −u′′. This implies u′′ = −y
is a solution of (18). Conversely, if y is a positive solution of (18), let u = Sy, u′′ = −y.
Thus, u = Sy is a positive solution of (2).

Assume the following assumptions hold:

(H3) f ∈ C((0, 1)× (0,∞)× (−∞, 0), [0,∞)) and 0 <
∫ 1

0
Mα(s) ds <∞.

(H4) For any 0 < r < R <∞,

lim
n→∞

sup
u,−v∈Kr,R

1

1− ν

∫
Dn

Mα(s)f
(
s, u(s),−v(s)

)
ds = 0,

where Dn = [0, 1/n] ∪ [(n− 1)/n, 1], and put

Q =
1

1− ν

1∫
0

Mα(s) ds, l = min
t∈[a,b]⊂(0,1)

1∫
0

G2(t, s) ds.

Note that, by (H3), there exist a, b ∈ (0, 1) such that

0 <

b∫
a

Mα(s) ds <∞,

then

min
t∈[a,b]⊂(0,1)

1∫
0

G2(t, s) ds 6
1

1− ν

1∫
0

Mα(s) ds <∞.

Now, we concentrate our study on (18). Let

C+[0, 1] =
{
x ∈ C[0, 1]: x > 0

}
,

K =
{
x ∈ C+[0, 1]: x(t) is a concave function, min

t∈[a,b]⊂(0,1)
x(t) > ω(1− ν)‖x‖

}
,
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where ω = mint∈[a,b]⊂(0,1)(1−t)/2, ‖x‖ = supt∈[0,1] |x(t)| for x(t) ∈ C[0, 1]. It is easy
to see that K is a cone in C[0, 1] and Kr,R ⊂ K ⊂ C+[0, 1]. Now we define an operator
T : K \ {0} → C+[0, 1] by

(Ty)(t) = λ

1∫
0

G2(t, s)f
(
s, Sy(s),−y(s)

)
ds, t ∈ [0, 1].

Clearly, y is a solution of problem (18) if and only if y is a fixed point of the operator T .

Lemma 10. Suppose that (H2)–(H4) hold. Then T : Kr,R → C+[0, 1] is a completely
continuous operator. Moreover T (Kr,R) ⊂ K.

Proof. We prove that, for any r > 0,

sup
y∈∂Kr

λ

1− ν

1∫
0

Mα(s)f
(
s, Sy(s),−y(s)

)
ds <∞. (19)

Also, it shows that T : K \ {0} → C+[0, 1] is well defined.
By (H4), for any r > 0, there exists a m ∈ N such that

sup
y∈∂Kr

λ

1− ν

∫
Dm

Mα(s)f
(
s, Sy(s),−y(s)

)
ds < 1.

For any y ∈ ∂Kr, let y(t0) = maxt∈[0,1] |y(t)| = r. By the concavity of y(t) on [0, 1],

y(t) >

{
rt
t0
, 0 6 t 6 t0,

r(1−t)
1−t0 , t0 6 t 6 1.

(20)

Then we get

y(t) >

{
rt, 0 6 t 6 t0,

r(1− t), t0 6 t 6 1.
(21)

So, from (21) and Lemma 6, for any t ∈ [1/m, (m − 1)/m], we have r/m 6 y(t) 6 r
and

lmr

m
=

r

m
min

t∈[1/m,(m−1)/m]

1∫
0

H1(t, s) ds 6 Sy(t)

6 r max
t∈[1/m,(m−1)/m]

1∫
0

H1(t, s) ds 6
γ

4
r,

where lm = mint∈[1/m,(m−1)/m]

∫ 1

0
H1(t, s) ds.

Nonlinear Anal. Model. Control, 22(6):821–840
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Let

M1 = max

{
f(t, x, y): (t, x, y) ∈

[
1

m
,
m− 1

m

]
×
[
lmr

m
,
γr

4

]
×
[
−r, −r

m

]}
.

By (H2)–(H4), we have

sup
y∈∂Kr

λ

1− ν

1∫
0

Mα(s)f
(
s, Sy(s),−y(s)

)
ds

6 sup
y∈∂Kr

λ

1− ν

∫
Dm

Mα(s)f
(
s, Sy(s),−y(s)

)
ds

+ sup
y∈∂Kr

λ

1− ν

(m−1)/m∫
1/m

Mα(s)f
(
s, Sy(s),−y(s)

)
ds

6 1 +M1
λ

1− ν

1∫
0

Mα(s) ds <∞.

This also implies T (B) is uniformly bounded for any bounded set B ⊂ Kr,R.
By standard proof, T is equicontinuous, and then, by the Arzela–Ascoli theorem,

T : Kr,R → C+[0, 1] is compact. Also, this is easily verified that T is continuous, so,
we omit the proof. Thus, T is completely continuous. Now, we show that T (Kr,R) ⊂ K.
For any y ∈ Kr,R, t ∈ [0, 1], we have

(Ty)(t) = λ

1∫
0

G2(t, s)f
(
s, Sy(s),−y(s)

)
ds

6
λ

1− ν

1∫
0

Mα(s)f
(
s, Sy(s),−y(s)

)
ds.

Thus,

‖Ty‖ 6 λ

1− ν

1∫
0

Mα(s)f
(
s, Sy(s),−y(s)

)
ds.

On the other hand, we have

min
t∈[a,b]

(Ty)(t) = min
t∈[a,b]

λ

1∫
0

G2(t, s)f
(
s, Sy(s),−y(s)

)
ds

> λω

1∫
0

Mα(s)f
(
s, Sy(s),−y(s)

)
ds.
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This implies that mint∈[a,b](Ty)(t) > ω(1 − ν)‖Ty‖. Besides, it is clear that Ty is
concave on [0, 1]. Thus, Ty ∈ K and, consequently, T (Kr,R) ⊂ K.

3 Main result

Theorem 2. Suppose that (H1)–(H4) and the following condition holds:

(H5) 0 6 f0 = lim sup
|x|+|y|→0 (x>0, y<0)

max
t∈[0,1]

f(t, x, y)

|x|+ |y|
< L−1,

0 < l−1 < f∞ = lim inf
|x|+|y|→∞ (x>0, y<0)

min
t∈[a,b]

f(t, x, y)

|x|+ |y|
6∞.

Then problem (2) has at least one positive solution for

λ ∈
(

1

lf∞
,

1

Lf0

)
, (22)

where Q, l are defined by (H4), and L := (γ/4 + 1)Q.

Proof. We establish assumptions (i), (ii) of Theorem 1. First, we show that ‖Ty‖ 6 ‖y‖
for all y ∈ ∂Kr. Let λ satisfy (22), and ε > 0 be chosen such that

f∞ − ε > 0,
1

(f∞ − ε)l
6 λ 6

1

(f0 + ε)L
. (23)

Next, by (H5) there exists r0 > 0 such that

f(t, x, y) 6
(
f0 + ε

)(
|x|+ |y|

)
∀t ∈ [0, 1], 0 < |x|+ |y| < r0, x > 0, y < 0, (24)

∣∣Sy(t)
∣∣ 6 1∫

0

∣∣H1(t, τ)y(τ)
∣∣dτ 6

γ

4
‖y‖.

Then, by taking r = r0/(γ/4 + 1),

0 <
∣∣Sy(t)

∣∣+
∣∣y(t)

∣∣ 6 (γ
4

+ 1

)
‖y‖ =

(
γ

4
+ 1

)
r = r0, 0 6 t 6 1. (25)

It follows from (24) and (25) that, for any y ∈ ∂Kr,

‖Ty‖ = max
t∈[0,1]

λ

1∫
0

G2(t, s)f
(
s, Sy(s),−y(s)

)
ds

6 λ

1∫
0

1

1− ν
Mα(s)f

(
s, Sy(s),−y(s)

)
ds
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6
λ

1− ν

1∫
0

Mα(s)f
(
s, Sy(s),−y(s)

)
ds

6
λ

1− ν
(
f0 + ε

) 1∫
0

Mα(s)
(∣∣Sy(s)

∣∣+
∣∣y(s)

∣∣) ds

= λ
(
f0 + ε

) 1

1− ν

(
γ

4
+ 1

)
r

1∫
0

Mα(s) ds

= λ
(
f0 + ε

)(γ
4

+ 1

)
rQ 6 r = ‖y‖.

Thus, ‖Ty‖ 6 ‖y‖ for all y ∈ ∂Kr.
Now, we establish the second condition of Theorem 1. For the above ε, by (H5), there

exists R0 > 0 such that

f(t, x, y) > (f∞ − ε)
(
|x|+ |y|

)
, t ∈ [a, b], |x|+ |y| > R0, x > 0, y < 0.

Let R = max{2r, ω−1R0} and φ(t) = 1, t ∈ [0, 1]. Then R > r and φ(t) ∈ ∂K1. By
contradiction, suppose that there exists y0 ∈ ∂KR andm0 > 0 such that y0 = Ty0+m0φ.
Let ζ = min{y0(t): t ∈ [a, b]} for any s ∈ [a, b],∣∣Sy0(s)

∣∣+
∣∣y0(s)

∣∣ > min
s∈[a,b]

[∣∣Sy0(s)
∣∣+
∣∣y0(s)

∣∣] > min
s∈[a,b]

∣∣y0(s)
∣∣

> ω‖y0‖ > ωR > R0.

Consequently, for any t ∈ [a, b], we have

y0(t) = λ

1∫
0

G2(t, s)f
(
s, Sy0(s),−y0(s)

)
ds+m0φ(t)

> λ

b∫
a

G2(t, s)f
(
s, Sy0(s),−y0(s)

)
ds+m0

> λ(f∞ − ε)
b∫
a

G2(t, s)
(∣∣Sy0(s)

∣∣+
∣∣y0(s)

∣∣) ds+m0

> λ(f∞ − ε)
b∫
a

G2(t, s)
∣∣y0(s)

∣∣ds+m0

> λ(f∞ − ε)ζ min
t∈[a,b]

b∫
a

G2(t, s) ds+m0

> ζ +m0 > ζ.
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This implies that ζ > ζ, which is a contradiction. By Theorem 1, it follows that T has a
fixed point y∗ with r < |y∗| < R. Thus, y∗ is a positive solution of problem (18). So, the
boundary value problem (2) has a positive solution.

Remark 3. Since 0 < l < L < ∞, we obtain 0 < 1/(lf∞) < 1, 1/(Lf0) > 1. Thus,
1 ∈ (1/(lf∞), 1/(Lf0)), so, when λ = 1, Theorem 2 holds.

Remark 4.
(i) If f∞ =∞, f0 > 0, then Theorem 2 holds for each λ ∈ (0, 1/(Lf0)).

(ii) If f∞ =∞, f0 = 0, then Theorem 2 holds for each λ ∈ (0,∞).
(iii) If f∞ > l−1 > 0, f0 = 0, then Theorem 2 holds for each λ ∈ (1/(lf∞),∞).

Theorem 3. Suppose that (H1)–(H4) and the following condition holds:

(H6) 0 6 f∞ = lim sup
|x|+|y|→∞ (x>0, y<0)

max
t∈[0,1]

f(t, x, y)

|x|+ |y|
< L−1,

0 < l−1 < f0 = lim inf
|x|+|y|→0 (x>0, y<0)

min
t∈[a,b]

f(t, x, y)

|x|+ |y|
6∞.

Then problem (2) has at least one positive solution for any

λ ∈
(

1

lf0
,

1

Lf∞

)
, (26)

where Q, l are defined by (H4), and L := (γ/4 + 1)Q.

Proof. By similar argument as in proof of Theorem 2 and [12], we establish conditions (i)
and (ii) of Theorem 1. Let λ satisfy (26), and ε1 > 0 be chosen such that L−1 − ε1 > 0
and λF∞ < L−1 − ε1. By (H6), there exists (γ/4)R′0 such that

f(t, x, y) 6
1

λ

(
L−1 − ε1

)(
|x|+ |y|

)
∀t ∈ [0, 1], |x|+ |y| > γ

4
R′0, x > 0, y < 0.

Let

M0 = sup
y∈∂KR′0

λ

1− ν

1∫
0

Mα(s)f
(
s, Sy(s),−y(s)

)
ds.

Then M0 <∞ by (19). Take R1 > max{R′0,M0/(Lε1)}, then M0 < LR1ε1.
For u ∈ ∂KR′0

,

u(t) 6 ‖u‖ = R′0, Su(t) 6 max
t∈[0,1]

1∫
0

H1(t, τ) dτ‖u‖ =
γ

4
R′0.

So, for any y ∈ ∂KR1 , let

D(Sy,−y) =

{
t ∈ [0, 1]: (Sy,−y) ∈

[
γ

4
R′0,∞

)
× (−∞,−R′0]

}
,
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then, for any t ∈ D(Sy,−y),

γ

4
R′0 6 |Sy|+ |y| 6

(
γ

4
+ 1

)
‖y‖ =

(
γ

4
+ 1

)
R1.

In addition, for any y ∈ ∂KR1
, let y1(t) = min{y(t), R′0}, then y1 ∈ ∂KR′0

. Thus, for
any y ∈ ∂KR1

, we have

‖Ty‖ = max
t∈[0,1]

λ

1− ν

1∫
0

G2(t, s)f
(
s, Sy(s),−y(s)

)
ds

6
λ

1− ν

∫
D(Sy,−y)

G2(t, s)f
(
s, Sy(s),−y(s)

)
ds

+
λ

1− ν

∫
[0,1]\D(Sy,−y)

Mα(s)f
(
s, Sy(s),−y(s)

)
ds

6
1

λ

(
L−1 − ε1

) λ

1− ν

1∫
0

Mα(s)
(∣∣Sy(s)

∣∣+
∣∣y(s)

∣∣) ds

+
λ

1− ν

1∫
0

Mα(s)f
(
s, Sy1(s),−y1(s)

)
ds

6
(
L−1 − ε1

)(γ
4

+ 1

)
R1

1∫
0

Mα(s) ds+M0

6
(
L−1 − ε1

)(γ
4

+ 1

)
R1Q+M0

< R1 = ‖y‖.

Thus, ‖Ty‖ 6 ‖y‖ for all y ∈ ∂KR1
.

Next, let λ satisfy (26). Choose ε2 > 0 such that l−1 + ε2 < λf0. Then from (H6)
there exists 0 < δ < (γ/4 + 1)R1 such that

f(t, x, y) >
1

λ

(
l−1 + ε2

)(
|x|+ |y|

)
, t ∈ [a, b], 0 < |x|+ |y| 6 δ, x > 0, y < 0.

Let r1 = δ/(γ/4 + 1) and φ(t) = 1, t ∈ [0, 1]. Then R1 > r1 and φ(t) ∈ ∂K1. By
contradiction, suppose that there exists y0 ∈ ∂KR andm0 > 0 such that y0 = Ty0+m0φ.
Let η = min{y0(t): t ∈ [a, b]} and notice that, for any s ∈ [a, b],

∣∣Sy0(s)
∣∣+
∣∣y0(s)

∣∣ < (γ
4

+ 1

)
r1 = δ.
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Consequently, for any t ∈ [a, b], we have

y0(t) = λ

1∫
0

G2(t, s)f
(
s, Sy0(s),−y0(s)

)
ds+m0φ(t)

> λ

b∫
a

G2(t, s)f
(
s, Sy0(s),−y0(s)

)
ds+m0

>
1

λ
(l−1 + ε2)λ

b∫
a

G2(t, s)
(∣∣Sy0(s)

∣∣+
∣∣y0(s)

∣∣) ds+m0

>
(
l−1 + ε2

) b∫
a

G2(t, s)
∣∣y0(s)

∣∣ds+m0

>
(
l−1 + ε2

)
η min
t∈[a,b]

b∫
a

G2(t, s) ds+m0

>
(
1 + lε2

)
η +m0 > η.

This implies that η > η, which is a contradiction. By Theorem 1, it follows that T has
a fixed point y∗∗ with r < |y∗∗| < R. Thus, y∗∗ is a positive solution of the problem (18).
So, the boundary value problem (2) has a positive solution.

Remark 5.
(i) If f∞ < L−1, f0 =∞, then Theorem 3 holds for each λ ∈ (0, 1/(Lf∞)).

(ii) If f∞ = 0, f0 =∞, then Theorem 3 holds for each λ ∈ (0,∞).
(iii) If f∞ = 0, f0 > l−1 > 0, then Theorem 3 holds for each λ ∈ (1/(lf0),∞).

Example 1. Consider the following boundary value problem:

D3.5u(t) + λ

[
t tan

[
1

10

(
u(t)− u′′(t)

)]2

+
(t+ 3)(u(t)− u′′(t))5/3

u(t)− u′′(t) + 10

]3/2

= 0, t ∈ [0, 1],

u(0) = u(1) =

1∫
0

τu(τ) dτ,

u′′(0) + u′′′(0) =

1∫
0

1

2
u′′(τ) dτ,

u′′(1) + u′′′(1) =

1∫
0

1

2
u′′(τ) dτ.

(27)
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Here k(τ) = τ , g(τ) = 1/2, and

f(t, x, y) =

[
t tan

[
1

10
(x− y)

]2

+
(t+ 3)(x− y)5/3

x− y + 10

]3/2

.

Also,

Mα(s) =
2(1− s)1/2

Γ( 3
2 )

+
(1− s)−1/2

Γ( 1
2 )

.

Then

Q =
1

1−
∫ 1

0
g(τ) dτ

1∫
0

Mα(s) ds = 5.26

and

L =

(
γ

4
+ 1

)
Q = 7.89.

On the other hand,

l = min
t∈[0,1]

1∫
0

G2(t, s) ds = 1.27.

By easy calculation, we have

0 6 f0 = 0.1 < 0.126 =
1

L
, 0 <

1

l
= 0.78 < f∞ = 8 6∞.

Thus, according to Theorem 2, if

0.098 ≈=
1

1.27 · 8
< λ <

1

7.89 · 0.1
≈ 1.26,

then the boundary value problem (27) has at least positive solution.

Acknowledgment. The authors would like to thank the referee for giving useful sug-
gestions and comments for the improvement of this paper.
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