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Abstract. We consider a two-point boundary value problem of second-order random differential
equation. Using a variant of the α-ψ-contractive type mapping theorem in metric spaces, we show
the existence of at least one solution.
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1 Introduction

In this paper, we consider the following two-point boundary value problem of second-
order random differential equation:

−d2u

dt2
(ω, t) = f

(
ω, t, u(ω, t)

)
, t ∈ [0, 1],

u(ω, 0) = u(ω, 1) = 0

(1)

for all ω ∈ Ω, where f : Ω× [0, 1]×R→ R has certain regularities and Ω is a nonempty
set.

By a random solution of system (1), we mean a measurable mapping u : Ω →
C([0, 1],R) satisfying (1), whereC([0, 1],R) denote the space of all continuous functions
defined on [0, 1]. The interest for the random version of well-known ordinary differential
equations is motivated by the necessity to model and understand certain nonspecific dy-
namic processes of natural phenomena arising in the applied sciences; see the books of
Bharucha-Reid [2] and Skorohod [13]. For some interesting contributions to this problem,

∗The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud
University for funding this research work through ISPP#0068.

c© Vilnius University, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nonlinear Analysis: Modelling and Control

https://core.ac.uk/display/322857304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ftchier@ksu.edu.sa
mailto:calogero.vetro@unipa.it


Some notes on a second-order random boundary value problem 809

see Itoh [4], Li and Duan [5], Papageorgiou [9], Sinacer et al. [12], Tchier et al. [14].
Clearly, in absence of ω, system (1) reduces to

−d2u

dt2
(t) = f

(
t, u(t)

)
, t ∈ [0, 1],

u(0) = u(1) = 0.

(2)

The approach developed in this paper uses a combination of classical tools based on
Green’s functions theory and fixed-point theorems for operators in Banach spaces. Indeed,
we recall that the Green’s function associated to (2) is given by

G(t, s) =

{
t(1− s), 0 6 t 6 s 6 1,

s(1− t), 0 6 s 6 t 6 1.
(3)

The space C([0, 1],R), endowed with the metric

d∞(x, y) = ‖x− y‖∞ = max
t∈[0,1]

∣∣x(t)− y(t)∣∣,
is a complete metric space. In this setting, Samet et al. [11] investigated the solvability of
system (2) by using a new concept of α-ψ-contractive type mapping, which generalizes
the Banach contraction in [1] and many others fixed-point theorems in the literature (see,
for example, Nieto and Rodríguez-López [7] and Ran and Reurings [10]). Motivated
by [11], we propose a study of system (1). Precisely, we extend the original notion
of α-admissible mapping to work with measurable mappings, then we give a random
version of the main result in [11], finally, we establish the existence of at least one
solution for system (1). The interesting feature of our work is that we do not impose
contractive conditions to all points of the involved space, but just to the ones satisfying
a specific inequality relation (defined by using a given function α; see Definition 2 below).
This means that we enlarge the class of operators such that our results apply. Also, by
appropriate choices of the function α, we are able to control the whole process (as shown
by the proofs of the results).

2 Mathematical background

Here we give some concepts and notations from the existing literature. We denote the
Borel σ-algebra on a metric space X by B(X). Let (Ω,Σ) be a measurable space so that
by Σ ⊗ B(X) we mean the smallest σ-algebra on Ω ×X containing all the sets M × B
(with M ∈ Σ and B ∈ B(X)).

We recall a definition that we need in the statement of the main theorem.

Definition 1. Let (Ω,Σ) be a measurable space, X and Y be two metric spaces. A map-
ping ĥ : Ω ×X → Y is called Carathéodory if, for all x ∈ X , the mapping ω → ĥ(ω, x)
is (Σ,B(Y ))-measurable (Σ-measurable for short) and, for all ω ∈ Ω, the mapping
x→ ĥ(ω, x) is continuous.
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The interest for this definition is related to the following facts.

Theorem 1. (See [3, Thm. 2.5.22].) If (Ω,Σ) is a measurable space, X is a separable
metric space, Y is a metric space, and ĥ : Ω×X → Y is a Carathéodory mapping, then
ĥ is Σ ⊗ B(X)-measurable.

Corollary 1. (See [3, Cor. 2.5.24].) If (Ω,Σ) is a measurable space, X is a separable
metric space, Y is a metric space, ĥ : Ω × X → Y is a Carathéodory mapping, and
u : Ω → X is Σ-measurable, then ω → ĥ(ω, u(ω)) is a Σ-measurable mapping from Ω
into Y .

Let (Ω,Σ) be a measurable space, X be a separable metric space, and Y be a metric
space. A mapping h̃ : Ω × X → Y is said to be superpositionally measurable (sup-
measurable for short) if, for all Σ-measurable mapping u : Ω → X , the mapping ω →
h̃(ω, u(ω)) is Σ-measurable from Ω into Y .

From Corollary 1 we deduce that a Carathéodory mapping is sup-measurable. Also,
everyΣ⊗B(X)-measurable mapping is sup-measurable (see Remark 2.5.26 of Denkowski
et al. [3]).

Moreover, a mapping f : Ω × X → X is called random operator whenever, for
any x ∈ X , f(·, x) is Σ-measurable. So, a random fixed point of f is a Σ-measurable
mapping z : Ω → X such that z(ω) = f(ω, z(ω)) for all ω ∈ Ω.

Lemma 1. LetX,Y be two locally compact metric spaces. A mapping f : Ω×X → Y is
Carathéodory if and only if the mapping ω → r(ω)(·) = f(ω, ·) is Σ-measurable from Ω
to C(X,Y ) (i.e., the space of all continuous functions from X into Y endowed with the
compact-open topology).

Let Ψ be the family of all nondecreasing functions ψ : [0,+∞)→ [0,+∞) such that∑+∞
n=1 ψ

n(t) < +∞ for each t > 0, where ψn denote the nth iterate of ψ.

Lemma 2. For every nondecreasing function ψ : [0,+∞) → [0,+∞), the following
implication holds:

∀t > 0, lim
n→+∞

ψn(t) = 0 =⇒ ψ(t) < t.

Now, we have sufficient elements to generalize the concepts of α-ψ-contractive map-
ping and α-admissible mapping introduced in [11]. So, we give the following new defini-
tions.

Definition 2. Let (Ω,Σ) be a measurable space, (X, d) be a metric space, and T :
Ω×X → X be a given mapping. We say that T is a random α-ψ-contractive mapping if
there exist functions α : Ω ×X ×X → [0,+∞) and ψω ∈ Ψ , ω ∈ Ω, such that

d
(
T (ω, u), T (ω, v)

)
6 ψω

(
d(u, v)

)
(4)

for all u, v ∈ X and ω ∈ Ω such that α(ω, u, v) > 1.
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Definition 3. Let T : Ω ×X → X and α : Ω ×X ×X → [0,+∞). We say that T is
random α-admissible if

u, v ∈ X, ω ∈ Ω, α(ω, u, v) > 1 =⇒ α
(
ω, T (ω, u), T (ω, v)

)
> 1.

Remark 1. From (4) we retrieve the random version of the Banach contraction condition
whenever

(i) α(ω, u, v) = 1 for all u, v ∈ X and ω ∈ Ω;
(ii) ψω(t) = kωt for all t > 0 and some 0 6 kω < 1.

To show the role of function α : Ω × X × X → [0,+∞), we give the following
example (see also Examples 2.1 and 2.2 in [11]).

Example 1. In both the following cases, T : Ω × X → X is a random α-admissible
mapping.

(i) Ω = {ω1, ω2}, X = (0,+∞), T (ω1, u) = lnu, and T (ω2, u) = 1 for all u ∈ X ,

α(ω, u, v) =

{
2 if u > v,

0 if u < v

for all ω ∈ Ω;
(ii) Ω = {ω1, ω2}, X = [0,+∞), T (ω1, u) =

√
u, and T (ω2, u) = u for all u ∈ X ,

α(ω, u, v) =

{
eu−v if u > v,

0 if u < v

for all ω ∈ Ω.

3 Random fixed point results

In this section, we prove the existence of a random fixed point for a given mapping.
Let (Ω,Σ) be a measurable space, (X, d) be a separable complete metric space, T :
Ω ×X → X and α : Ω ×X ×X → [0,+∞). The hypotheses are the following:

(H1) T is a random α-admissible mapping;
(H2) There exists a measurable mapping u0 : Ω → X such that, for all ω ∈ Ω,

α(ω, u0(ω), T (ω, u0(ω))) > 1;
(H3) T is a Carathéodory mapping;
(H4) T is a random α-ψ-contractive mapping;
(H5) If {un} is a sequence in X such that α(ω, un, un+1) > 1 for some ω ∈ Ω, all

n ∈ N ∪ {0} and un → u ∈ X as n → +∞, then α(ω, un, u) > 1 for all
n ∈ N ∪ {0}.

Remark 2. Let Ω, X , T , and α be as in (ii) of Example 1. If u0 : Ω → X is defined by
u0(ω1) = u0(ω2) = 1, then hypothesis (H2) holds true for each Σ.

Nonlinear Anal. Model. Control, 22(6):808–820



812 F. Tchier, C. Vetro

Remark 3. Let Ω = {ω1, ω2, ω3, ω4}, X = R, and

α(ω, u, v) =

{
1 if u, v ∈ [0, 1],

0 otherwise

for all ω ∈ Ω. If un : Ω → X is defined by un(ω1) = un(ω3) = 0 and un(ω2) =
un(ω4) = 1 for all n ∈ N∪{0}, it follows trivially that hypothesis (H5) holds true for all
ω ∈ Ω.

Theorem 2. If hypotheses (H1)–(H4) hold, then T has a random fixed point, that is, there
exists ξ : Ω → X measurable such that T (ω, ξ(ω)) = ξ(ω) for all ω ∈ Ω.

Proof. Hypothesis (H2) ensures that there exists a measurable mapping u0 : Ω → X
such that α(ω, u0(ω), T (ω, u0(ω))) > 1 for all ω ∈ Ω. Define the sequence {un(ω)}
in X by

un+1(ω) = T
(
ω, un(ω)

)
for all n ∈ N ∪ {0}, ω ∈ Ω.

If un(ω) = un+1(ω) for some n ∈ N ∪ {0} and for all ω ∈ Ω, then ξ = un is a random
fixed point of T . Assume that there exists some ωn ∈ Ω such that un(ωn) 6= un+1(ωn)
for all n ∈ N ∪ {0}. Since T is random α-admissible (hypothesis (H1), we have

α
(
ω, u0(ω), u1(ω)

)
= α

(
ω, u0(ω), T

(
ω, u0(ω)

))
> 1

=⇒ α
(
ω, T

(
ω, u0(ω)

)
, T
(
ω, u1(ω)

))
= α

(
ω, u1(ω), u2(ω)

)
> 1.

Iterating this process, we get

α
(
ω, un(ω), un+1(ω)

)
> 1 for all n ∈ N ∪ {0}, ω ∈ Ω. (5)

So, by (5) and hypothesis (H4), we deduce that the contractive condition (4) applies for
u = un−1(ω) and v = un(ω). Thus, we have

d
(
un(ω), un+1(ω)

)
= d
(
T
(
ω, un−1(ω)

)
, T
(
ω, un(ω)

))
6 ψω

(
d
(
un−1(ω), un(ω)

))
.

We have to iterate this process in order to obtain

d
(
un(ω), un+1(ω)

)
6 ψn

ω

(
d
(
u0(ω), u1(ω)

))
for all n ∈ N, ω ∈ Ω.

Fix ε > 0, and let n(ε) ∈ N such that
∑

n>n(ε) ψ
n
ω(d(u0(ω), u1(ω))) < ε. Also, let

n,m ∈ N with m > n > n(ε). By repeated application of the triangle inequality, we get

d
(
un(ω), um(ω)

)
6

m−1∑
k=n

d
(
uk(ω), uk+1(ω)

)
6

m−1∑
k=n

ψk
ω

(
d
(
u0(ω), u1(ω)

))
6

∑
n>n(ε)

ψn
ω

(
d
(
u0(ω), u1(ω)

))
< ε.
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This argument shows that the sequence {un(ω)} is Cauchy in the metric space (X, d)
for all ω ∈ Ω. Since (X, d) is complete, there exists ξ : Ω → X such that un(ω)→ ξ(ω)
as n → +∞ for all ω ∈ Ω. Since T is a Carathéodory mapping (hypothesis (H3)),
it follows that un is measurable for all n ∈ N and that un+1(ω) = T (ω, un(ω)) →
T (ω, ξ(ω)) as n → +∞ for all ω ∈ Ω. By the uniqueness of the limit, we get ξ(ω) =
T (ω, ξ(ω)), that is, ξ is a random fixed point of T . Note that ξ is a measurable mapping
since it is a limit of a sequence of measurable mappings.
Example 2. Let X := {u ∈ C([0, 1],R): ‖u‖∞ 6 µ with µ > 0}, and let (Ω,Σ) be
a measurable space, where Ω = [0, 1] and Σ the σ-algebra of Borel. Let α(ω, u, v) = 1
for all u, v ∈ X and ω ∈ Ω. Assume that h : [0, 1] × R → R is a continuous function
such that∣∣h(s, u)− h(s, v)∣∣ 6 ψ

(
|u− v|

)
for all u, v ∈ R, s ∈ [0, 1], some ψ ∈ Ψ.

Define T : Ω ×X → X by

T (ω, u)(t) =

t∫
0

h
(
s, u(s)

)
ds+ u0(ω), t ∈ [0, 1], ω ∈ Ω,

where u0 : Ω → C([0, 1],R) is Σ-measurable. Suppose that the following condition
holds:

1∫
0

∣∣h(s, 0)∣∣ds+ ∣∣u0(ω)∣∣ 6 µ− ψ(µ) for all ω ∈ Ω.

So, since ψ(‖u‖∞) 6 ψ(µ), we have

∣∣T (ω, u)(t)∣∣ 6 t∫
0

∣∣h(s, u(s))∣∣ds+ ∣∣u0(ω)∣∣
6

t∫
0

∣∣h(s, u(s))− h(s, 0)∣∣ds+ t∫
0

∣∣h(s, 0)∣∣ds+ ∣∣u0(ω)∣∣
6

t∫
0

ψ
(∣∣u(s)∣∣) ds+ µ− ψ(µ)

6 ψ
(
‖u‖∞

)
+ µ− ψ(µ)

6 µ,

and hence, T (ω, ·) ∈ X for all ω ∈ Ω. Obviously, T is a random α-admissible and
Carathéodory mapping. Now, we show that T is a random α-ψ-contractive mapping. So,

Nonlinear Anal. Model. Control, 22(6):808–820
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(X, d∞) is a separable complete metric space, and we have

∣∣T (ω, u)(t)− T (ω, v)(t)∣∣ 6 t∫
0

∣∣h(s, u(s))− h(s, v(s))∣∣ds
6

t∫
0

ψ
(∣∣u(s)− v(s)∣∣) ds

6 ψ
(
‖u− v‖∞

)
.

It follows that∥∥T (ω, u)− T (ω, v)∥∥∞ 6 ψ
(
‖u− v‖∞

)
for all ω ∈ Ω, u, v ∈ X.

By Theorem 2, we deduce that there exists ξ : Ω → X such that ξ(ω) = T (ω, ξ(ω)), that
is, ξ is a random fixed point of T on X . In this case, also the random fixed point is unique
(see hypothesis (H6) below).

In the next theorem, we replace hypothesis (H3) (T is Carathéodory) by hypothesis
(H5), which is a regularity condition on the metric space (X, d).

Theorem 3. If hypotheses (H1), (H2), (H4), (H5) hold and T is sup-measurable, then
T has a random fixed point.

Proof. A similar reasoning as in the proof of Theorem 2 gives us that the sequence
{un(ω)} is Cauchy in the complete metric space (X, d) for all ω ∈ Ω. This means that
there exists ξ : Ω → X such that un(ω) → ξ(ω) as n → +∞ for all ω ∈ Ω. On the
other hand, from (5) and hypothesis (H5), we have

α
(
ω, un(ω), ξ(ω)

)
> 1 for all n ∈ N ∪ {0}, ω ∈ Ω. (6)

Now, using the triangle inequality, (4), and (6), we get

d
(
T
(
ω, ξ(ω)

)
, ξ(ω)

)
6 d
(
T
(
ω, ξ(ω)

)
, T
(
ω, un(ω)

))
+ d
(
un+1(ω), ξ(ω)

)
6 ψω

(
d
(
un(ω), ξ(ω)

))
+ d
(
un+1(ω), ξ(ω)

)
.

Taking the limit as n→ +∞ and since ψω is continuous at t = 0, we have d(T (ω, ξ(ω)),
ξ(ω)) = 0, that is, T (ω, ξ(ω)) = ξ(ω) for all ω ∈ Ω. The hypothesis that T is sup-
measurable implies that un is measurable for all n ∈ N and hence ξ is measurable. Thus,
ξ is a random fixed point of T .

We have discussed the existence of a random fixed point for a given mapping under
suitable hypotheses. Next, the question of uniqueness also applies to our study. So, to
obtain a unique random fixed point, we consider the following hypothesis:

(H6) For all u, v ∈ X and ω ∈ Ω, there exists z(ω) ∈ X such that α(ω, u, z(ω)) > 1
and α(ω, v, z(ω)) > 1.

https://www.mii.vu.lt/NA
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Theorem 4. Adding hypothesis (H6) to the ones in the statement of Theorem 2 (resp.
Theorem 3), we obtain uniqueness of the random fixed point of T .

Proof. Arguing by contradiction, we assume that there exist ξ∗ and ξ∗, with ξ∗ 6= ξ∗, such
that T (ω, ξ∗(ω)) = ξ∗(ω) and T (ω, ξ∗(ω)) = ξ∗(ω) for all ω ∈ Ω. By hypothesis (H6),
there exists a mapping z0 : Ω → X such that

α
(
ω, ξ∗(ω), z0(ω)

)
> 1 and α

(
ω, ξ∗(ω), z0(ω)

)
> 1, ω ∈ Ω. (7)

Now, let zn(ω) = T (ω, zn−1(ω)) for all n ∈ N, all ω ∈ Ω. From (7), using hypothe-
sis (H1), we get

α
(
ω, ξ∗(ω), zn(ω)

)
> 1 and α

(
ω, ξ∗(ω), zn(ω)

)
> 1 (8)

for all n ∈ N, ω ∈ Ω. Combining (8) with the contractive condition (4), we have

d
(
ξ∗(ω), zn(ω)

)
= d
(
T
(
ω, ξ∗(ω)

)
, T
(
ω, zn−1(ω)

))
6 ψω

(
d(ξ∗(ω), zn−1(ω)

))
.

It follows that

d
(
ξ∗(ω), zn(ω)

)
6 ψn

ω

(
d
(
ξ∗(ω), z0(ω)

))
for all n ∈ N, ω ∈ Ω

=⇒ zn(ω)→ ξ∗(ω) as n→ +∞ for all ω ∈ Ω. (9)

Similarly, changing ξ∗ with ξ∗ and repeating the above reasoning, we conclude that

zn(ω)→ ξ∗(ω) as n→ +∞. (10)

From (9) and (10) the uniqueness of the limit gives us ξ∗ = ξ∗, which is a contradiction.
This shows that T has a unique random fixed point.

An interesting feature of the function α is the fact that it is suitable to obtain easily the
ordered counterparts of many fixed-point theorems without requiring any change to the
proofs of previous theorems. We recall that the study of fixed points in partially ordered
spaces has been considered in Ran and Reurings [10] and further investigated in a lot of
papers (see, for example, Nieto and Rodríguez-López [7, 8], Vetro [15], and references
therein). The ordered approach is significant and largely motivated by nice applications
to matrix equations (see [10]) and boundary value problems (see [7, 8]).

So, our results can be immediately read in an ordered context by defining α : Ω ×
X ×X → [0,+∞) as

α(ω, u, v) =

{
1 if u 4 v,

0 otherwise

for all ω ∈ Ω, where 4 denote an order relation on the set X (two elements u, v ∈ X are
called comparable if u 4 v or v 4 u). In this case, hypotheses (H1)–(H6) reduce to

(O1) T is a nondecreasing mapping w.r.t. 4;
(O2) There exists a measurable mapping u0 : Ω → X such that u0(ω) 4 T (ω, u0(ω))

for all ω ∈ Ω;

Nonlinear Anal. Model. Control, 22(6):808–820
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(O3) T is a Carathéodory mapping;
(O4) There exists function ψω ∈ Ψ , ω ∈ Ω such that d(T (ω, u), T (ω, v)) 6

ψω(d(u, v)) for all u, v ∈ X such that u 4 v;
(O5) If {un} is a sequence in X such that un 4 un+1 for all n ∈ N ∪ {0} and

un → u ∈ X as n→ +∞, then un 4 u for all n ∈ N ∪ {0};
(O6) For all u, v ∈ X , there exists z ∈ X such that u 4 z and v 4 z.

By using hypotheses (O1)–(O6), our Theorems 2–4 are generalized random versions
of well-known theorems in Ran and Reurings [10] and Nieto and Rodríguez-López [7]
(see also Samet et al. [11]).

4 Solution of system (1)(1)(1)

In this section, we prove a theorem producing the existence of a unique random solution
of system (1); see also Nieto et al. [6] and Samet et al. [11]. Let (Ω,Σ) be a measurable
space. Let f : Ω × [0, 1] × R → R be a Carathéodory function, which means that ω 7→
f(ω, t, u) is measurable for all (t, u) ∈ [0, 1] × R and (t, u) 7→ f(ω, t, u) is continuous
for all ω ∈ Ω.

Then consider the integral operator F : Ω × C([0, 1],R)→ C([0, 1],R) defined by

F (ω, u)(t) =

1∫
0

G(t, s)f
(
ω, s, u(s)

)
ds+ g

(
ω, t, u(t)

)
(11)

for all u ∈ C([0, 1],R) and ω ∈ Ω, where G : R× R→ R is a continuous function, and
g : Ω × [0, 1]× R→ R is a Carathéodory function.

Remark 4. F is a random operator fromΩ×C([0, 1],R) into C([0, 1],R). In fact, given
u ∈ C([0, 1],R), since f is a Carathéodory function for s ∈ [0, 1] fixed, the function
h : Ω × [0, 1] → R, defined by h(ω, t) = G(t, s)f(ω, s, u(s)), is Carathéodory. By
Lemma 1, the integral in (11) is limit of a finite sum of measurable functions. So, the
mapping ω → F (ω, u) is measurable, and hence F is a random operator.

Remark 5. Let h : Ω × [0, 1] × R → R be a Carathéodory function, u ∈ C([0, 1],R),
and let {un} ⊂ C([0, 1],R) be a sequence convergent to u. Then there exists an interval
[a, b] ⊂ R such that un(s), u(s) ∈ [a, b] for all s ∈ [0, 1]. The continuity of the function
h(ω, ·, ·) in [0, 1] × R for fixed ω ∈ Ω ensures that the function h(ω, ·, ·) is uniformly
continuous in [0, 1]× [a, b].

The hypotheses are the following:

(F1) For each ω ∈ Ω, there exist a function β : Ω×R×R→ R and a nondecreasing
function rω : R → R such that, for all t ∈ [0, 1], for all a, b ∈ R with
β(ω, a, b) > 0, we have∣∣f(ω, t, a)− f(ω, t, b)∣∣ 6 λrω

(
|a− b|

)
,

where 0 < λ−1 = supt∈[0,1]
∫ 1

0
|G(t, s)|ds;

https://www.mii.vu.lt/NA
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(F2) There exists a measurable mapping u0 : Ω → C([0, 1],R) such that, for all
ω ∈ Ω, we have

β
(
ω, u0(ω)(t), F

(
ω, u0(ω)

)
(t)
)
> 0 for all t ∈ [0, 1];

(F3) For each ω ∈ Ω and all t ∈ [0, 1], u, v ∈ C([0, 1],R), we have

β
(
ω, u(t), v(t)

)
> 0 =⇒ β

(
ω, F (ω, u)(t), F (ω, v)(t)

)
> 0;

(F4) For each ω ∈ Ω, there exists a function ψω ∈ Ψ such that

rω
(
‖u− v‖∞

)
+
∣∣g(ω, t, u(t))− g(ω, t, v(t))∣∣ 6 ψω

(
‖u− v‖∞

)
for each t ∈ [0, 1] and all u, v ∈ C([0, 1],R) with β(ω, u(t), v(t)) > 0 for all
t ∈ [0, 1].

Now, we can have the main theorem of this section.

Theorem 5. If hypotheses (F1)–(F4) hold, then the random integral operator F has
a random fixed point.

Proof. For fixed ω ∈ Ω, we show that F (ω, ·) is continuous. Indeed, consider a sequence
{un} in C([0, 1],R) with un → u ∈ C([0, 1],R) as n→ +∞. By Remark 5, there exists
[a, b] ⊂ R such that un(s), u(s) ∈ [a, b] for all s ∈ [0, 1]. In addition, the functions
f(ω, ·, ·) and g(ω, ·, ·) are uniformly continuous in [0, 1] × [a, b]. Thus, for fixed ε > 0,
there exists δ > 0 such that∣∣f(ω, s1, u1)− f(ω, s2, u2)∣∣ < λε,∣∣g(ω, s1, u1)− g(ω, s2, u2)∣∣ < ε

for all s1, s2 ∈ [0, 1] and u1, u2 ∈ [a, b] such that |s1 − s2|+ |u1 − u2| < δ.
Now, let n(δ) ∈ N such that ‖un − u‖∞ < δ whenever n > n(δ). Then, for every

n > n(δ), we have ∣∣f(ω, s, un(s))− f(ω, s, u(s))∣∣ < λε,∣∣g(ω, s, un(s))− g(ω, s, u(s))∣∣ < ε.

Consequently, for t ∈ [0, 1] and n > n(δ), we have

∣∣F (ω, un)(t)− F (ω, u)(t)∣∣ 6 1∫
0

∣∣G(t, s)∣∣∣∣f(ω, s, un(s))− f(ω, s, u(s))∣∣ds
+
∣∣g(ω, t, un(t))− g(ω, t, u(t))∣∣

6 2ε

(
sup

t∈[0,1]

1∫
0

∣∣G(t, s)∣∣ds = λ−1

)
=⇒

∥∥F (ω, un)− F (ω, u)∥∥∞ 6 2ε.
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So,

d∞
(
F (ω, un), F (ω, u)

)
→ 0 as n→ +∞

=⇒ F (ω, ·) is a continuous operator for each fixed ω ∈ Ω.

Thus, by Remark 4, F : Ω ×C([0, 1],R)→ C([0, 1],R) is a Carathéodory mapping.
Next step is to show that the integral operator F satisfies a random α-ψ-contractive

type condition as in (H4). So, for each ω ∈ Ω and all u, v ∈ C([0, 1],R) such that
β(ω, u(t), v(t)) > 0 for all t ∈ [0, 1], we prove that

d∞
(
F (ω, u), F (ω, v)

)
6 ψω

(
d(u, v)

)
.

Indeed, let ω ∈ Ω be fixed, and u, v ∈ C([0, 1],R) be such that β(ω, u(t), v(t)) > 0 for
all t ∈ [0, 1], then∣∣F (ω, u)(t)− F (ω, v)(t)∣∣

6

1∫
0

∣∣G(t, s)∣∣∣∣f(ω, s, u(s))− f(ω, s, v(s))∣∣ ds+ ∣∣g(ω, t, u(t))− g(ω, t, v(t))∣∣
6 λ

1∫
0

∣∣G(t, s)∣∣rω(∣∣u(s)− v(s)∣∣) ds+ ∣∣g(ω, t, u(t))− g(ω, t, v(t))∣∣ (
by (F1)

)
6 rω

(
‖u− v‖∞

)
+
∣∣g(ω, t, u(t))− g(ω, t, v(t))∣∣ (

by (F4)
)

=⇒
∥∥F (ω, u)− F (ω, v)∥∥∞ 6 ψω

(
‖u− v‖∞

)
.

Let α : Ω × C([0, 1],R)× C([0, 1],R)→ [0,+∞) be a function given as

α(ω, u, v) =

{
1 if β(ω, u(t), v(t)) > 0 for all t ∈ [0, 1],

0 otherwise

for all ω ∈ Ω. So, for all u, v ∈ C([0, 1],R) with α(ω, u, v) > 1, we get∥∥F (ω, u)− F (ω, v)∥∥∞ 6 ψω

(
‖u− v‖∞

)
,

which means that F is a random α-ψ-contractive integral operator.
Note that, for each ω ∈ Ω and all t ∈ [0, 1], u, v ∈ C([0, 1],R), we have

α(ω, u, v) > 1

=⇒ β
(
ω, u(t), v(t)

)
> 0 for all t ∈ [0, 1]

=⇒ β
(
ω, F (ω, u)(t), F (ω, v)(t)

)
> 0 for all t ∈ [0, 1]

(
by (F3)

)
=⇒ α

(
ω, F (ω, u), F (ω, v)

)
> 1,

which means that F is a random α-admissible integral operator. Moreover, hypothe-
sis (F2) ensures that there exists a measurable mapping u0 : Ω → C([0, 1],R) such that
α(ω, u0(ω), F (ω, u0(ω))) > 1 for all ω ∈ Ω. We conclude that the integral operator F
satisfies all the hypotheses of Theorem 2 and so admits a fixed point.
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Now, we can have the theorem producing a random solution of problem (1).

Theorem 6. If hypotheses (F1)–(F4) hold with g : Ω × [0, 1] × R → R being the null
function and λ = 8, then problem (1) has at least one random solution.

Proof. The assumption that g : Ω × [0, 1] × R → R is the null function reduces the
random integral operator (11) to the following:

F̃ (ω, u)(t) =

1∫
0

G(t, s)f
(
ω, s, u(s)

)
ds.

Now, if G : R× R→ R is given by (3), then, for all t ∈ [0, 1], we have

1∫
0

G(t, s) ds = − t
2

2
+
t

2
=⇒ sup

t∈[0,1]

1∫
0

G(t, s) ds =
1

8
.

Note that the random fixed points of F̃ are solutions to (1) and conversely. So, given
a random variable u : Ω → C([0, 1],R), we have that

F̃
(
ω, u(ω)

)
= u(ω) for all ω ∈ Ω,

is equivalent to

u(ω)(t) =

1∫
0

G(t, s)f
(
ω, s, u(ω)(s)

)
ds, t ∈ (0, 1).

This means that the corresponding solution of (1) is given by u(ω, t) = u(ω)(t) for
t ∈ [0, 1] and ω ∈ Ω. By an application of Theorem 5, we deduce that problem (1) admits
a random solution.

Example 3. Let (Ω,Σ) be a measurable space, where Ω = [0,+∞) and Σ is the σ-alge-
bra of Borel on [0,+∞). Consider the two-point boundary value problem

−d2u

dt2
(ω, t) =

1

7eω2t+1(1 + |u(ω, t)|)
, t ∈ [0, 1],

u(ω, 0) = u(ω, 1) = 0

(12)

for all u ∈ C([0, 1],R) and ω ∈ Ω. Solving this problem is equivalent to finding a random
fixed point of the integral operator F : Ω × C([0, 1],R)→ C([0, 1],R) defined by

F (ω, u)(t) =

1∫
0

G(t, s)

7eω2t+1(1 + |u(t)|)
ds, (13)

where G : R× R→ R is the Green’s function in (3).
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Clearly f : Ω × [0, 1] × R → R, given by f(ω, t, u) = 1/(7eω
2t+1(1 + |u|)), is

a Carathéodory function. Hypotheses (F2) and (F3) hold true by defining β : Ω×R×R→
[0,+∞) as β(ω, a, b) = 1 for all ω ∈ Ω, all a, b ∈ R. Consequently, hypotheses (F1)
and (F4) are satisfied with rω(t) = ψω(t) = t/(7e). So, by Theorem 5, the integral
operator (13) has a random fixed point. On the other hand, by Theorem 6, the two-point
boundary value problem (12) has at least one random solution.
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