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Abstract. In this work, we address the problem of solving nonlinear general Klein–Gordon
equations (nlKGEs). Different fourth- and sixth-order, stable explicit and implicit, finite difference
schemes are derived. These new methods can be considered to approximate all type of Klein–
Gordon equations (KGEs) including phi-four, forms I, II, and III, sine-Gordon, Liouville, damped
Klein–Gordon equations, and many others. These KGEs have a great importance in engineering
and theoretical physics.

The higher-order methods proposed in this study allow a reduction in the number of nodes, which
might also be very interesting when solving multi-dimensional KGEs. We have studied the stability
and consistency of the proposed schemes when considering certain smoothness conditions of the
solutions. Additionally, both the typical Dirichlet and some nonlocal integral boundary conditions
have been studied. Finally, some numerical results are provided to support the theoretical aspects
previously considered.

Keywords: Klein–Gordon equations, nonlocal boundary conditions, finite difference methods,
consistency, stability.

1 Introduction

We have studied in this paper the general Klein–Gordon equations, i.e.,

utt = uxx + q(x, t, u), 0 6 x 6 l, 0 6 t 6 te, (1)

where q(t, x, u) is a sufficiently differentiable function and te ∈ R+. Without loss of
generalization, l = 1 can be considered.
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Numerical schemes for general Klein–Gordon equations 51

Typical initial conditions are utilized

u(x, 0) = f(x), 0 6 x 6 l, (2)
ut(x, 0) = f̄(x), 0 6 x 6 l, (3)

and Dirichlet and/or nonlocal integral conditions are studied

u(0, t) =

l∫
0

φ(x, t)u(x, t) dx+ g1(t), 0 6 t 6 te, (4)

u(1, t) =

l∫
0

ψ(x, t)u(x, t) dx+ g2(t), 0 6 t 6 te. (5)

We will consider that q, f , f̄ , g1, g2, φ, and ψ are known functions, and we will assume
enough smoothness in these functions to get the desire orders of convergency of the
algorithms. Furthermore, it is assumed that those functions satisfy those conditions so
that the solution to equations (1)–(5) exists and is unique.

The KGEs are a family of partial differential equations (PDEs) that arises when solv-
ing relativistic quantum mechanics and field theory problems. These equations model
many different phenomena in engineering (including acoustics or biomedical engineering
as it can be seen, for example, in [7, 17, 19, 29]), theoretical physics in general, and high
energy physics in particular [18].

Many nlKGEs are Hamiltonian partial differential equations, and for a wide class of
force h1(u), they have the following conserved Hamiltonian quantity (or energy):

H =

∫ (
u2t
2

+
u2x
2
−Q(x, t, u)

)
dx,

where ∂Q(x, t, u)/∂u = q(x, t, u). We can find in the scientific literature an extensive
research on the KGE with various potentials. Most of these studies are related to the exis-
tence and uniqueness of the smooth and weak solutions of these equations and sometimes
to their conservation laws (see [6, 13, 32, 33, 39, 41] and references therein).

However, this paper does not deal with the analytical solution, but with the numerical
procedures that are necessary in order to obtain efficient solutions to the nlKGE.

Although numerical solutions for nlKGEs have received considerable attention in
the literature, most of these schemes are low-order. Different finite difference schemes
for approximating nlKGE were discussed in [21] and [36]. Stability of the methods de-
rived in the former paper was later analyzed in [24]. Some articles have proposed spline
collocation methods (see [22, 30] and references therein). Radial basis functions have
also been proposed for similar problems in [12]. Klein–Gordon–Schrödinger equations
were approximated in [3] using pseudo-spectral methods (with spectral accuracy in space
and second-order accuracy in time). Numerical solutions of the damped nonlinear
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Klein–Gordon equations with Dirichlet boundary conditions using a variational method
and a finite element approximation were studied in [37]. In [7], a numerical method
based on collocation nodes was developed to solve some Klein–Gordon equations when
q(x, t, u) is a polynomial.

In [14, 15], we developed some higher-order schemes for some Klein–Gordon equa-
tions, phi-four and forms I, II, and III of the nlKGEs. In this paper, we show how to
extrapolate these techniques to all types of nlKGEs, including variants and perturbed
forms I, II, and III, but also sine-Gordon, double sine-Gordon, sinh-Gordon, Liouville,
etc.

However, none of these articles study these PDEs together with nonlocal integral
conditions. Many mathematical models arising in various fields of science and engineer-
ing can be expressed as partial differential equations with nonlocal initial or boundary
conditions. For example, PDE-based models are common in different physical processes
and also in thermoelasticity, ecology, chemistry, semiconductor modelling, medicine, and
biotechnology [1, 8–11] when it is impossible to determine the boundary or initial values
of the unknown function. In addition to that, they are also used in problems related to
control or inverse PDEs (see [23, 38]). Nonclassical boundary and initial-boundary value
problems with integral and/or discrete nonlocal boundary conditions were widely studied
for numerous equations. In the last decades, numerical methods for the solution of partial
differential equations with nonlocal conditions have been developed and analyzed very
actively (e.g., see [2,4,5,25–27,31,35,40] and references therein). In this work, we have
analyzed equation (1) with standard initial condition (typical Dirichlet), but also nonlocal
integral conditions (4)–(5) in boundary.

Thus, we have developed the numerical schemes in Section 2: Subsection 2.1 presents
the first step of the methods, while Subsection 2.2 describes the process to derive high-
order finite difference schemes for nlKGEs and their convergence properties, and Subsec-
tion 2.3 explains how nonlocal boundary conditions can be solved. Later, in Section 3,
numerical results associated to different types of problems are shown to demonstrate
the efficiency of the new schemes, but also to numerically support the theoretical results
previously given. Finally, some conclusions are given in Section 4.

2 Numerical schemes

The numerical schemes developed in this paper consist on three or more levels, therefore,
it is necessary to use another procedure to obtain an adequate approximation for the first
step. Later in this section, we will derive the explicit and implicit fourth- and sixth-order
finite difference schemes before addressing the boundary conditions.

As it is usually, in the case when constructing finite difference schemes, we have
considered a uniform mesh of the region Ω = [0, l] × [0, te]. The vertices of the mesh
will be (xi, tn), where tn = nk, n = 0, 1, . . . , N , with k = ∆t and xi = ih, i =
0, 1, . . . ,M = l/h, with h = ∆x. As in [14, 15], we will require that k = h to obtain
higher-order schemes.

https://www.mii.vu.lt/NA
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2.1 First step

For the first iteration, we merely consider

u1i = u0i + k(ut)
0
i +

k2(utt)
0
i

2
+
k3(uttt)

0
i

6
+
k4(utttt)

0
i

24
+
k5(uttttt)

0
i

120
+O

(
k6
)

(6)

to build a sixth-order approximation. u0i and (ut)
0
i are known from the initial condi-

tions (2) and (3). Additionally, since utt = uxx + q(x, t, u), then (utt)
0
i = f ′′(ih) +

q(ih, 0, u0i ). In a similar way, (uttt)
0
i , (utttt)

0
i and (uttttt)

0
i are obtained. (6) becomes

a different equation depending on the nonlinear Klein–Gordon equation and the values of
functions f(x) and f̄(x).

Thus, for example, if q(x, t, u) = −eu (Liouville equation), then (utt)
0
i can be

calculated as −eu
0
i + f ′′(ih), (uttt)

0
i is calculated as −eu

0
i f̄(ih) + f̄ ′′(ih), and so on.

However, if q(x, t, u) = − sin(u) (sine-Gordon equation), then (utt)
0
i would be calcu-

lated as − sin(u0i ) + f ′′(ih), (uttt)
0
i calculated as − cos(u0i )f̄(ih) + f̄ ′′(ih), and so on.

For some full examples on these first iterations, readers can obtain full expressions for
the phi-four equation, form-I, form-II, and form-III of the nonlinear KGE in [14, 15].

2.2 Fourth- and sixth-order methods

Once we have the first iteration, we can employ the fourth- and sixth-order methods. In
order to obtain them, we start from the algorithm

uj+1
i = uji−1 + uji+1 − u

j−1
i , (7)

which exactly solves the equation utt−uxx = 0. Now, let us introduce the term q(t, x, u)
in the right-hand side of the former equation, and let us operate to obtain the Taylor
series of the new equation. The two first terms of the truncation error obtained in this
way can be approximated through three-term central finite difference methods (i.e., the
traditional schemes for second derivatives of q). Thus, the fourth-order implicit scheme
(for the nonhomogeneous hyperbolic equation (1) with h=k) is derived in the following
way:

un+1
i = uni−1 + uni+1 − un−1i + k2

(
qni +

qn+1
i + qn−1i + qni−1 + qni+1 − 4qni

12

)
. (8)

It is possible to check that the leading term of the truncation error is

k4(−3qtttt + 2qttxx − 3qxxxx)

720
+O

(
k5
)
. (9)

However, if we use backward differences in time to approximate the second derivative
of q, then we can develop the following fourth-order explicit scheme

un+1
i = uni−1 + uni+1 − un−1i

+ k2
(
qni +

−5qn−1i + 4qn−2i − qn−3i + qni−1 + qni+1

12

)
, (10)
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whose leading term of the truncation error is

k4(57qtttt + 2qttxx − 3qxxxx)

720
+O

(
k5
)
. (11)

It is possible to obtain sixth-order methods for the general nlKGEs in a similar way
as it is described in [27]. We can start from the formula

un+1
i = uni−1 + uni+1 − un−1i

+ k2
(
qni +

k2((qxx)ni +(qtt)
n
i )

12
+
k4((qxxxx)ni +(qttxx)ni +(qtttt)

n
i )

360

)
, (12)

and approximate the term (qxx)ni + (qtt)
n
i with a forth-order accurate formula and the

term (qxxxx)ni + (qttxx)ni + (qtttt)
n
i with a second-order method.

Thus, it is possible to obtain the following two sixth-order algorithms:

Theorem 1. (See [27].) The local truncation error of the sixth-order six-level implicit
method

un+1
i = uni−1 + uni+1 − un−1i + k2

(
54qn+1

i − 3qni+2 + 76qni+1 + 481qni
720

+
76qni−1 − 3qni−2 − 10qn−1i+1 + 32qn−1i − 10qn−1i−1 + 8qn−2i+1

720

+
26qn−2i + 8qn−2i−1 − 2qn−3i+1 − 14qn−3i − 2qn−3i−1 + 3qn−4i

720

)
(13)

(when k = h) can be written briefly as

k6(28qxxxxxx − 14qttxxxx + 154qttttxx − 224qtttttt + 3utttttttt − 3uxxxxxxxx)

60480
.

Theorem 2. (See [27].) The local truncation error of the sixth-order explicit and seven-
level scheme

uni = un−1i−1 + un−1i+1 − u
n−2
i + k2

(−3qn−1i+2 + 76qn−1i+1 + 805qn−1i + 76qn−1i−1
720

+
−3qn−1i−2 − 10qn−2i+1 − 778qn−2i − 10qn−2i−1 + 8qn−3i+1 + 1106qn−3i

720

+
8qn−3i−1 − 2qn−4i+1 − 824qn−4i − 2qn−4i−1 + 327qn−5i − 54qn−6i

720

)
(14)

(when k = h) can be written briefly as

k6(28qxxxxxx − 14qttxxxx + 154qttttxx + 4312qtttttt + 3utttttttt − 3uxxxxxxxx)

60480
.

https://www.mii.vu.lt/NA



Numerical schemes for general Klein–Gordon equations 55

It is clear that the methods given by equations (13) and (14) can be used only when
i = 2, . . . ,M − 2, so it is necessary to calculate other schemes for the cases i = 1 and
i = M − 1. For the first case, i = 1, it is necessary to approximate (qxx)ni and (qxxxx)ni
with analogous formulae but evaluated in qn0 , qn1 , qn2 , qn3 , qn4 , and qn5 :

(qxx)ni =
10qni−1 − 15qni − 4qni+1 + 14qni+2 − 6qni+3 + qni+4

12h2
+O

(
h4
)

and

(qxxxx)ni =
2qni−1 − 9qni + 16qni+1 − 14qni+2 + 6qni+3 − qni+4

h2
+O

(
h2
)
.

We also need to proceed similarly when i = M − 1 approximating (qxx)ni and
(qxxxx)ni with the symmetrical formulae evaluated in qnM , qnM−1, qnM−2, qnM−3, qnM−4,
and qnM−5.

2.2.1 Stability of the numerical schemes

So far, we have developed several methods with fourth- and sixth-order local truncation
errors. In order to demonstrate convergence of the proposed algorithms, we now need
to show that they are also stable. In this subsection, we have collected some theoretical
results explained in [34], and we will use them to prove the stability of the numerical
algorithms derived in previous sections.

An important application of Fourier analysis is the von Neumann analysis of stability
of finite difference schemes. Let us assume that the Fourier inversion formula is given by

unj =
1√
2π

π/h∫
−π/h

eijhξûn(ξ) dξ,

and the Fourier transform to the solution of the scheme in the following time step is equiv-
alent to multiplying the Fourier transform of the solution by the so called amplification
factor g(hξ, k, h) (which is normally a function depending on θ = ξh, h, and k):

ûn+1(ξ) = g(hξ, k, h)ûn(ξ).

Therefore, we have the following results:

Theorem 3. (See [34, Thm 2.2.1].) A one-step finite difference scheme (with constant co-
efficients) is stable in a stability region Λ if and only if there is a constant K (independent
of θ, k, and h) such that ∣∣g(θ, k, h)

∣∣ 6 1 +Kk

with (k, h) ∈ Λ. If g(θ, k, h) is independent of h and k, the previous stability condition
can be replaced with the restricted stability condition∣∣g(θ)

∣∣ 6 1.

Nonlinear Anal. Model. Control, 23(1):50–62
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Theorem 4. (See [34, Cor. 2.2.2].) If a scheme as in the previous theorem is modified
so that the modifications result only in the addition to the amplification factor of terms
that are O(k) uniformly in ξ, then the modified scheme is stable if and only if the original
scheme is stable.

These theorems are devoted to the first-order hyperbolic equation when the employed
methods are one-step algorithms. When the equation is second-order and the algorithms
are not one-step, we can consider the following result:

Theorem 5. (See [34, Thm. 8.2.1].) If the amplification polynomial Φ(g, θ) for a second-
order time-dependent equation is explicitly independent of h and k, then the necessary
and sufficient condition for the finite difference scheme to be stable is that all roots, gν(θ),
satisfy the following conditions: (i) |gν(θ)| 6 1; (ii) if |gν(θ)| = 1, then gν(θ) must be at
most a double root.

Theorem 6. The numerical schemes (8), (10), (13), and (14) derived in the previous
sections are all von Neumann stable when k is small enough for problem (1)–(5) when
φ(x, t) = ψ(x, t) = 0 (i.e., with Dirichlet conditions).

Proof. The idea for this proof is analogous to the one employed in Theorem 7 in [14] for
some numerical schemes proposed for some specific nonlinear Klein–Gordon equations.

To the best of our knowledge, the von Neumann stability analysis has not been rigor-
ously justified for nonlinear equations, but it is often justified approximately assuming that
the solution u(x, t) (and its numerical counterpart) does not vary too rapidly, which hap-
pens with most of nonlinear Klein–Gordon equations. When analyzing similar nonlinear
equations (see, for example, the analysis in [16] for Burger’s equation), the equation and
its numerical method are linearized, and small terms are dropped (when k, h are small
enough) as a small deviation between two solutions of a nonlinear partial differential
equation satisfies a linearization of that PDE on the background of an exact solution. In
what follows, we are assuming that k is small enough, so the equation and its numerical
method can be linearized for the stability analysis.

We now remind the readers that all the numerical schemes proposed above, (8), (10),
(13), and (14), are modifications of (7) consisting only in the addition of terms that are
O(k2). Therefore, the amplification factors of the new schemes are modifications result
in the addition of terms that are O(k2) uniformly in ξ of the amplification factor of the
original method (7).

Therefore, an analogous proof to Theorem 4 can be used. But, in this case, the equa-
tion is second-order in time. Hence, it is necessary that modifications areO(k2) additions
to the original algorithm. Thus, instead of satisfying Theorem 3, the original method has
to satisfy Theorem 5.

Therefore, methods (8), (10), (13), and (14) are von Neumann stable whenever the
amplification polynomial Φ(g, θ) of (7) satisfies the two conditions given in Theorem 5.

Since the amplification polynomial Φ(g, θ) associated to (7) is

g2 − 2 cos(θ)g + 1,

their roots, g1,2(θ) = e±iθ, satisfy |gν(θ)| = 1. Hence, both conditions are satisfied.
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The stability for PDEs with nonlocal boundary conditions is much more complex
in general (see [20, 31] and references therein). As we will check in the next section,
when φ(x, t) 6= 0 and/or ψ(x, t) 6= 0, then it is necessary to approximate un+1

0 and/or
un+1
M through equations (15) and/or (16), and therefore, the difference scheme depend on
φ(x, t) and ψ(x, t). Actually, we consider that stability for these Klein–Gordon equations
with nonlocal conditions cannot be studied with the previous amplification polynomials
and should be studied through spectral structure of some transition matrices, which com-
plicate much more this procedure.

Unfortunately, we feel that it is impossible to study, with only one theorem, the
stability for all kind of nonlinear Klein–Gordon equations with all the methods proposed
in this paper and for all nonlocal boundary conditions.

If one wants to study the stability for one particular Klein–Gordon equation (fixed
q(x, t, u)) and for a given numerical scheme (any of the methods proposed in this paper),
then we would propose, first, to fix φ(x, t) and ψ(x, t). However, there are still many
factors in the transition matrices affected by the k-value (k = h also appears in (15)
and (16) multiplying φ(x, t) and ψ(x, t) as it is shown below). Hence, we think that it is
necessary to take several fixed values of k = h and numerically study the stability for
these particular values and test.

2.3 Nonlocal boundary conditions

In [28], a parabolic problem with nonlocal boundary conditions was studied. Although in
this work we are solving a nonlinear hyperbolic equation, we can use the same procedure
to obtain the linear equations for u0 and uM .

In case we want to derive fourth-order approximations, we use fourth-order Simpson’s
composite formula, which allows us to obtain

un+1
0 = Y −1

(
W1

(
hψn+1

M − 3
)
−W2hφ

n+1
M

)
(15)

and
un+1
M = Y −1

(
W2

(
hφn+1

0 − 3
)
−W1hφ

n+1
M

)
, (16)

where

W1 = −2h

M/2∑
i=1

φn+1
2i−1u

n+1
2i−1 − 4h

M/2−1∑
i=1

φn+1
2i un+1

2i − 3gn+1
1 , (17)

W2 = −2h

M/2∑
i=1

ψn+1
2i−1u

n+1
2i−1 − 4h

M/2−1∑
i=1

ψn+1
2i un+1

2i − 3gn+1
2 , (18)

and

Y =
(
hφn+1

0 − 3
)(
hψn+1

M − 3
)
− h2φn+1

0 ψn+1
M = 9− 3h

(
φn+1
0 + ψn+1

M

)
. (19)

In case we want to consider the sixth-order schemes, we can also develop them as it
is explained in [28]:

un+1
0 = Y −16

(
W6,1

(
14hψn+1

M − 45
)
−W6,214hφn+1

M

)
(20)
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and
un+1
M = Y −16

(
W6,2

(
14hφn+1

0 − 45
)
−W6,114hψn+1

M

)
, (21)

where

W6,1 = −64h

M/2∑
i=1

φn+1
2i−1u

n+1
2i−1 − 24h

M/4−1∑
i=0

φn+1
4i+2u

n+1
4i+2

− 28

M/4−2∑
i=0

φn+1
4i+4u

n+1
4i+4 − 45gn+1

1 , (22)

W6,2 = −64h

M/2∑
i=1

ψn+1
2i−1u

n+1
2i−1 − 24h

M/4−1∑
i=0

ψn+1
4i+2u

n+1
4i+2

− 28

M/4−2∑
i=0

ψn+1
4i+4u

n+1
4i+4 − 45gn+1

2 , (23)

and

Y6 = 2025− 630h
(
φn+1
0 + ψn+1

M

)
+ 196h2

(
φn+1
0 ψn+1

M − φn+1
M + ψn+1

0

)
. (24)

3 Numerical examples

In this section, we will compare the new schemes proposed in the previous sections to
show the properties studied above.

Example 1. For the first numerical example, consider the problem associated to equa-
tions (1)–(5) with q(x, t, u) = u(t, x) − u(t, x)3 − 2e−xt + e−3xt3, and φ(x, t) = 1,
ψ(x, t) = 1 + x , g1(t) = t − (−1 + e)t/e, and g2(t) = −(2 − 3/e)t + t/e for the
boundary conditions. With these functions, the exact solution is u(x, t) = te−x.

To the best of our knowledge, nonlocal boundary conditions together with nonlinear
Klein–Gordon equations are numerically analyzed for the first time in a scientific paper.

We have compared the four schemes derived and analyzed above, (8), (10), (13), and
(14). We employed k = h = 1/8, 1/16, . . . , 1/128 and calculated a L2 norm of errors at
(t = 1, x = 0.25), (t = 1, x = 0.5), and (t = 1, x = 0.75). In Fig. 1(a), errors for the
four schemes above are compared. The numerical results support that these four methods
are stable, but also they support that they have the convergence rate explained previously.

Example 2. In our second numerical example, we study the behavior of our four numeri-
cal schemes with equations (1) – (5), q(x, t, u) = − sin(u)+2e−x−t+sin((1+x)e−x−t),
and φ(x, t) = 0, ψ(x, t) = t , g1(t) = e−t and g2(t) = e−1−t(2 + (3 − 2e)t) for the
boundary conditions. With these functions, the exact solution is u(x, t) = (1 + x)e−x−t.
This equation is a variation of sine-Gordon nonlinear equation. Additionally, boundary
conditions are mixed, as we have a Dirichlet condition at x = 0, and a nonlocal integral
condition at x = 1.

As in the previous test, we compared the four schemes derived above, (8), (10), (13)
and (14). Again, we employed k = h = 1/8, 1/16, . . . , 1/128 and calculated a L2 norm

https://www.mii.vu.lt/NA
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(a) Example 1
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(b) Example 2

h

(c) Example 3 (ε = 0.3)

Figure 1. Errors versus h = ∆x in Examples 1–3. Results with (14) (squares, black), (13) (circles, blue),
(10) (crosses, red), and (8) (diamonds, green) are compared. (Online version in color.)

of errors at (t = 1, x = 0.25), (t = 1, x = 0.5) and (t = 1, x = 0.75). In Fig. 1(b),
errors for the four schemes are compared.

Example 3. For the third test, we have chosen q(x, t, u) = −eu + e1−t
3x+tx2+sin(εt) −

2(t + 3tx) − ε2 sin(εt), and φ(x, t) = t, ψ(x, t) = x , g1(t) = 1 − t − t2/3 + t4/2 +
sin(εt) − t sin(εt), and g2(t) = 1/2 + 3t/4 − 2t3/3 + sin(εt)/2 for the boundary
conditions. We modified the Liouville equation to obtain an equation, where we know
the exact solution, u(x, t) = 1 + x2t − t3x + sin(εt). Boundary conditions are both
nonlocal integral conditions, one depending on a function of t and the other one on x.

We computed the numerical solutions for ε = 0 and ε = 0.3 with the four schemes.
When we considered ε = 0, the four methods provided errors ∼ O(10−14) − O(10−16)
(round-off errors). Thus, we were able to check that these codes are exact for many
examples where solutions are low-order polynomials.

Logically, they are also very accurate when solutions are approximately some of these
polynomials. In Fig. 1(c), errors for the four schemes are compared when ε = 0.3.

Nonlinear Anal. Model. Control, 23(1):50–62
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4 Conclusions

In this work, we have developed and analyzed fourth- and sixth-order stable explicit and
implicit finite difference schemes for general nonlinear Klein–Gordon equations. Stability
and consistency of these schemes were studied theoretically and numerically for the case
of nonlocal boundary conditions together with nonlinear Klein–Gordon equations. We
have included for this purpose three numerical examples in which we clearly appreciate
the different convergence rate and stability of these schemes. It was shown that they can
be considered for a wide range of different nlKGEs, including with typical Dirichlet, but
also some nonlocal integral boundary conditions.
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