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Abstract. In this work, we investigate a class of nonlinear fourth-order systems with coupled
integral boundary conditions and two parameters. We give the Green’s functions for the system with
boundary conditions, and then obtain some useful properties of the Green’s functions. By using the
Guo—Krasnosel’skii fixed point theorem and the Green’s functions, some sufficient conditions for
the existence of positive solutions are presented. As applications, two examples are presented to
illustrate the application of our main results.
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1 Introduction

The purpose of this paper is to consider the existence of positive solutions for the follow-
ing system of fourth-order differential equations:

uW () = A (t,ut),v(t), te(0,1],

6]
v () = ng(t,ult), (b)), te0,1],
subject to the coupled integral boundary conditions
w(0) = u/(1) ="' (1) = 0,
2

hy(s)v” (s)ds,
ho(s)u” (s) ds,

u//(o) — j
0

1

o(0) = /
0
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402 R. Jiang, C. Zhai

where A and p are two positive parameters and hq, hy € C]0, 1]. To our knowledge, there
has no papers studied system (1) and the coupled integral boundary conditions (2). In this
paper, we will establish some sufficient conditions on two parameters A, + and nonlinear
terms f, g such that positive solutions of (1)—(2) exist. Here positive solutions of (1)—(2)
mean a pair of functions (u,v) € C[0,1] x C]0,1] satisfying (1)—(2) and u(t) > 0,
v(t) = 0forall ¢t € [0,1], (u,v) # (0,0).

As we know, fourth-order ordinary differential equations are models for bending or
deformation of elastic beams, therefore have important applications in engineering and
physical sciences. Recently, fourth-order ordinary differential equations with different
types of boundary conditions have been studied by many authors via many methods such
as nonlinear alternatives of Leray—Schauder, the fixed point theory, the method of upper
and lower solutions, Krasnoselskii fixed point theorem, bifurcation theory, the critical
point theory, the shooting method, and fixed point theorems on cones. They can be seen
in [2-5,7,8, 11, 16-18, 21, 24, 26-30] and the references therein. In [21], the authors
considered a fully nonlinear fourth-order equation with integral boundary conditions of

type
2@ (t) = f(t (), 2’ (1), 2" (),a"(1), te[0,1],

3)

where f € C([0,1] x [0, +00)? x [~00,0), [0, +00)), g € C([0,1], [0, +00)), by using
a fixed point theorem of cone expansion and compression of norm type, the existence and
nonexistence of concave and monotone positive solutions for problem (3) was obtained.
In [11], the authors considered the nonlocal fourth-order boundary value problem with
a parameter

u(t) + Bt)u"(8) = A (t,u(t), u" (1), t€(0,1),

1 1 (4)
p(s u”(0) =u"(1) = [ q(s)u”(s)ds,
= [ /

where B € (0,1}, A > 0 is a parameter. By using the Krasnoselskii’s fixed point
theorem and operator spectral theorem, the existence of positive solutions for problem (4)
was given. Recently, there are some papers considered differential systems with coupled
boundary conditions, see [6, 13—15, 19, 23, 25] for example. However, boundary value
problems composed by systems of fourth-order differential equations are still scarce (see
[1,9,12,20,22,31] for instance). In [31], the authors considered the existence of positive
solutions for fourth-order nonlinear singular semipositone system

“H)zf@u@1ﬁ%dﬁ%¢@» t e [0,1],
= g(t,u(t),v(t),u"(t),v"(t)), telo,1],
(®= ﬂ) () v"(1) =0,
u(l) = u"(0) =u"(1) =0
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Positive solutions for a system of fourth-order differential equations 403

with f,g € C((0,1) x [0,00) X [0,00) X (00,0] X (00,0],R). The existing results were
obtained by approximating the fourth-order system to a second-order singular one and
using a fixed point index theorem on cones. In [9], the authors studied the existence of
positive solutions for systems of the fourth-order singular semipositone Sturm-Liouville
boundary value problems

ul () = fi(tua (), ua(t), u{ (1), u5 (1)), € (0,1),
aiui(O) — B,u;(O) = 0, I/,’uq‘,(l) — 61“2(1) = O7
aul (0) — B’ (0) =0, wvul (1) — 6’ (1) =0, i=1,2,

where o;,v; > 0, 3;,6; =2 0, p; = v;8; + qv; + a;0; > 0, f; € C((O,l) x Rt x
RT x R~ x R™, R) with R = (—o0, +0), Rt = [0,400), R~ = (—00,0], and by
applying the fixed point index theorem, some sufficient conditions for positive solutions
were established.

Motivated by the works mentioned above, we will study the existence of positive
solutions for (1)—(2). But we know, the main difficulty of studying fourth-order dif-
ferential equations is the calculation of the Green’s function for the problem, and it is
more complicated than in the second-order and third-order cases. Therefore, we give the
Green’s functions for the fourth-order linear differential equation in Section 2 and then
obtain some useful properties for the Green’s functions. In Section 3, we define a proper
cone and discuss several properties of the equivalent operator on the cone. By employing
Green’s functions and the Guo—Krasnosel’skii fixed point theorem, we establish some
sufficient conditions on f, g, A, p for the existence of at least one positive solutions
of (1)—(2) for appropriately chosen parameters. In Section 4, we present two examples to
illustrate the application of our main results.

2 Auxiliary results

We consider the fourth-order coupled system

u(t) = x(t), teo,1],
' (t) = y(t), [0, 1],
with the coupled integral boundary conditions
u(0) = /(1) ="' (1) = 0, U’ (0) = [ hi(s)v"(s)ds,
(6)

Nonlinear Anal. Model. Control, 23(3):401-422



404 R. Jiang, C. Zhai

Lemma 1. If0 < fol hi(s)ds - fo ha(s)ds < 1 and x,y € C[0,1], then the solution of
problem (5)—(6) is given by

1 1

u(t) = | Gi(t, s)x(s)ds + /Gz(t, s)y(s)ds,
0 0
1 1 @)
v(t) = /Gg(t, $)y(s) ds+/G4(t,s)x(s) ds, te]0,1],
0 0
where
1
2 t — 2
Gi(t,s) = g1(t, s) / / (1,8)ha(7)dT,
0
2 2
t—1
Gal(t,s) = A /gg(T,s)hl('r)d'r
0
1 (8)
2t —
Gs(t,s) = g1(t, s) / / (1,8)hq(7)dT,
0
1
2t —
Calt,s / (r,8)ha(r)dr Vt,s € [0,1],
0
and
sit—L12) -3 0<s<t<,
g1(t,s) = Loy 1
t(s —58%) —5s°, 0<t<s<l,
9
() s, 0<s<t<l,
s) =
g t 0<t<s<1,
and A = fol hi(s)ds - fol ha(s)ds
Proof. 1t is easy to conclude that
/ 1
u(t) = /gl(t s)x(s)ds + <2t t)u”(O),
0
1 ) (10)
v(t) = /gl(t,s)y(s) ds + <2t2 - t> v"(0), te]l0,1],
0
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then we have

z(s)ds +u"(0),

u’(t) = jsa:(s) dst/1
- [

sy(s ds—t/y(s)ds+v"(0).
0 t

Combining with v”(0) = [ "hy s)v"”(s) ds, one obtains that

T

T 1
T ds—i—/shl(s)ds)y ydr + 0" ( /h1

0 0

/(/192 (7, 8)ha (7 )y(s) d8+v"(0)/1h1(s)ds.
0

0
By the same method, we get

/1 (/192(T,s)h2(¢)d¢>x(s) ds +u"(0)
0 0

hQ(S) ds

o _

Then

0
V"(0) = —ﬁ l/ (/92(7, $)ha(7) d7>x(s) ds
0 0

1 1

+/h2(8) dS/ (jgz(T,S)hl(T) dT) y(s) dS],

0 0
then, by (10), the conclusion is established.

Nonlinear Anal. Model. Control, 23(3):401-422
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406 R. Jiang, C. Zhai

Lemma 2. The functions g1 and gs given by (9) have the properties:

(i) g1,92 : [0,1]x[0, 1] = R™T are continuous functions, and g, (t, s) =0, g2(t, s) =0
forall (t,s) € [0,1] x [0,1] (see [21]);
(i) g1(t,s) < gi(s) forall (t,s) € [0,1] x [0, 1], where §1(s) = s/2 — 53/6;
(iii) for any o € (0,1/2), we have miny¢|s,1_4] g1(t,58) = (0/2)g1(s) for all s €
[0,1].

Proof. (ii) It is easy to get the conclusion, then we omit it.
(iii) There are two cases to consider:
If0 <t <s<1,wehave s — 2s2/3 > s/2 — s3/6, then

1 1 1 1
91(t,s) = t(S - 282> - 683 > t(s - 232> - 6t52

2
=t|ls— =5 >t 157153 .
3 2 6

If0 < s<t<1, wehave s —s%/3 > s/2 — s3/6, then

1\ 1., 1 1.,
t)=s(t—=2) -3 >st(1—=t)— ¢
g1(t, 5) S( 2) 6 S( 2) 6"

1 1 1 1 1 /1 1 .
=tls(1—2¢t) —Zs?| > Zt[s—=2s%) > 2t =s — =53 ).
2 6 2 3 2 \2 6
Let p(t) = min{¢,¢/2}, then for o € (0,1/2), we have

g
i t,s) = min  p(t)di(s) = =d(s).
i gt s) > min | p(D)gi(s) = 591(s)

O

Lemma 3. [f0 < A = [ hi(s)ds - [, ha(s)ds < 1, then G; (i = 1,2,3,4) given
by (8) are continuous functions on [0, 1] x [0, 1] and satisfy G;(t,s) > 0 for all (t,s) €
[0,1] x [0,1], @ = 1,2,3,4. Moreover, if z,y € C[0,1] satisfying x(t) > 0, y(t) > 0
forallt € [0,1], then the unique solution (u,v) of problem (5)—(6) satisfies u(t) > 0,
v(t) = 0forallit € [0,1].

Proof. By the assumptions of this lemma and (i) in Lemma 2 we obtain G;(¢, s) > 0 for
all (¢, s) € [0,1]x]0, 1], combining with (¢) > 0, y(¢) > 0, thenu(t) > 0,v(t) > 0. O

Lemma 4. Assume that 0 < A = fol hi(s)ds - fol ha(s)ds < 1, then the functions G;
(t = 1, 2,3, 4) satisfy the inequalities

(i) Gi(t,s) < Gi(s) forall (t,s) € [0,1] x [0,1], where

Gi(s) = gi(s) + —— ga(T, 8)ha(7) dT;

—
[ ] =
[N
—

>
=
-
»
S~—"
[}
»
o _
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(i") for o € (0,1/2), we have

te[rtryulng] Gi(t,s) = Gl( )= 5

(ii) Ga(t,s) < Gao(s) forall (t,s) € [0,1] x [0, 1], where

Gl(t’, s) V('

,8) €

1
1
——— [ ga(7,8)h1(7) dT
— /

(ii") for o € (0,1/2), we have

min  Gal(t,s) > GQ() ;Gg(t/,s) V('

tefo,1—0]

(i) Gs(t,s) < Gs(s) forall (t,s) € [0,1] x [0,1], where

Gs(s) = i(s) A/lhz /
0

(iii") for o € (0,1/2), we have

te[rtryuln . Gs(t,s) = G3< )= 5

(iv) Ga(t,s) < Gu(s) forall (t,s) € [0,1] x [0, 1], where

Gy (t',s) V('

,8) €

7,8)hy (1) dT;

,8) €

1
1
=—— [ g2(7, 8)ha(7)dr
— /

@iv') foro € (0,1/2), we have

min  Gy(t,s) > G4() ‘2704(#,5) V(¢

tefo,1—0]

,8) €

[0,1] x

[0, 1] x

[0,1] x

[0, 1] x

[0,

[0,1};

[0,

[0,1};

1];

1];

407

Proof. Inequalities (i)—(iv) are evident. Next, we prove the other inequalities. For o €

(0,1/2),¢ € [0,1 — o], and ¥, s € [0, 1], from Lemma 2 we deduce

1 1
2t —t
Gl(t,S):gl(t,S)—i- 17 / / TSh2
0
) , 1 1
> %gl(s)—I— 10__2 /hl(s) ds /gg(T, $)ho(7)dr
0 0
1 1
> % |0+ 15 [m©)ds [ aa(roha(ad
/2915 1—A 1(8)ds g2\T, 8)ho(T)dT
0 0
- %él(s) > %Gl(t’,s),

Nonlinear Anal. Model. Control, 23(3):401-422
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1—-A 1-A
0
. 1
ag o ~
> §m /92(7_, S)hl(’r) dT = §G2(S) 2 7G2(t/78).
0
By the same method we get (iii’) and (iv’). O

Lemma 5. Suppose 0 < A = fol hi(s) ds-fo1 ha(s)ds < 1,0 € (0,1/2), z,y € C[0,1],
and x(t) = 0, y(t) > 0 forallt € [0,1]. Then the solution (u(t),v(t)), t € [0,1], of
problem (5)—(6) satisfies the inequalities

ag ag
i t) > — t), i t) > = t).
Rin ult) 2 5 max u(t), | min o(t) > 5 max ot)

Proof. Foro € (0,1/2),t € [0, 1 — o], and ¢’ € [0, 1], from Lemma 4 we deduce

1 1
G1(t, s)x(s)ds —l—/Gg(t, s)y(s)ds

0
(/él(s)x(s) ds—l—/ég(s)y(s) ds)
0

2</G1(t’,s)x(s) ds—l—O/Gz(t’,s)y(s) ds)

u(t)

0

WV

WV

1

\Y%
o] 9
/N

o

)
w
O
B
&

Q.

Vo)

_|_

Q
O
N
O

o,

Vo)

~

= §v(t').

Then we obtain the conclusion of this lemma. O
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Positive solutions for a system of fourth-order differential equations 409

Theorem 1. (See [10]). Let X be a Banach space, and let C C X be a cone in X.
Assume thqt (21 and (25 are bounded open subsets of X with 0 € 21 C {2 C (25, and let
A:CN %\ 21) = C be a completely continuous operator such that either

(@) [[Au| < [fu
(i) [[Aull > flu

,u € C NIy, and ||Aul| = ||u
,u € C NIy, and ||Au|| < |Ju

,u € CNOofd, or
,uEC’ﬂ@QQ.

Then A has a fixed point in C N ({22 \ {21).

3 Main results

In this section, we will give sufficient conditions on A, y, f, and g such that positive solu-
tions with respect to a cone for our problem (1)—(2) exist. We first present the assumptions,
which we will use in the sequel:

(H1) Functions f, g : [0,1] x [0, 00) x [0,00) — [0, 00) are continuous.
(H2) 0 < A= [ hi(s)ds- [, ha(s)ds < 1.

By using the functions G; (i = 1,2, 3,4) from Lemma 4, our problem (1)—(2) can be
written equivalently as the following nonlinear system of integral equations:

u(t) = )\/Gl(t,s)f(s,u(s),v(s)) ds + ;L/Gg(t,s)g(s,u(s),v(s)) ds, te]o,1],

o
=

(=)
—

u(t) = M/Gg(t,s)g(s,u(s),v(s)) ds + )\/G4(t,s)f(s,u(s),v(s)) ds, te]0,1].
0 0

We consider the Banach space X = C]0, 1] with supremum norm ||-|| and the Banach
space Y = X x X with the norm ||(u,v)|ly = |Ju|| + ||v|. We define the cone P C Y
by P = {(u,v) € Y: u(t) > 0, v(t) > 0Vt € [0,1] and minge[q,1 o] (u(t) +v(t)) =
(a/2)||(u,v)|ly}. For A, > 0, we introduce the operators 77,7 : ¥ — X and Q :
Y — Y defined by

1 1

Ty (u,v)(t) = )\/Gl(t, s)f (s, u(s),v(s)) ds + /L/Gg(t, 5)g(s, u(s),v(s)) ds,
01 01

To(u,v)(t) = M/Gg(t,s)g(s,u(s),v(s)) ds + )\/G4(t,s)f(s,u(s),v(s)) ds,
0 0

and Q(u,v) = (T1(u,v), To(u,v)), (u,v) € Y, fort € [0,1]. By Lemma 1 the positive
solutions of our problem (1)—(2) are fixed points of the operator Q).

Nonlinear Anal. Model. Control, 23(3):401-422
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Lemma 6. Assume that (H1), (H2) hold, and o € (0,1/2), then Q : P — P is a com-
pletely continuous operator.

Proof. Let (u,v) € P be an arbitrary element. Because T (u,v) and T5(u,v) satisfy
problem (1)—(2) for z(t) = Af(t,u(t),v(t)), t € [0,1], and y(t) = pg(t, u(t),v(t)),
t € [0,1], then by Lemma 5 we obtain

min 77 (u,v)(t)

i e T3, 0)(¢) = 3130, 0)]

’€[0,1]

min T (u,v)(t)

>Z
2 ¢
> 7
te[o,1—o] ~ 2

max Ta(u,0)(t) = ST

Hence, we conclude

min [T} (u, v)(t) + T2 (u, v)(t)]

tefo,1—0]

> min Ti(u,v)(t)+ min To(u,v)(t)
tefo,1—0] telo,1—0]

g g ag
> i)+ ST = & Q]

Combining Lemma 3 with (H1) and (H2), we obtain 77 (u, v)(t) > 0, T2(u,v)(t) > 0 for
all t € [0, 1], then we get Q(u,v) € P. Hence, Q(P) C P. By using standard arguments,
we can easily show that 77 and 75 are completely continuous, and then () is a completely
continuous operator. O

For o € (0,1/2), we denote by

1

1 1
Go(s) ds, C’z/ég(s) ds, D z/é4(s) ds,
0 0
1— 1—0o 1—0o

1

Az/él(s)ds, B=
0 0
1—

A,,/Uél(s)ds, Bg/gég(s)ds, cﬂ:/ég(s)ds, DJ:/C~}4(5)ds,

[ea g [ea g

where G (s), Ga(s), Gs(s), and G4(s) are defined in Lemma 4. We also introduce the
extreme limits below

fo= lim max M, go= lim max g(t,u,0)
utv—0*t t€f0,1] U+ v utv—0t t€[01] U+ v
¢ t
o= tm o omin ZEY o SB0Y)

utv—00 tefo,l—0] U+ V ut+v—00 telo,l—o] U+ V
In the following, we give our main results.

Theorem 2. Assume that (H1) and (H2) hold, o € (0,1/2), fo, f%,90,9% € (0,00),
a,as € [0,1], as,aq € (0,1), a € [0,1], b € (0,1), Ly < Lo, and L3 < Ly4. Then

https://www.mii.vu.lt/NA



Positive solutions for a system of fourth-order differential equations 411

for each X € (L1, Ls) and i € (L3, Ly), there exists a positive solution (u(t),v(t)),
t € 10,1], for (1)~(2), where

dacy  4(1—a)as . [bas (1-b)ay
L, = L — as (170)aq
1 “mx{aﬁﬂ;Aa’oiﬁ;L% }’ ’ Hnn{ij’ foD

da(l—aq) 4(1—a)(1—as) . [b(1—a3) (1—=0)(1— )
’ ‘nax{ 02958, 0%9%C, J T @B T g

Proof. For o given in theorem, we consider the above cone P C Y and the operators 77,
T5,and Q. Let A € (L1, L) and w € (L3, Ly), and let € > 0 be a positive number such
thate < f7,e < g7, and

daon pell — )
P94, =N G aE <

@g%ﬂ>A’ &:Sﬁ/“

m;w, W>

By using (H2) and definitions of f; and gy, we deduce that there exists R; > 0 such that
forall t € [0,1], u,v € R with0 < u + v < Ry, we have f(t,u,v) < (fo +¢)(u+v)
and g(t, u,v) < (go+¢)(u+v). We define the set 21 = {(u,v) € Y: ||(u,v)|ly < R1}.
Now let (u,v) € P N 02y, thatis, (u,v) € P with ||(u,v)|ly = Rj or equivalently
lu]| + [Jv]] = Ri. Then u(t) + v(t) < Ry forall t € [0, 1], and by Lemma 4 we obtain

T (u,v)(t)

= )\/Gl(t, $)f (s, u(s),v(s)) ds + ;L/Gg(t, $)g(s,u(s),v(s)) ds
0 0

1

N

)\O/Gl(s)f(s,u(s),v(s)) ds +MO/G2(8)9(S,U(S),U(S)) ds
1 1

< [ G o+ ) (uls) + o(s)) ds + s [ Ga(s)lgo +2) (u(s) + v()) ds
0 0
1 1

<o+ e) [ Gats)ull+ ol ds + g +2) [ Gl + o) ds

= [Mfo +€)A+ ulgo +€)B] || (w,0)]]

< [bas + b(1 — as)]||(w,v)||, = b||(w,v)]|,, te€][0,1].

Nonlinear Anal. Model. Control, 23(3):401-422
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Therefore,
HTl(u,v)H < b||(u, U)HY, (u,v) € PNOLY.
By the similar method we obtain
T (u, v)(t)
1 1

= M/Gg,(t, 5)g(s,u(s),v(s)) ds + )\/G4(t, s)f (s, u(s),v(s)) ds
0
1

0
1

< ,uo/ég(s)g(s,u(s),v(s)) ds + )\O/é4(s)f(s,u(s), v(s)) ds

< [ Gao)gn + ) (u(s) + 0(s)) ds + A [ Gals)(a -+ ) (u(s) + o) d
0 0

1
<nlgn +2) [ Gals)(lull+ o) ds+ Ao +) [ Galo)(full + o) ds
0 0
= [1(go +€)C + A(fo +)D]||(u, v) |,
< [M=b)as+ (1 —b)(1 — ay)] H(u,v)HY =(1- b)H(u,v)Hy, t € [0,1].
Therefore,
HTQ(U7U)H <(1- b)H(u,v)Hy, (u,v) € PNoLY.
Further, for (u,v) € P N 92, we deduce
Q0 = 3 (o) + 7o) < )]y + 2 = B
= [ v)]y-

Next, by the definitions of fZ and g2, there exists R, > 0 such that f(¢,u,v) >
(fZ —e)(u+v) and g(t,u,v) > (g% — €)(u + v) for all u,v > 0 with u +v > R,
and t € [0,1 — 0]. We take Ry = max{2R;,2R,/o} and define 25 = {(u,v) € Y-
[[(w,v)|ly < Ra}. Then for (u,v) € P with ||(u,v)|ly = Rs, one obtains

ult) +o(t) > _inf (u(t) + o(t)) > %H(u,v)Hy - gRg >R, Vtelol-a
telo,1—o

Then, by Lemma 4, we conclude

T (u,v)(0)

> A5 / é1(8)f(s,u(8)7v(3))d3+ﬂg / Ga(s)g(s,u(s), v(s)) ds
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>A%/51(8)(f§o—5)( (s)+u(s ))dS+M /Gz S e) (uls)+u(s)) ds

Uz(fo_g /G1 HuvHYds—l—u —5 /G2 HuUHYds

- Pz - e+ T o2 s)Ba}Hw,wHy
> [aon 4 a(l — )] (w,0)|, = al|(u,v)||,, t<l0,1].
Therefore,

|71 (u,0)|| = Ti(u, v)(0) = al|(u,v)|

v (uv) € PNOSQs.

In a similar method, we deduce

Ty (u,v)(o)
> pg ég(s)g(s u( )ds + Pl Ga(s v(s)) ds
1 2o

>u%/ég(s)g(s u(s),v(s)) ds + A= /G4 (s,u(s),v(s))ds

> ng / Ga(s) (9% ) (uls)+0(s)) ds + A7 / Ga(s)(f%— ) (uls)+u(s)) ds

1-0o 1—0c

o? ~ ~
> 0% (0-9) [ Ga ol ds 427 (f"—e)/G4(s)||(u,v)HYds

2 2
— [0 620 AT (2= D ol
> [(1=a)(1 —az) + (1 —a)as]||(u,v ||Y (1—a)|(u,v ||Y, t €[0,1].
Therefore,

| T2 (u,v)|| = Ta(u,v)(0) = a|(u,v)

v (wv) € PNOSQs.

Further, for (u,v) € P N Jf2, we have

Q@ vl = [T )] + [T )]  all w0+ 1~ ) w,0)],

= [l
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By using Lemma 6 and Theorem 1, we conclude that @ has a fixed point (u,v) € PN
(£25\ £21) such that R; < |jul| + ||v]| € Re. Thatis, (u,v) is a positive solution for
problem (1)—(2). O

Next, we let L5 = min{b/(foA4), (1 — b)/(foD)} and L} = min{b/(goB), (1 — b)/
(90oC)}. Similar to the proof of Theorem 2, we can easily get the following results.

Theorem 3. Assume that (H1) and (H2) hold, o € (0,1/2). If fo = 0 and fZ, g0, 9% €
(0,00), a1,2 € [0,1], @ € [0,1], and b € (0,1), then for each A\ € (L1,00) and
w € (Ls, L}), there exists a positive solution (u(t), v(t)) for problem (1)~(2).

Theorem 4. Assume that (H1) and (H2) hold, o € (0,1/2). If go = 0 and %, fo,9% €
(0,00), a1, 2 € [0,1], @ € [0,1], and b € (0,1), then for each A € (L1, L}) and
u € (L3, 00), there exists a positive solution (u(t ), v(t)) for problem (1)—(2).

Theorem 5. Assume that (H1) and (H2) hold, o € (0,1/2). If fo = go = 0 and
7.9% € (0,00), aj,az € [0,1], a € [0,1), then for each A € (L1,00) and . €
(L3, 00), there exists a positive solution (u(t), v(t)) for problem (1)—(2).

Theorem 6. Assume that (H1) and (H2) hold, o € (0,1/2). If fo,g0, % € (0,00),
9% = o0 or fo,90,9% € (0,00), f& = o0 or fo,g0 € (0,00), f&, = g5 = oo,
ag,aq € (0,1), b € (0,1), then for each A € (0,Ls) and p € (0, Ly), there exists
a positive solution (u(t), v(t)) for problem (1)—(2).

Theorem 7. Assume that (H1) and (H2) hold, o € (0,1/2). If fo = 0,90, f% €
(0,00),9%, = o0 or fo = 0,90,9%, € (0,00), f = occor fo =0, go € (0,00),
f& = g% = oo, b € (0,1), then for each A € (0,00) and 1 € (0, L)), there exists
a positive solution (u(t), v(t)) for problem (1)—(2).

Theorem 8. Assume that (H1) and (H2) hold, o € (0,1/2). If fo, fZ € (0,00), go = 0,
9%, = o0 or fo,9%, € (0,00), go =0, fZ, = 0o or fo € (0,00), go = 0, f, = g%, = %,
b € (0,1), then for each A € (0,L}) and p € (0,00), there exists a positive solution
(u(t), v(t)) for problem (1)-(2).

Theorem 9. Assume that (H1) and (H2) hold, o € (0,1/2). If fo = go = 0, fL €

(0,00), g5 = 00 0r fo = go = 0, g%, € (0,00), f& =00 0r fo =90 =0, [ = g5 =
o0, then for each \ € (0, 00) and 1 € (0, oo) there exists a positive solution (u(t),v(t))
for problem (1)—(2).

In order to get the other results, we introduce the extreme limits below

tv Uu,v . . t7 u,v
f§= lim min M, go = lim min M;
u+v—0* t€fo,1—0] U +v utv—0* t€lo,1—0] U + v
t,u,v . t,u,v
foo = lim max M, Joo = lim max u
utv—ootef0,1] U+ v utv—o0t€[0,1] U+ vV
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Theorem 10. Assume that (H1) and (H2) hold, o € (0,1/2), f§, fo0s 98, 9o € (0,00),
a1, € [0,1], as,ay € (0,1), a € [0,1], b € (0,1), Ly < Lo, and Ly < Ly. Then
for each X € (Ly,Ly) and p € (Ls, Ly), there exists a positive solution (u(t),v(t)),
t € (0,1, for (1)~(2), where

dac;  4(1—a)as bas (1—b)ay
(72ng0’ o2f§D ’ fooA' fooD ’

7~ max da(l—aq1) 4(1—a)(l—ao) P . — min b(l—asz) (1-b)(1—ay)
ba = {UQOB ’ 0?95 Cs }7 b { 9B’ 9o C }

f/l = max{ l~/2 = min{

Proof. For o given in tlgeorf:m, we conside~r thg above cone P C Y and the operators 77,
Ty, and Q. Let A\ € (L1, Ls) and pp € (L3, L4), and let a number € > 0 be such that
€< f§.e <gg,and

4aay da(l — )
L < T =
UQ(fg—&)Ag <A 02(98—6)30 I My
4(1 — a)as 41 —a)(1 — az)
o\ T2~ Bl Sl Sl 0
o2(fg —e)Dy A 02(g5 —¢)Cy Ko
bas b(l — Ct3)
= A, —= 2,
(foo+€)A (goo+5)B s
(1 — b)a4 >\ (1 — b)(l — 044)
(foo"‘E)D - (goc+5)c

By using (H2) and the definitions of f§ and g§, we deduce that there exists Rz > 0 such
that for all ¢ € [0,1 — o], u,v € RT with 0 < w + v < Rs, we have f(t,u,v) >
(f§ —e)(u+v) and g(t,u,v) > (9§ — €)(u + v). We define the set 25 = {(u,v) € Y
[[(w,v)|ly < Rs}. Now let (u,v) € P with ||(u,v)|ly = Rs because u(t) + v(t) <
lw]l + |lv|| = Rs for all ¢ € [0, 1], then by Lemma 4 we obtain

Ty (u, v)()

A%/Gl (s,u(s), v(s)) ds + uZ /G2 (5, u(s), v(s)) ds
0
)\% 1/UG1 u(s), v(s))ds+u§/G2( )g (s, u(s), v(s)) ds
> A% yUGl(s)(fg—s) (u(s)+v(s))ds—|—u% 1/_(TGQ( ) (96 — &) (u(s)+uv(s)) ds
> AT - /G1 ol s+ %5 = /62 o s
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o? o2
= A (5 =)Ao+ (9 =) Bo | [|(w,0)]|y,
> oo +a(1 — )] [, v)], = afjw,v)],-
Therefore,

HTl(u,v)H > Ty (u,v)(o) > aH(u, v)’

(u,v) € PNOLs.

Y7
In a similar method, we deduce
Ty (u, v)()
p%/Gg (s,u( ))ds + Ao /G4 (s,u(s),v(s)) ds
0
> p— /Gd ,u(s ))ds—i—)\ /G4 (s,u(s),v(s))ds
> uZ /G3 (u(s) +0(s)) ds + A7 /G4 (£5 — &) (u(s) +o(s)) ds

1—0o

>¢g%f@/a3Huvh@+»fmfe/a4uuvmm
2

= W6 = e + AT (55 - )0 wly
> [(1=a)(1 —az) + (1 = a)as]||(u,v ||Y (1—a)|(u,v ||Y, tel0,1].
Therefore,
HTQ(U,'U)H > To(u,v)(o) = (1 — a)H(u,v)Hy, (u,v) € PNoLs.
So, for (u,v) € PN 925, we deduce
Q) = Tt + [ > )y + 1 = el
= [[(wv)ly-

Now, we define the functions f1, g1 : [0, 1] xRt = R*, f1(t, 2) =maxo<ytv<z (¢, u, v),

g1(t,*) = maxo<utv<z 9(t, u,v), t € [0,1], z € RT. Obviously, f(t,u,v) < fi(t, ),

g(t,u,v) < g1(t,z) forall t € [0,1], w > 0, v > 0, and u + v < z. Then the functions

fi(t,) and g1 (¢, -) are nondecreasing for every ¢t € [0, 1], and they satisfy the conditions
1 <t7 SU)

t,x
lim sup max At ) < foos lim sup max J < Goo-
z—oo t€[0,1] x z—oo0 t€[0,1] x

https://www.mii.vu.lt/NA



Positive solutions for a system of fourth-order differential equations 417

Therefore, for € > 0, there exist R} > 0 such that for all z > R} and ¢ € [0, 1], we have

fl(t7$) fl(t7x>

< lim sup max
r—o00 t€[0,1] x

t,x
< lim sup max M
r—oc0 t€[0,1] x

then f1(t,2) < (foo + &)z and g1(t, 2) < (9o + €)1
We take Ry =max{2R3, R} }, and we denote by 24 = {(u,v) €Y ||(u,v)||y < R4}
For (u,v) € P N 3{24, by the definitions of f;, g; we obtain

F(tu(t), o) < At || (w,0)]y), gt u®),v(t) < it

Then for all ¢ € [0, 1], we conclude that
Ty (u,v)(t)

+e< foo 6

t,x
% +E<goo+€,

(u,v)|ly) Vtelo,1].

1

= )\/Gl(t, $)f(s,u(s),v(s))ds + ,u/Gg(t7 $)g(s,u(s),v(s)) ds

< )\/él(s)f(s,u(s),v(s)) ds + u/ég(s)g(s,u(s),v(s)) ds
0 0

< )\/él(s)fl(s,H(u,v)Hy) ds—O—u/éggl(s,H(u,v)Hy) ds

0 0
1 1

<Aoo + a>/él<s>!|<u7v>||y ds + p(geo + s>/éz<s>u<u,v>uy s

0 0
< [bas + b(1 — as)] H(u,v)HY = bH(u,v)HY7 t €[0,1].
Therefore,
|71 (u,v)]| < bH(u,v)Hy, (u,v) € PNOL2y.
In a similar method, we obtain

Ty (u,v)(t)
1

1
= M/Gg(t,s)g(s,u(s),v(s)) ds + )\/G4(t,s)f(s,u(s),v(s)) ds
1

0

N

1
M/ég(s)g(s,u(s),v(s)) ds + )\/é4(s)f(s,u(s),v(s)) ds
0

0
1

<u [ @)oo o)) as+ [ Gun(s
0

0

(u,v)HY) ds
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1 1

< (g0 + 5)/6’3(5)“(%0)“}, ds 4+ M foo + 5)/@4(3)”(% v)HY ds
0 0
< [(T=b)(1 — as) + (1 — b)ay] H(U,U)HY =(1- b)”(u,v)Hy, t e [0,1].
Therefore,
HTQ(U,'U)H <(1- b)H(u,v)Hy, (u,v) € PNOLYy.
So, for (u,v) € PN 9f24, we deduce
Qo) = I3 )]+ T 0] < By + 1 = 0y
= ([t o)y
By using Lemma 6 and Theorem 1, we conclude that @ has a fixed point (u,v) € PN
(£24 \ £23) such that R < |Ju|| + ||v|]| < R4. Thatis, (u,v) is a positive solution for
problem (1)—(2). O
Next, let L, = min{b/(fxA), (1 — b)/(fsoD)} and L} = min{b/(goeB), (1 — b)/
(9ooC)}. Similar to the proof of Theorem 10, we can easily get the following results.
Theorem 11. Assume that (H1) and (H2) hold, o € (0,1/2). If f5, 4§, foc € (0,00)
and goo = 0, 1,00 € [0,1], a € [0,1], and b € (0, 1), then for each X\ € (L1, L) and
i € (L, 00), there exists a positive solution (u(t),v(t)) for problem (1)—(2).
Theorem 12. Assume that (H1) and (H2) hold, o € (0,1/2). If f§, 95,90 € (0,00)
and foo = 0, 1,0 € [0,1], @ € [0,1], and b € (0,1), for each X € (Ly,00) and
w € (Ls, L}), there exists a positive solution (u(t), v(t)) for problem (1)—(2).
Theorem 13. Assume that (H1) and (H2) hold, o € (0,1/2). If f§, 95 € (0,00) and
foo =900 =0, a1,09 € [0,1], a € [0,1], for each \ € (L1,00) and ui € (L3, o), there
exists a positive solution (u(t), v(t)) for problem (1)—(2).
Theorem 14. Assume that (H1) and (H2) hold, o € (0,1/2). If 9§, foo, goo € (0,00),
fg = oo or fgvfooagoo € (0,00),gg = oo or fooNagoo € (0,00)7f5 = g5 = oo,
as,aq € (0,1), b € (0,1), then for each X € (0,L2) and p € (0, Ly), there exists
a positive solution (u(t), v(t)) for problem (1)—(2).
Theorem 15. Assume that (H1) and (H2) hold, o € (0,1/2). If g5, foos 9o € (0,00),
fg = OOOVfgafoo € (0700)793 =0, oo = 00rf67’ g6 = 0o, feo € (0,00), Joo = 0,
b € (0,1), then for each A\ € (0,L}) and € (0,00), there exists a positive solution
(u(t),v(t)) for problem (1)—(2).
Theorem 16. Assume that (H1) and (H2) hold, o € (0,1/2). If foo = 0, 9,900 €
(0,00), f§ = 00 0r f§,900 € (0,00), g§ = 0, foo = 0 0r foo = 0, goo € (0,00),
1§ = 9§ = oo, b € (0,1), then for each A € (0,00) and pn € (0, L)), there exists
a positive solution (u(t), v(t)) for problem (1)—(2).
Theorem 17. Assume that (H1) and (H2) hold, o € (0,1/2). If foo = goo = 0, 9§ €
(0,00), f& = ocoor f§ € (0,00), 9§ = 00, foo = goo = Oo0r f§ = g§ = oo,
foo = goo = 0, then for each X € (0,00) and 1 € (0, 00), there exists a positive solution
(u(t),v(t)) for problem (1)—(2).
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4 Examples

We consider the system of differential equations

u(t) = M (t,ut),v(t), te€0,1],

(11
v (t) = pg(t,u(t),v(t)), telo,1],
subject to the coupled integral boundary conditions
1
w(0) = u/(1) ="' (1) = 0, u”(0) = /sv”(s) ds,
(12)

<
—~
(=]
=
|
Q\
—~
[
~—
<
I
—~
—_
~—
|
L
||

1
1 1
O/( 2 3/2) ()d

1

1
1 1 1 1
) =t ha(t) = 58 - St /sds /( 383/2) ds =,
0

Gi(t,s) = g1(t, s)+— (2t — t?) /92 21 3/2>d7' t,s €1[0,1],

(=)

1
Gs(t,s) = 2t—t2 /gg T,s)rdr, t,s€]0,1],
0

2
Gs(t,s) = g1(t,s) + @(215 — t2) g2(7,8)rdr, t,s€]0,1],

o _

1
1 1
Ga(t,s) = 2t—t2 /92 (272 — 373/2> dr, t,sel0,1],
0
. 61 1, 5 , 8 ., . B0 60,
= —8 — — —_— e — G = —
1) =185 6% “ 6" a3’ 2(s) = —5g5" + 55°
. 1 23 2 . 5 16 2
Ga(s) = 55— ="+ —=s%,  Guls) = ——=s* + 7" + s,

2 118 99 118° 433 59

where g;(t, s) (i = 1, 2) are defined in Lemma 1.
Take o = 1/3, after some computations, we obtain that

1 1
/ s)ds =~ 0.4336, = / s)ds ~ 0.8475,
0 0
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1 1
C= /é3(s) ds ~ 0.0458, D= /64(5) ds ~ 0.0001,
0 0
2/3 2/3
A, = /él(s) ds =~ 0.0472, B, = /GQ(S) ds =~ 0.0675,
1/3 1/3
2/3 2/3
C, = /ég(s) ds = 0.047, D, = /6:4(3) ds = 0.0049.
1/3 1/3

Example 1. In (11), we consider the functions

1 (u+v) 5(u+v)?
f(t’u’v)_(1+t)2 [5[1+ln(1+u+v)] 2(1+u+v)}
g(t,u,v) = V2 —t [111 sin(u 4+ v) + 1000(u + v) arctan(u + v)} )

then we have fo = 1/5, go = 1/11, fZ = 9/10, g7, = 5007. Take a = b = a1 = ag =
ag = oy = 1/2, then we conclude that L; ~ 0.0483, Loy = 2.883, L3 ~ 0.122, L, =~
3.2448. Therefore, by Theorem 2, for each A € (0.0483,2.883), u € (0.122,3.2448),
there exists a positive solution (u(t), v(t)), t € [0, 1], for problem (11)—(12).

Example 2. In (11), we consider the functions

flt,u,v) = m[(quv)[?OOOcoS(Uva) + 1/4(u+1;+2)]],

u+v+1

1 5
=—|= In(1
g(t,u,v) 1+]5[22(u—&—1))—|—500 n( +u—|—v)],

then we have f§ = 2667/2V/3, g§ = 6605/22, foo = V2/50, goo = 5/22. Take
a=b=a; =a =a3 = a4 = 1/2, then we conclude that Zl ~ 0.7952, iz ~ 1.6308,
L3 ~ 0.638, Ly ~ 1.298. Therefore, by Theorem 10, for each A € (0.7952,1.6308),
u € (0.638,1.298), there exists a positive solution (u(t),v(t)), ¢ € [0, 1], for prob-
lem (11)~(12).
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