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Abstract. This paper addresses the robust set stabilization problem of Boolean control networks
(BCNs) with impulsive effects via the semi-tensor product method. Firstly, the closed-loop system
consisting of a BCN with impulsive effects and a given state feedback control is converted into an
algebraic form. Secondly, based on the algebraic form, some necessary and sufficient conditions
are presented for the robust set stabilization of BCNs with impulsive effects under a given state
feedback control and a free-form control sequence, respectively. Thirdly, as applications, some
necessary and sufficient conditions are presented for robust partial stabilization and robust output
tracking of BCNs with impulsive effects, respectively. The study of two illustrative examples shows
that the obtained new results are effective.

Keywords: Boolean control network, impulsive effects, set stabilization, robust control, semi-
tensor product of matrices.

1 Introduction

Impulsive phenomenon is usually caused by changes in the interconnections of sub-
systems, sudden changes of external environment, and so on. Recently, the study of
nonlinear systems with impulsive effects has attracted many scholars’ interest, and a great
deal of excellent results have been established [26–28, 37, 39, 43]. As a special kind
of nonlinear systems, Boolean control network (BCN) is an important model of gene
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regulatory networks (GRNs) [13,14]. It is noted that impulsive phenomenon often occurs
in GRNs due to the environment fluctuations between intracellular and extracellular,
which may prohibit the finite-time stability of GRNs [38]. Therefore, it is meaningful
to study BCNs with impulsive effects. Recently, by using the semi-tensor product (STP)
of matrices [5, 7, 8, 15, 33, 34, 41, 42, 44, 45], many scholars have presented some basic
results on BCNs with impulsive effects, including controllability [30,32,35], observability
[17,46], stability and stabilization [1,3,9,18,39], set stability [10,16,19], optimal control
[4, 40], function perturbations [31], and synchronization [2, 45].

It is worth noting that stability and stabilization [25, 27, 29] are significant and mean-
ingful issues in the study of BCNs because of their applications in the design of thera-
peutic interventions and the explanation of some living phenomena [6, 11, 12, 20, 25, 36].
The stability and stabilization of BCNs were firstly presented in [6]. Then Li et al. [25]
presented a novel procedure to design state feedback stabilizers for BCNs. Guo et al. [11]
further investigated the set stability and set stabilization of BCNs. Li and Wang [21]
established some new results on the robust stability and robust stabilization of BCNs with
disturbance inputs. However, there exist fewer results to study robust set stabilization of
BCNs with impulsive effects.

In this paper, using STP, we investigate the robust set stabilization problem of BCNs
with impulsive effects. The main contributions of this paper are as follows.

(i) The closed-loop system consisting of a BCN with impulsive effects and a given
state feedback control is converted into an algebraic form via STP, which facili-
tates the study of BCNs with impulsive effects.

(ii) Two necessary and sufficient conditions are presented for the robust set stabi-
lization of BCNs with impulsive effects under a given state feedback control and
a free-form control sequence, respectively, which are easily verified via MATLAB
toolbox. Our results generalize the existing set stabilization results [10,11,16,19]
to BCNs with impulsive effects. In addition, our results are applicable to BCNs
with disturbance inputs, while the results in [10, 11, 16, 19] just consider BCNs
without disturbance inputs.

(iii) As applications of robust set stabilization, some necessary and sufficient con-
ditions are presented for robust partial stabilization and robust output tracking
[22–24] of BCNs with impulsive effects.

The rest of this paper is arranged as follows. Section 2 recalls some preliminary results
on STP. In Section 3, we investigate robust set stabilization, robust partial stabilization and
robust output tracking of BCNs with impulsive effects, and present the main results of this
paper. Two illustrative examples are given to support our new results in Section 4, which
is followed by a brief conclusion in Section 5.

Notations. R, N, and Z+ denote the sets of real numbers, natural numbers, and positive
integers, respectively. D := {1, 0}. ∆n := {δkn: k = 1, . . . , n}, where δkn denotes the
kth column of the identity matrix In. When n = 2, ∆2 is briefly denoted by ∆. An n× t
logical matrix M = [δi1n , δ

i2
n , . . . , δ

it
n ] is briefly expressed as M = δn[i1, i2, . . . , it].

Denote the set of n× t logical matrices by Ln×t. Coli(A) denotes the ith column of the
matrix A. Denote by Blki(A) the ith block of the matrix A.
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2 Preliminaries

In this section, we recall some necessary preliminaries on the semi-tensor product of
matrices.

Definition 1. (See [5].) The semi-tensor product of two matrices A ∈ Rm×n and B ∈
Rp×q is

AnB = (A⊗ Iα/n)(B ⊗ Iα/p),
where α = lcm(n, p) is the least common multiple of n and p, and ⊗ is the Kronecker
product.

When n = p, the semi-tensor product of A and B becomes the conventional matrix
product. Thus, it is a generalization of the conventional matrix product. We omit the
symbol “n” if no confusion arises in the following. The semi-tensor product of matrices
has the following properties.

Proposition. (See [5].)

(i) Let X ∈ Rt×1 be a column vector and A ∈ Rm×n. Then

X nA = (It ⊗A) nX.

(ii) Given X1 ∈ Rp×1 and X2 ∈ Rq×1. Then

X2 nX1 = W[p,q] nX1 nX2,

where
W[p,q] = δpq

[
1 p+ 1 . . . (q − 1)p+ 1

2 p+ 2 . . . (q − 1)p+ 2

. . .

p p+ p . . . (q − 1)p+ p
]

is called swap matrix.
(iii) Let X ∈ Rn×1 be a column vector. Then

X2 = Mr,nX,

where

Mr,n = diag
[
δ1n, δ

2
n, . . . , δ

n
n

]
.

Identifying 1 ∼ δ12 and 0 ∼ δ22 , then ∆ ∼ D, where “∼” denotes two different forms
of the same object. In most places of this work, we use δ12 and δ22 to express logical
variables and call them the vector form of logical variables. The following lemma is
fundamental for the matrix expression of logical functions.

Lemma 1. (See [5].) Let f(x1, x2, . . . , xs) : Ds → D be a logical function. Then there
exists a unique matrix Mf ∈ L2×2s , called the structural matrix of f , such that

f(x1, x2, . . . , xs) = Mf nsi=1 xi,

where xi ∈ ∆ and nsi=1xi = x1 n · · ·n xs.

Nonlinear Anal. Model. Control, 23(4):553–567
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For example, the structural matrices for negation (¬), conjunction (∧), and disjunction
(∨) are Mn = δ2[2, 1], Mc = δ2[1, 2, 2, 2], and Md = δ2[1, 1, 1, 2], respectively.

Example 1. Calculate the structural matrix of the following Boolean function:

f(x1, x2, x3) = x1 ∧ (¬x2 ∨ x3).

According to Lemma 1, one can see that

f(x1, x2, x3) = Mc n x1 nMd nMn n x2 n x3

= Mc n
[
I2 ⊗ (Md nMn)

]
n x1 n x2 n x3

= δ2[1, 2, 1, 1, 2, 2, 2, 2] n x1 n x2 n x3.

3 Main results

In this section, we study the robust set stabilization of Boolean control networks with
impulsive effects, and present the main results of this paper. We firstly present a necessary
and sufficient condition for the robust set stabilization of Boolean control networks with
impulsive effects, and then apply the obtained results to the investigation of robust partial
stabilization and robust output tracking.

3.1 Robust set stabilization

Consider the following Boolean control network with impulsive effects:

xi(t+ 1) = f1i
(
X(t), U(t), Ξ(t)

)
, i = 1, . . . , n, tk−1 6 t < tk − 1;

xi(tk) = f2i
(
X(tk − 1), Ξ(tk − 1)

)
, i = 1, . . . , n, k ∈ Z;

yj(t) = hj
(
X(t)

)
, j = 1, . . . , p,

(1)

where t0 = 0, {tk: k ∈ Z+} ⊆ Z+ satisfying 0 = t0 < t1 < t2 < · · · <
tk < · · · is the impulsive time sequence, X(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Dn,
U(t) = (u1(t), . . . , um(t)) ∈ Dm, Ξ(t) = (ξ1(t), . . . , ξq(t)) ∈ Dq and Y (t) =
(y1(t), . . . , yp(t)) ∈ Dp denote the state variables, the control inputs, the disturbance in-
puts and the outputs of system (1), respectively, and f1i : Dn+m+q → D, f2i :
Dn+q → D, i = 1, . . . , n, and hj : Dn → D, j = 1, . . . , p, are logical functions.

Definition 2. Given a nonempty setA ⊆ Dn. System (1) is said to be robustly stabilizable
to the set A if there exist a control sequence {U(t): t ∈ N} and a positive integer τ such
that

X
(
t;X(0), U,Ξ

)
∈ A

holds for any integer t > τ , any initial state X(0) ∈ Dn, and any disturbance sequence
{Ξ(t): t ∈ N} ⊆ Dq .

In this part, we firstly consider state feedback control in the form of

ui(t) = ϕi
(
X(t)

)
, i = 1, . . . ,m, (2)

where ϕi : Dn → D, i = 1, . . . ,m, are logical functions.
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In the following, we convert system (1) and the state feedback control (2) into alge-
braic forms, respectively.

Using the vector form of logical variables and setting x(t) = nni=1xi(t) ∈ ∆2n ,
u(t) = nmi=1ui(t) ∈ ∆2m , ξ(t) = nqi=1ξi(t) ∈ ∆2q , and y(t) = npi=1yi(t) ∈ ∆2p , by
Lemma 1, one can convert system (1) into the following algebraic form:

x(t+ 1) = L1ξ(t)u(t)x(t), tk−1 6 t < tk − 1;

x(tk) = L2ξ(tk − 1)x(tk − 1);

y(t) = Hx(t),

(3)

where L1 ∈ L2n×2n+m+q , L2 ∈ L2n×2n+q , and H ∈ L2p×2n .
Similarly, the state feedback control (2) can be converted into

u(t) = Gx(t), (4)

where G ∈ L2m×2n is called the state feedback gain matrix.
Now, based on the algebraic form (3), we study how to verify whether or not sys-

tem (1) is robustly stabilizable to the set A under a given state feedback control u(t) =
Gx(t).

Substituting (4) into (3), one can obtain the following closed-loop system:

x(t+ 1) = L̄1ξ(t)x(t), tk−1 6 t < tk − 1;

x(tk) = L2ξ(tk − 1)x(tk − 1);

y(t) = Hx(t),

(5)

where L̄1 = L1[I2q ⊗ (GMr,2n)].
According to system (5), we have

x(1) = L̄1ξ(0)x(0) := L̃1ξ(0)x(0),

x(2) = L̄1ξ(1)x(1) = L̄1(I2q ⊗ L̃1)ξ(1)ξ(0)x(0) := L̃2ξ(1)ξ(0)x(0),

. . . ,

x(t1 − 1) = L̄1ξ(t1 − 2)x(t1 − 2) = L̄1(I2q ⊗ L̃t1−2) n0
i=t1−2 ξ(i)x(0)

:= L̃t1−1 n0
i=t1−2 ξ(i)x(0),

x(t1) = L2ξ(t1 − 1)x(t1 − 1) = L2(I2q ⊗ L̃t1−1) n0
i=t1−1 ξ(i)x(0)

:= L̃t1 n0
i=t1−1 ξ(i)x(0),

. . . .

Keep this procedure going, for an arbitrarily given positive integer τ , we have

x(τ) = L̃τ n0
i=τ−1 ξ(i)x(0), (6)

where

L̃τ =

{
L̄1(I2q ⊗ L̃τ−1), tk < τ < tk+1,

L2(I2q ⊗ L̃τ−1), τ = tk+1,
(7)

and k ∈ N.
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Definition 3. Consider the system x(t + 1) = Lξ(t)x(t) with x(t) ∈ ∆2n , ξ(t) ∈ ∆2q ,
and L ∈ L2n×2n+q . Given a nonempty set S ⊆ ∆2n . S is said to be a robust L-invariant
set if Lξx ∈ S holds for any x ∈ S and any ξ ∈ ∆2q .

Lemma 2. Given a nonempty set S = {δα1
2n , . . . , δ

αr
2n }, where α1 < α2 < · · · < αr. Split

L into 2q equal blocks as [Blk1(L), . . . , Blk2q (L)]. Then S is a robust L-invariant set if
and only if Blki(L)|S ∈ Lr×r holds for any i ∈ {1, . . . , 2q}, where

Blki(L)|S =

(Blki(L))α1,α1 · · · (Blki(L))α1,αr
...

...
...

(Blki(L))αr,α1
· · · (Blki(L))αr,αr

 , (8)

and (Blki(L))j,k denotes the (j, k)th element of the matrix Blki(L).

Based on (7) and Definition 3, we have the following result.

Theorem 1. Given a nonempty set A ⊆ ∆2n . Assume that A is a robust L̄1-invariant set
as well as a robustL2-invariant set. System (1) is robustly stabilizable toA under the state
feedback control u(t) = Gx(t) if and only if there exists a positive integer τ such that

Col(L̃τ ) ⊆ A, (9)

where L̃τ is given in (7), and Col(·) denotes the set of columns of a matrix.

Proof. Sufficiency. Assume that (9) holds. We prove that Col(L̃t) ⊆ A holds for any
integer t > τ by induction.

Obviously, Col(L̃t) ⊆ A holds for t = τ .
Assuming that Col(L̃t) ⊆ A holds for some integer t = λ > τ , that is x(λ) =

L̃λn0
i=λ−1 ξ(i)x(0) ∈ A holds for any {ξ(0), . . . , ξ(λ−1)} ⊆ ∆2q and any x(0) ∈ ∆2n .

Now, we prove the case of t = λ+ 1.

• If tk < λ + 1 < tk+1, we have x(λ + 1;u, ξ, x(0)) = L̄1ξ(λ)x(λ). Since A is
a robust L̄1-invariant set and x(λ) ∈ A, one can see that x(λ + 1) = L̃λ+1 n0

i=λ

ξ(i)x(0) ∈ A. From the arbitrariness of {ξ(0), . . . , ξ(λ)} ⊆ ∆2q and x(0) we have
Col(L̃λ+1) ⊆ A.
• If λ + 1 = tk, we have x(λ + 1;u, ξ, x(0)) = L2ξ(λ)x(λ). Noticing that A is

a robust L2-invariant set and x(λ) ∈ A, one can see that x(λ + 1) = L̃λ+1 n0
i=λ

ξ(i)x(0) ∈ A. From the arbitrariness of {ξ(0), . . . , ξ(λ)} ⊆ ∆2q and x(0) we also
have Col(L̃λ+1) ⊆ A.

By induction, Col(L̃t) ⊆ A holds for any integer t > τ . Therefore, x(t;u, ξ, x(0))
∈ A holds for any integer t > τ , any x(0) ∈ ∆2n , and any {ξ(t): t ∈ N} ⊆ ∆2q .
By Definition 2, system (1) is robustly stabilizable to A under the state feedback control
u(t) = Gx(t).

Necessity. Suppose that system (1) is robustly stabilizable to A under the state feed-
back control u(t) = Gx(t). From Definition 2 there exists a positive integer τ such that
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x(t;u, ξ, x(0)) ∈ A holds for any initial state x(0) ∈ ∆2n , any integer t > τ , and any
{ξ(t): t ∈ N} ⊆ ∆2q . Thus, it is easy to see from (7) that

x
(
τ ;u, ξ, x(0)

)
= L̃τ n0

i=τ−1 ξ(i)x(0) ∈ A,

which, together with the arbitrariness of {ξ(t): t ∈ N} ⊆ ∆2q and x(0) ∈ ∆2n , shows
that Col(L̃τ ) ⊆ A.

Remark 1.
(i) The assumption “A is a robust L1-invariant set as well as a robust L2-invariant

set” is used to make the state trajectory of system (1) stay at A forever after the
state starting from any initial state reaches the set A in the time τ .

(ii) It should be pointed out that the positive integer τ , which satisfies (9), is de-
termined by L̄1, L2 and impulsive time sequence {tk: k ∈ Z+}. Although
system (1) has only 2n different states, the lower bound of τ , which satisfies (9),
may be greater than 2n because of the impulsive effects, which is very different
from BCNs without impulsive effects.

Next, we consider the robust set stabilization of system (1) under free-form control
sequence.

Using swap matrix, one can convert (3) into the following algebraic form:

x(t+ 1) = L̂1u(t)ξ(t)x(t), tk−1 6 t < tk − 1;

x(tk) = L2ξ(tk − 1)x(tk − 1);

y(t) = Hx(t),

(10)

where L̂1 = L1W[2m,2q ].
Given a positive integer t, there exist unique integers tk−1 and j such that t = tk−1+j,

where 1 6 j 6 tk − tk−1. Let Λ(t) = {t1 − 1, . . . , tk−1 − 1}. Then a free-form control
sequence with length t can be expressed as{

u(i): i ∈ {0, 1, . . . , t− 1} \ Λ(t)
}
. (11)

Under the free-form control sequence (11), along the trajectory starting form any initial
state x(0) ∈ ∆2n , we have

x(1) = L̂1u(0)ξ(0)x(0),

x(2) = L̂1u(1)ξ(1)x(1) = L̂1(I2m+q ⊗ L̂1)
(
I2m ⊗W[2m,2q ]

)
n u(1)u(0)ξ(1)ξ(0)x(0)

:= L̂2u(1)u(0)ξ(1)ξ(0)x(0),

. . . ,

x(t1 − 1) = L̂1u(t1 − 2)ξ(t1 − 2)x(t1 − 2) = L̂1

(
I2m+q ⊗ L̂t1−2

)
n (I2m ⊗W[2(t1−2)m,2q ]) n0

i=t1−2 u(i) n0
i=t1−2 ξ(i)x(0)

:= L̂t1−1 n0
i=t1−2 u(i) n0

i=t1−2 ξ(i)x(0),
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x(t1) = L2ξ(t1 − 1)x(t1 − 1) = L2(I2q ⊗ L̂t1−1)W[2(t1−1)m,2q ]

n0
i=t1−2 u(i) n0

i=t1−1 ξ(i)x(0)

:= L̂t1 n0
i=t1−2 u(i) n0

i=t1−1 ξ(i)x(0),

. . . .

Keep this procedure going, for an arbitrarily given positive integer τ , we have

x(τ) =

{
L̂τ n0

i=τ−1, i/∈Λ(τ) u(i) n0
i=τ−1 ξ(i)x(0), tk−1 + 1 6 τ < tk,

L̂τ n0
i=τ−2, i/∈Λ(τ) u(i) n0

i=τ−1 ξ(i)x(0), τ = tk,

where

L̂τ =

{
L̂1(I2m+q ⊗ L̂τ−1)(I2m ⊗W[2(τ−k)m,2q ]), tk−1 + 1 6 τ < tk,

L2(I2q ⊗ L̂τ−1)W[2(τ−k)m,2q ], τ = tk.
(12)

For tk−1 + 1 6 τ < tk, split L̂τ into 2(τ−k+1)m blocks as

L̂τ =
[

Blk1(L̂τ ), . . . , Blk2(τ−k+1)m(L̂τ )
]
;

for τ = tk, split L̂τ into 2(τ−k)m blocks as L̂τ = [Blk1(L̂τ ), . . . ,Blk2(τ−k)m(L̂τ )], where
Blki(L̂τ ) ∈ L2n×2n+τq . Then we have the following result on the robust set stabilization
of system (1) under free-form control sequence.

Theorem 2. Given a nonempty set A ⊆ ∆2n . Assume that there exists a positive integer
α 6 2m such that A is a robust Blkα(L̂1)-invariant set as well as a robust L2-invariant
set. System (1) is robustly stabilizable toA under a free-form control sequence if and only
if there exist two positive integers τ and β such that

Col
(
Blkβ(L̂τ )

)
⊆ A. (13)

Moreover, if (13) holds, then the free-form control sequence is given as

u(t) =

{
u∗(t), t ∈ ([0, τ − 1] ∩ N) \ Λ(t),

δα2m , t ∈ ([τ,+∞) ∩ N) \ Λ(t),
(14)

where

u∗ =

{
n0
i=τ−1, i/∈Λ(τ)u

∗(i) = δβ
2(τ−k+1)m , tk−1 + 1 6 τ < tk;

n0
i=τ−2, i/∈Λ(τ)u

∗(i) = δβ
2(τ−k)m

, τ = tk.

Proof. Sufficiency. Assume that (13) holds. We prove that x(t) ∈ A holds for any integer
t > τ by induction.

For t = τ , if tk−1 + 1 6 τ < tk, we have

x(τ) = L̂τ n0
i=τ−1, i/∈Λ(τ) u(i) n0

i=τ−1 ξ(i)x(0)

= L̂τδ
β
2(τ−k+1)m n0

i=τ−1 ξ(i)x(0)

= Blkβ(L̂τ ) n0
i=τ−1 ξ(i)x(0)
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Similarly, if τ = tk, we have

x(τ) = L̂τ n0
i=τ−2, i/∈Λ(τ) u(i) n0

i=τ−1 ξ(i)x(0)

= L̂τδ
β
2(τ−k)m

n0
i=τ−1 ξ(i)x(0)

= Blkβ(L̂τ ) n0
i=τ−1 ξ(i)x(0).

Since Col(Blkβ(L̂τ )) ⊆ A, one can see that x(τ) ∈ A holds for any {ξ(0), . . . ,
ξ(τ − 1)} ⊆ ∆2q and any x(0) ∈ ∆2n .

Assuming that x(t) ∈ A holds for some integer t = λ > τ .

• If tk < λ + 1 < tk+1, we have x(λ + 1;u, ξ, x(0)) = L̂1u(λ)ξ(λ)x(λ) =
L̂1δ

α
2mξ(λ)x(λ) = Blkα(L̂1)ξ(λ)x(λ). Since A is a robust Blkα(L̂1)-invariant

set and x(λ) ∈ A, one can see that x(λ+ 1) ∈ A.
• If λ + 1 = tk, we have x(λ + 1;u, ξ, x(0)) = L2ξ(λ)x(λ). Since A is a robust
L2-invariant set and x(λ) ∈ A, one can obtain that x(λ+ 1) ∈ A.

By induction, x(t) ∈ A holds for any integer t > τ . Therefore, x(t;u, ξ, x(0)) ∈ A
holds for any integer t > τ , any x(0) ∈ ∆2n and any {ξ(t): t ∈ N} ⊆ ∆2q . By Defini-
tion 2, system (1) is robustly stabilizable to A under the free-form control sequence (14).

Necessity. Suppose that system (1) is robustly stabilizable to A under a free-form
control sequence. From Definition 2 there exists a positive integer τ such that x(t;u,
ξ, x(0)) ∈ A holds for any initial state x(0) ∈ ∆2n , any integer t > τ , and any {ξ(t):
t ∈ N} ⊆ ∆2q .

Let

n0
i=τ−1, i/∈Λ(τ)u

∗(i) =

{
δβ
2(τ−k+1)m , τ 6= tk,

δβ
2(τ−k)m

, τ = tk.

Then it is easy to see from (8) that

x
(
τ ;u, ξ, x(0)

)
= Blkβ(L̂τ ) n0

i=τ−1 ξ(i)x(0) ∈ A

holds for any {ξ(0), . . . , ξ(τ − 1)} ⊆ ∆2q and any x(0) ∈ ∆2n , which, together with
the arbitrariness of {ξ(t): t ∈ {0, . . . , τ − 1}} ⊆ ∆2q and x(0) ∈ ∆2n , shows that
Col(Blkβ(L̂τ )) ⊆ A.

3.2 Robust partial stabilization

In the following, we study the robust partial stabilization of system (1). Given (x∗1,
. . . , x∗r) ∈ Dr with r 6 n, one can obtain its canonical vector form, denoted by xr =
nri=1x

∗
i = δθ2r .

Definition 4. System (1) is said to be robustly partial stabilizable to xr, if there exist
a control sequence {u(t): t ∈ N} ⊆ Dm and a positive integer τ such that

xi(t;x(0), u, ξ) = x∗i , i = 1, . . . , r,

holds for any integer t > τ , any x(0) ∈ Dn, and any {ξ(t): t ∈ N} ⊆ Dq .
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Set
A =

{
δθ2r n δη2n−r : η = 1, . . . , 2n−r

}
.

Assume that A is a robust L̄1-invariant set as well as a robust L2-invariant set. Based on
the proof of Theorem 1, we have the following result.

Theorem 3. For system (1), the following statements are equivalent:

(i) System (1) is robustly partial stabilizable to xr under the state feedback control
u(t) = Gx(t);

(ii) System (1) is robustly stabilizable to the set A under the state feedback control
u(t) = Gx(t);

(iii) There exists a positive integer τ such that Col(L̃τ ) ⊆ A.

Proof. (i)⇒ (ii). Assume that system (1) is robustly partial stabilizable to xr under the
state feedback control u(t) = Gx(t). By Definition 4, there exists an integer τ > 0 such
that xi(t;x(0), u, ξ) = x∗i , i = 1, . . . , r, holds for any integer t > τ , any x(0) ∈ Dn,
and any {ξ(t): t ∈ N} ⊆ Dq . Then one can see that x(t) = nri=1xi(t) nnj=r+1 xj(t) =

nri=1x
∗
i nnj=r+1 xj(t) = δθ2r nnj=r+1 xj(t) ∈ A holds for any t > τ , any x(0) ∈ Dn, and

any {ξ(t): t ∈ N} ⊆ Dq . By Definition 2, system (1) is robustly stabilizable to the set A
under the state feedback control u(t) = Gx(t).

(i) ⇒ (ii). Assume that system (1) is robustly stabilizable to the set A under the
state feedback control u(t) = Gx(t). Then there exists an integer τ > 0 such that
x(t;x(0), u, ξ) ∈ A holds for any t > τ , any x(0) ∈ Dn, and any {ξ(t): t ∈ N} ⊆ Dq .
Hence, one can obtain that x(t) = δθ2r n δη2n−r = nri=1x

∗
i n δη2n−r , which shows that

xi(t;x(0), u, ξ) = x∗i , i = 1, . . . , r, holds for any integer t > τ , any x(0) ∈ Dn, and
any {ξ(t): t ∈ N} ⊆ Dq . By Definition 4, system (1) is robustly partial stabilizable to xr

under the state feedback control u(t) = Gx(t).
The proof of (ii)⇔ (iii) is similar to the proof of Theorem 1.

Remark 2. When r = n, one can check the robust stabilization of system (1) by using
Theorem 3.

3.3 Robust output tracking

In this part, we consider the robust output tracking control of system (1).

Definition 5. Given a reference signal Yr = (yr1, . . . , y
r
p) ∈ Dp. The output of system (1)

is said to robustly track Yr if there exist a control sequence {U(t): t ∈ N} ⊆ Dm and an
integer τ > 0 such that

Y
(
t;X(0), U,Ξ

)
= Yr

holds for any initial state X(0) ∈ Dn, any integer t > τ , and any {Ξ(t): t ∈ N} ⊆ Dq .

Given a state feedback control u(t) = Gx(t), according to (6), we have

y(τ) = HL̃τ n0
i=τ−1 ξ(i)x(0) ∀ τ ∈ Z+. (15)
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Let O(β) be the set containing all the states of system (1) whose outputs correspond
to the reference signal yr = δβ2p . Then one can easily see that

O(β) =
{
δr2n : Colr(H) = δβ2p , 1 6 r 6 2n

}
.

We should assumeO(β) 6= ∅ in the following. Otherwise, the state feedback based output
tracking control problem is not solvable.

Theorem 4. Assume that O(β) is a robust L̄1-invariant set as well as a robust L2-in-
variant set. The output of system (1) can robustly track yr = δβ2p under the state feedback
control u(t) = Gx(t) if and only if there exists a positive integer τ such that

Col(HL̃τ ) =
{
δβ2p
}
. (16)

Proof. Sufficiency. Assume that (16) holds. We prove that Col(HL̃t) = {δβ2p} holds for
any integer t > τ by induction.

Obviously, Col(HL̃t) = {δβ2p} holds for t = τ .
Assuming that Col(HL̃t) = {δβ2p} holds for some integer t = λ > τ , that is,

y(λ) = Hx(λ) = HL̃λ n0
i=λ−1 ξ(i)x(0) = δβ2p .

Thus, x(λ) ∈ O(β).
Now we prove the case of t = λ+ 1.

• If tk < λ+1 < tk+1, we have y(λ+1;u, ξ, x(0)) = Hx(λ+1) = HL̄1ξ(λ)x(λ).
Since O(β) is a robust L̄1-invariant set and x(λ) ∈ O(β), we have L̄1ξ(λ)x(λ) ∈
O(β), which shows that y(λ + 1) = HL̃λ+1 n0

i=λ ξ(i)x(0) = δβ2p . From the
arbitrariness of ξ(i) and x(0) we have Col(HL̃λ+1) = {δβ2p}.
• If λ + 1 = tk, we have y(λ + 1;u, ξ, x(0)) = Hx(λ + 1) = HL2ξ(λ)x(λ).

Noticing that O(β) is a robust L2-invariant set and x(λ) ∈ O(β), one can see that
L2ξ(λ)x(λ) ∈ O(β). Hence, y(λ + 1) = HL̃λ+1 n0

i=λ ξ(i)x(0) = δβ2p , which
together with the arbitrariness of ξ(i) and x(0) implies that Col(HL̃λ+1) = {δβ2p}.

By induction, Col(HL̃t) = {δβ2p} holds for any integer t > τ . Therefore, y(t;u,

ξ, x(0)) = δβ2p holds for any integer t > τ , any x(0) ∈ ∆2n , and any {ξ(t): t ∈ N} ⊆
∆2q . By Definition 5, the output of system (1) can robustly track yr = δβ2p under the state
feedback control u(t) = Gx(t).

Necessity. Suppose that the output of system (1) can robustly track yr = δβ2p under
the state feedback control u(t) = Gx(t). From Definition 5 there exists a positive integer
τ such that y(t;u, ξ, x(0)) = δβ2p holds for any initial state x(0) ∈ ∆2n , any integer
t > τ , and any {ξ(t): t ∈ N} ⊆ ∆2q . One can see from (15) that y(τ) = HL̃τ n0

i=τ−1
ξ(i)x(0) = δβ2p . From the arbitrariness of ξ(i) and x(0) we have Col(HL̃τ ) = {δβ2p}.

Remark 3. From Theorems 3 and 4 one can see that robust partial stabilization and robust
output tracking are special cases of robust set stabilization for system (1).
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4 Illustrative examples

Example 2. Consider the following BCN with impulsive effects:

x1(t+ 1) = ξ(t) ∧
[(
u(t) ∧

(
x1(t) ∨ x2(t)

))
∨
(
¬u(t) ∧

(
x1(t) ∨ x2(t)

))]
∨
(
¬ξ(t) ∧ ¬u(t)

)
,

x2(t+ 1) = ξ(t) ∧
[
u(t) ∨

(
¬u(t) ∧ ¬x1(t) ∧ x2(t)

)]
∨
(
¬ξ(t) ∧

[
u(t) ∧ ¬x1(t) ∧ ¬x2(t)

∨
(
¬u(t) ∧

(
x1(t) ∨ ¬x2(t)

))])
;

x1(tk) =
[
ξ(t) ∧ x1(t) ∧ x2(t)

]
∨
[
¬ξ(t) ∧

(
x1(t)∨̄x2(t)

)]
,

x2(tk) = ξ(t) ∧
(
x1(t) ∨ x2(t)

)
;

y(t) = x1(t)↔ x2(t),

(17)

where tk−1 6 t < tk − 1, t0 = 0, and tk = k2 + 1, k ∈ Z+.

Given the following state feedback control

u(t) = x1(t) ∨ x2(t). (18)

Our objective is to verify whether or not the output of system (17) can robustly track
yr = 1 under the state feedback control (18)?

We firstly convert (17) and (18) into algebraic forms. Letting x(t) = x1(t) n x2(t),
system (17) can be expressed as

x(t+ 1) = L1ξ(t)u(t)x(t), tk−1 6 t < tk − 1;

x(tk) = L2ξ(tk − 1)x(tk − 1);

y(t) = Hx(t),

where L1 = δ4[1, 1, 1, 3, 2, 2, 1, 4, 4, 4, 4, 3, 1, 1, 2, 1], L2 = δ4[1, 3, 3, 4, 4,
2, 2, 4], and H = δ2[1, 2, 2, 1]. In addition, yr = δ12 .

Similarly, the control (18) has the following algebraic form:

u(t) = Gx(t),

where G = δ2[1, 1, 1, 2].
A simple calculation shows that L̄1 = δ4[1, 1, 1, 4, 4, 4, 4, 1] and O(1) = {δ14 , δ44}.

Obviously, O(1) is a robust L̄1-invariant set as well as a robust L2-invariant set. By (7),
when τ = 1, we have L̃1 = δ4[1, 1, 1, 4, 4, 4, 4, 1] and Col(HL̃1) = {δ12}. By
Theorem 4, the output of system (17) can robustly track yr under the state feedback
control (18).

Example 3. Consider the following BCN with impulsive effects:

x(t+ 1) = L1ξ(t)u(t)x(t), tk−1 6 t < tk − 1;

x(tk) = L2ξ(tk − 1)x(tk − 1);

y(t) = Hx(t),

(19)
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where t0 = 0, tk = k2+1, k ∈ Z+, L1 = δ4[1, 1, 1, 4, 2, 2, 1, 4, 4, 4, 4, 1, 1, 1, 2, 1],
L2 = δ4[1, 3, 3, 4, 4, 2, 2, 4], and H = δ2[1, 2, 2, 1].

We aim to design a free-form control sequence under which system (19) is robustly
stabilizable to the set A = {δ14 , δ44}.

According to (10), we have L̂ = L1W[2,2] = δ4[1, 1, 1, 4, 4, 4, 4, 1, 2, 2, 1, 4, 1,

1, 2, 1]. Obviously, the set A is a robust Blk1(L̂1)-invariant set and a robust L2-invariant
set. Setting τ = 2, from (12) we have L̂2 = δ4[1, 1, 1, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4,
4, 3, 3, 1, 4, 1, 1, 3, 1, 2, 2, 4, 4, 4, 4, 2, 4]. It is easy to see that Col(Blk1(L̂2)) ⊆ A.
Therefore, by Theorem 2, system (19) is robustly stabilizable to A under the following
free-form control sequence:

u(t) = δ12 , t ∈ N \
{
tk − 1: k ∈ Z+

}
.

Remark 4. For the above free-form control sequence, we can obtain the state feedback
gain matrixG = δ2[1, 1, 1, 1] under which system (19) is robustly stabilizable toA. This
is one possible way to design state feedback gain matrix for the stabilization of BCNs with
impulsive effects.

5 Conclusion

In this paper, we have studied the robust set stabilization of BCNs with impulsive effects,
and presented some new results. We have converted the closed-loop system consisting of
a BCN with impulsive effects and a given state feedback control into an algebraic form.
Based on the algebraic form, we have presented a necessary and sufficient condition for
the robust set stabilization of BCNs with impulsive effects. As applications of robust set
stabilization, we have studied the robust partial stabilization and the robust output tracking
of BCNs with impulsive effects. Future works will focus on two issues: (i) design of state
feedback gains for the robust set stabilization of BCNs with impulsive effects; (ii) robust
set stabilization of BCNs with complex impulses [26–28].
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