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Abstract. This paper investigates the maximum principle for a nonlinear size-structured model that
describes the optimal management of the fish resources taking into account harvesting the fish and
putting the fry. We establish the well-posedness of the state system by Banach fixed-point theorem.
Necessary conditions for optimality are established via the normal cone technique and adjoint
system. The existence of a unique optimal policy is proved via Ekeland’s variational principle and
fixed-point reasoning. Finally, some examples and numerical results demonstrate the effectiveness
of the theoretical results in our paper.
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1 Introduction

The topic of the population dynamic system with structural differences has attracted the
interest of many researchers, and important progresses have been made during the last
century. Among the individual structure, there are many structural differences, such as
age, body size, gender, gene, and life stage. During the past few decades, the well-
posedness, asymptotic behavior, and optimal control of partial differential equations have
been frequently used to explain biological and chemical evolution process, see, e.g.,
[10,15]. Especially, age-structured first-order partial differential equations provide a main
tool for modeling population systems [19] and are recently employed in economics.
Models with age structure have been proposed about the well-posedness, asymptotic
behavior in the mathematical analysis, and optimal control of populations in biology. To
name a few, see [1,2,8,9,16–18] and the references therein. In [1], the authors investigated
two optimal harvesting problems for the following age-structured population dynamics
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with logistic term and time-periodic vital rates:

∂u

∂t
+
∂(u)

∂a
= −µ(a, t)u(a, t)−M

(
Γ (t)

)
u(a, t)− α(t)u(a, t),

(x, t) ∈ Q,

u(0, t) =

A∫
0

β(a, t)u(a, t) da, t ∈ R+,

u(a, 0) = u0(a), x ∈ [0, A),

Γ (t) =

A∫
0

γ(a)u(a, t) da, t ∈ R+,

(1)

whereQ = [0, A)×R+, andA ∈ (0,∞) is a maximal age of the population species. Here
u(a, t) is the population density for age a at time t; β and µ are natural fertility rate and
mortality rate, both time-periodic of period T ;M(Γ (t)) represents an external mortality
rate and is due to the overpopulation; u(t) is the harvesting effort. In [17], the authors pre-
sented necessary optimality conditions of Pontryagin’s type for infinite-horizon optimal
control problems for age-structured systems with state and control-dependent boundary
conditions.

Long-term ecological researches show that the vital parameters of individual are
closely connected with its body size for many populations. Size of an individual has
a strong influence upon dynamical processes like its feeding, growth, and reproduction
[20], which in turn affect the dynamics of the population as a whole. In [5], Caswell
pointed out that size-dependent demography is probably the rule rather than the ex-
ception. Here by size we mean some indices displaying the physiological or statistical
characteristics of population individuals. Sizes can be mass, length, diameter, and so on.
As a result, modelling population dynamics, it is natural to assume that the vital rates,
such as fertility, mortality, and growth rates of individuals depend on their body size and
time (see [3, 7, 11–14, 21]). In [21], the authors studied the optimal harvesting problem
for a food chain of three species in a periodic environment with size structures in the
predators. In [14], we investigated the least cost-size problem and the least cost-deviation
problem for the following nonlinear vermin population model with size-structure:

∂u

∂t
+
∂(V (x, t)u)

∂x
= f(x, t)− µ(x, t)u(x, t)− Φ

(
I(t)

)
u(x, t),

(x, t) ∈ Q,

V (0, t)u(0, t) =

l∫
0

β(x, t)ω(x, t)u(x, t) dx, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ [0, l),

I(t) =

l∫
0

m(x)u(x, t) dx, t ∈ [0, T ].

(2)
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where Q = [0, l) × [0, T ] and β ∈ Ω = {h ∈ L∞(Q): β 6 h(x, t) 6 β̄ ∀(x, t) ∈ Q}.
Here u(x, t) is the population density of size x ∈ [0, l) at time t ∈ [0, T ]; l ∈ (0,∞) is
a maximal size and T is a given time. In [18], a general model of a heterogeneous control
system is introduced in the form of a first-order distributed system with nonlocal dynamics
and exogenous side-conditions. The author gave the necessary optimality conditions in
the form of the Pontryagin maximum principle on a finite time-horizon [0, T ], which can
include the age-structured and size-structured problems.

However, in the ecological environment, only some of the newborns can survive
for some populations especially for fish resources. For fish, size is a more important
parameter than age because it is easy to get the quality of the fish, but it is hard to know
the age of the fish. To the best of our knowledge, so far there is no investigation on
the optimal control of size structured population models by taking the survival rate of
the new born individuals into account. Motivated by the above discussion, this paper
considers a nonlinear size-structured model that describes the optimal management of the
fish resources taking into account harvesting the fish and putting the fry.

To build our model, we assume that u(x, t) denotes the fish density of individuals at
time twith respect to size x; µ(x, t) and β(x, t) are, respectively, the natural mortality and
egg-laying rate; g(x) stands for the growth rate of individual’s size, that is, dx/dt = g(x);
φ is the amount of artificial stocking fry, which depends on the total population P (t); I(t)
corresponds to the number of eggs deposited at time t; f is the proportion of eggs that
survive to become fishes, which depend on the parental egg production at time t. Then we
propose the following size-structured model for the fish dynamics in a control period:

∂u(x, t)

∂t
+
∂(g(x)u(x, t))

∂x
= −µ(x, t)u(x, t)− α(x, t)u(x, t),

(x, t) ∈ Q,

g(0)u(0, t) = φ
(
P (t)

)
+ f

(
I(t)

)
I(t), t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ [0, l),

(3)

where

P (t) =

l∫
0

u(x, t) dx, I(t) =

l∫
0

β(x, t)u(x, t) dx, t ∈ [0, T ].

Here Q = [0, l)× [0, T ], l ∈ (0,+∞) is the maximum size of any individual in the pop-
ulation, and T ∈ (0,+∞) is a given time. The control variable α(x, t) is the harvesting
efforts, which belongs to

U =
{
α ∈ L∞(Q): 0 6 α 6 α(x, t) 6 α a.e. (x, t) ∈ Q

}
,

where α, α are positive constants. Let uα(x, t) be the solution of system (3) correspond-
ing to α ∈ U . In this paper, we investigate the following optimization problem:

max
α∈U

J(α), (4)
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where

J(α) =

T∫
0

l∫
0

ω(x, t)α(x, t)uα(x, t) dxdt−
T∫

0

r1(t)φ
(
Pα(t)

)
dt

−
T∫

0

l∫
0

r2(t)h(x, t)uα(x, t) dx dt− 1

2

T∫
0

l∫
0

ρα2(x, t) dxdt.

Here the function ω(x, t) is the economic values of an individual of fish with size x at
time t; h(x, t) represents the average amount of fish food eaten by a single fish individual
with size x at time t; r1(t) is the price of the fish fry at time t; r2(t) is the price of the
fish food at time t; ρ > 0 is the weight factor of the costs for implementing the controls.
Thus, the 1st term of functional J represents the benefits from harvesting the fish, the 2nd
term represents the cost of restocking fish fry, the 3rd term is the cost of fish feed, and the
4th term is the cost of controls. Therefore, J(α) represents the total net economic benefit
yielded from harvesting during a time of T .

Denote R+ := [0,∞), L1
+ := L1(0, l;R+), and L∞+ := L∞(0, l;R+). In the

following discussion, we make the following assumptions:

(A1) g ∈ C1[0, l) is a bounded function, g(0) = 1, limx↑l g(x) = 0, and g(x) > 0,
g′(x) 6 0 for x ∈ [0, l). Moreover, there is a positive constant LV such that for
x1, x2 ∈ [0, l), |g(x1)− g(x2)| 6 LV |x1 − x2|.

(A2) There exists β̄ ∈ R+ such that 0 < β(x, t) 6 β̄ for (x, t) ∈ Q.
(A3) µ : [0, l)× [0, T ]→ R+ is a measurable function, and µ(x, t) + g′(x) > 0.
(A4) u0 ∈ L1

+ and there exists ū ∈ R+ such that 0 6 u0(x) 6 ū.
(A5) f(s) > 0 is continuous and bounded on R+, and F (s) := sf(s) ∈ C1 is in-

creasing on R+. Moreover, there exists a constant k1 such that for s1, s2 ∈ R+,
|F (s1)− F (s2)| 6 k1|s1 − s2|.

(A6) φ(s) > 0 is continuous decreasing on R+, φ(0) = 0, and φ ∈ C1. Moreover,
there exists k2 > 0 such that for s1, s2 ∈ R+, |φ(s1)− φ(s2)| 6 k2|s1 − s2|.

The remainder of the present paper is organized as follows. First, in Section 2, we
show the existence and uniqueness of solutions to the basic system by Banach fixed-point
theorem and make several estimates. In Section 3, we study the adjoint system, which
will be used latter. Necessary conditions for optimality will be established in Section 4,
while Section 5 is devoted to the existence of a unique optimal control. Section 6 contains
example and numerical results, which are used to demonstrate the effectiveness of the
theoretical results in our paper. The paper ends with a conclusion section.

2 Well-posedness of the state system

In this section, we provide some properties of the solutions, which include the bounded-
ness and the continuous dependence of the population density.
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Definition 1. The unique solution x = ϕ(t; t0, x0) of the initial-valued problem x′(t) =
g(x), x(t0) = x0 is said to be a characteristic curve of system (3). Let z(t) = ϕ(t; 0, 0)
be the characteristic curve through (0, 0) in the xt-plane.

Definition 2. The derivative of the function u(x, t) at (x, t) along the characteristic
curve ϕ is given by

Dϕu(x, t) = lim
h→0

u(ϕ(t+ h; t, x), t+ h)− u(x, t)

h
.

Without loss of generality, we assume that α(x, t) ≡ 0. For an arbitrary point (x, t) in the
first quadrant of the xt-plane such that x 6 z(t), that is, ϕ(t; t, x) 6 z(t), define the initial
time τ := τ(x, t) implicitly by the relation thatϕ(t; τ, 0) = x if and only ifϕ(τ ; t, x) = 0.
It is clear that τ = ϕ−1(0; t, x). Utilizing the characteristic curve technique, the solution
of system (3) can be given as

u(x, t) =


u(0, ϕ−1(0; t, x)) exp{−

∫ t
τ
[µ(ϕ(s; t, x), s) + g′(ϕ(s; t, x))] ds},

x 6 z(t),

u0(ϕ(0; t, x)) exp{−
∫ t

0
[µ(ϕ(s; t, x), s) + g′(ϕ(s; t, x))] ds},

x > z(t).

(5)

We then show the existence, uniqueness, and boundedness of solutions to system (3).
Let X = L∞(Q) and define a new norm in X by

‖u‖∗ = ess sup
t∈[0,T ]

{
e−λt

l∫
0

∣∣u(x, t)
∣∣dx}

for some λ > 0, which is equivalent to the usual norm on the space X. Thus, (X, ‖·‖∗) is
a Banach space. Let M := lū+ lū(k1β̄ + k2)T e(k1β̄+k2)T and define the solution space
as follows:

X =

{
u ∈ X

∣∣∣ u(x, t) > 0 a.e. (x, t) ∈ Q and

l∫
0

u(x, t) dx 6M

}
.

It is clear that X is a nonempty closed subset in X. Define A : X → X by

(Au)(x, t) = u(x, t), (6)

where u(x, t) is given as (5). Obviously, if u(x, t) is a fixed point of the map A, then it is
a solution of system (3) and vice versa.

In this section, assume that T > z−1(l). When T 6 z−1(l), we can get the same
results by the same method.

Next, we verify that the mapping A satisfies the conditions of the Banach fixed-point
theorem. For any u, v ∈ X, denote d(u, v) = ‖u− v‖∗.

Nonlinear Anal. Model. Control, 23(4):533–552
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Lemma 1. (X , d) is a complete metric space.

Proof. It is easy to show that d is a metric in X. Note that (X, ‖·‖∗) is a Banach space.
Then (X, d) is a complete metric space. In addition, X is a nonempty closed subset in X.
Hence, (X , d) is a complete metric space. The proof is complete.

Lemma 2. The mapping A maps X into X .

Proof. Note that g(0) = 1. Denoting b(t) := g(0)u(0, t) = φ(P (t)) + F (I(t)), then
by (A5) and (A6) we have F (I(t)) 6 k1I(t) and φ(P (t)) 6 k2P (t). Thus,

b(t) = φ
(
P (t)

)
+ F

(
I(t)

)
6 k1I(t) + k2P (t)

= k1

l∫
0

β(x, t)u(x, t) dx+ k2

l∫
0

u(x, t) dx 6 (k1β̄ + k2)

l∫
0

u(x, t) dx

= (k1β̄ + k2)

[ z(t)∫
0

u(x, t) dx+

l∫
z(t)

u(x, t) dx

]

6 (k1β̄ + k2)

[
lū+

z(t)∫
0

b
(
ϕ−1(0; t, x)

)
dx

]
. (7)

Denote I1 :=
∫ z(t)

0
b(ϕ−1(0; t, x)) dx. Let s = ϕ−1(0; t, x). Then by Definition 1,

s = t when x = 0, while s = 0 when x = z(t). It follows from s = ϕ−1(0; t, x) that
x = ϕ(t; s, 0). Note that dx/ds is the solution of the initial-valued problem

dz

dt
= g′

(
ϕ(t; s, 0)

)
z, z(s) = −g(0) = −1. (8)

It is clear that the solution of (8) z(t) = − exp{
∫ t
s
g′(ϕ(r; s, 0)) dr}, that is,

dx = − exp

{ t∫
s

g′
(
ϕ(r; s, 0)

)
dr

}
ds.

Thus, by (A1), we have

I1 = −
0∫
t

b(s) exp

{ t∫
s

g′
(
ϕ(r; s, 0)

)
dr

}
ds 6

t∫
0

b(s)ds, (9)

which, together with (7), yields

b(t) 6 (k1β̄ + k2)

[
lū+

t∫
0

b(s) ds

]
.
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It follows from Grönwall’s inequality that

b(t) 6 lū(k1β̄ + k2)e(k1β̄+k2)t 6 lū(k1β̄ + k2)e(k1β̄+k2)T . (10)

Next, we consider (Au)(x, t). From (9) and (10) it is clear that

l∫
0

|Au|(x, t) dx

=

z(t)∫
0

u(0, τ) exp

{
−

t∫
τ

[
µ
(
ϕ(s; t, x), s

)
+ g′

(
ϕ(s; t, x)

)]
ds

}
dx

+

l∫
z(t)

u0

(
ϕ(0; t, x)

)
exp

{
−

t∫
0

[
µ
(
ϕ(s; t, x), s

)
+ g′

(
ϕ(s; t, x)

)]
ds

}
dx

6

z(t)∫
0

u(0, τ) dx+

l∫
0

u0

(
ϕ(0; t, x)

)
dx

=

z(t)∫
0

b
(
ϕ−1(0; t, x)

)
dx+

l∫
0

u0

(
ϕ(0; t, x)

)
dx

6 lū+ lū(k1β̄ + k2)T e(k1β̄+k2)T .

It follows that A is a mapping from X to X . The proof is complete.

Lemma 3. A is a contraction mapping on the complete metric space (X , d).

Proof. For any u1, u2 ∈ X , by the definition of mapping A, it is easy to show that
(Au1)(x, t)− (Au2)(x, t) = 0, x > z(t), for t ∈ [0, T ]. It follows from the definition of
mapping A and (9) that

l∫
0

|Au1 −Au2|(x, t) dx

6

z(t)∫
0

∣∣u1

(
0, ϕ−1(0; t, x)

)
− u2

(
0, ϕ−1(0; t, x)

)∣∣dx 6

t∫
0

∣∣b1(s)− b2(s)
∣∣ds

=

t∫
0

∣∣φ(P1(s)
)

+ F
(
I1(s)

)
− φ

(
P2(s)

)
− F

(
I2(s)

)∣∣ds
6 (k1β̄ + k2)

t∫
0

l∫
0

∣∣u1(x, s)− u2(x, s)
∣∣dx ds.
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Then

d(Au1,Au2) = ess sup
t∈[0,T ]

{
e−λt

l∫
0

∣∣(Au1)(x, t)− (Au2)(x, t)
∣∣dx}

6 (k1β̄ + k2) ess sup
t∈[0,T ]

{
e−λt

t∫
0

l∫
0

∣∣u1(x, s)− u2(x, s)
∣∣dxds

}

=
(k1β̄ + k2)

λ
d(u1, u2).

Choose λ such that λ > (k1β̄ + k2). Then A becomes a contraction on the complete
metric space (X , ‖·‖∗). The proof is complete.

By Lemmas 1–3 and the Banach fixed-point theorem, we can see that A has a unique
fixed point, which is a nonnegative bounded solution for system (3). Hence, we have the
following theorem.

Theorem 1. Let assumptions (A1)–(A6) hold and α ≡ 0. Then system (3) has one and
only one nonnegative bounded solution u(x, t) ∈ L∞(Q).

Just for completeness, we state the following result for the case α 6≡ 0.

Theorem 2. Let assumptions (A1)–(A6) hold. Then for any α ∈ U , system (3) has
a unique solution u ∈ L∞(Q), which is nonnegative and bounded, |u(x, t)| 6 B1.
Moreover, for any t ∈ [0, T ] and α1, α2 ∈ U , there exists positive constants B2 such
that ∥∥u1(·, t)− u2(·, t)

∥∥
L1[0,l)

6 B2

t∫
0

∥∥α1(·, s)− α2(·, s)
∥∥
L1[0,l)

ds, (11)

where u1 and u2 are the solutions of system (3) corresponding to α1 and α2 ∈ U ,
respectively.

Proof. By a similar method as that in Theorem 1, it is easy to show that for any α ∈ U ,
system (3) has a unique nonnegative bounded solution u ∈ L∞(Q) with µ replaced by
µ+ α. Next, we prove the inequality (11). For i = 1, 2, denote

Ei(t; t, x) = exp

{
−

t∫
τ

[
µ
(
ϕ(s; t, x), s

)
+ g′

(
ϕ(s; t, x)

)
+ αi

(
ϕ(s; t, x), s

)]
ds

}
,

Πi(t; t, x) = exp

{
−

t∫
0

[
µ
(
ϕ(s; t, x), s

)
+ g′

(
ϕ(s; t, x)

)
+ αi

(
ϕ(s; t, x), s

)]
ds

}
.
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Note that u1(x, t) and u2(x, t) are solutions of system (3) corresponding to α1 ∈ U and
α2 ∈ U , respectively. Then by (5) and g(0) = 1, one has∥∥u1(·, t)− u2(·, t)

∥∥
L1[0,l)

=

l∫
0

∣∣u1(x, t)− u2(x, t)
∣∣dx

6

z(t)∫
0

∣∣b1(ϕ−1(0; t, x)
)
− b2

(
ϕ−1(0; t, x)

)∣∣dx
+ lū(k1β̄ + k2)e(k1β̄+k2)T

z(t)∫
0

t∫
0

∣∣α1

(
ϕ(s; t, x), s

)
− α2

(
ϕ(s; t, x), s

)∣∣dsdx

+ ū

l∫
z(t)

t∫
0

∣∣α1

(
ϕ(s; t, x), s

)
− α2

(
ϕ(s; t, x), s

)∣∣ dsdx

:=

z(t)∫
0

∣∣b1(ϕ−1(0; t, x)
)
− b2

(
ϕ−1(0; t, x)

)∣∣dx
+M1

l∫
0

t∫
0

∣∣α1

(
ϕ(s; t, x), s

)
− α2

(
ϕ(s; t, x), s

)∣∣dsdx

:= I2 + I3, (12)

where M1 = max{ū, lū(k1β̄ + k2)e(k1β̄+k2)T }.
For I2, let s = ϕ−1(0; t, x). It follows from (10) and (A1) that

I2 =

z(t)∫
0

∣∣b1(ϕ−1(0; t, x)
)
− b2

(
ϕ−1(0; t, x)

)∣∣ dx
= −

0∫
t

∣∣b1(s)− b2(s)
∣∣ exp

{ t∫
s

g′
(
ϕ(r; s, 0)

)
dr

}
ds

6

t∫
0

∣∣b1(s)− b2(s)
∣∣ds. (13)

For I3, let w = ϕ(0; t, x). Then by Definition 1, w = 0 when x = 0, while w = l
when x = l. If z(s) is the solution of the initial-valued problem

dz

ds
= g′

(
ϕ(s; t, x)

)
z, z(t) = 1, (14)

Nonlinear Anal. Model. Control, 23(4):533–552
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then dw/dx = z(0). It is easy to get z(s) = exp{
∫ s
t
g′(ϕ(r; t, x)) dr}. Thus, we can get

dw/dx = z(0) = exp{
∫ 0

t
g′(ϕ(r; t, x)) dr}, which means

dx = exp

{ t∫
0

g′
(
ϕ(r; t, x)

)
dr

}
dw. (15)

Thus, by (A1), we have

I3 = M1

t∫
0

l∫
0

∣∣α1

(
ϕ(s; t, x), s

)
− α2

(
ϕ
(
s; t, x), s

)∣∣dxds

= M1

t∫
0

l∫
0

∣∣α1(w, s)− α2(w, s)
∣∣ exp

{ t∫
0

g′
(
ϕ(r; t, x)

)
dr

}
dw ds

6M1

t∫
0

∥∥α1(·, s)− α2(·, s)
∥∥
L1[0,l)

ds. (16)

It follows from (12), (13), and (16) that∥∥u1(·, t)− u2(·, t)
∥∥
L1[0,l)

6

t∫
0

∣∣b1(s)− b2(s)
∣∣ds+M1

t∫
0

∥∥α1(·, s)− α2(·, s)
∥∥
L1[0,l)

ds

=

t∫
0

∣∣φ(P1(s)
)

+ F
(
I1(s)

)
− φ

(
P2(s)

)
− F

(
I2(s)

)∣∣ds
+M1

t∫
0

∥∥α1(·, s)− α2(·, s)
∥∥
L1[0,l)

ds

6 k1

t∫
0

∣∣I1(s)− I2(s)
∣∣ ds+ k2

t∫
0

∣∣P1(s)− P2(s)
∣∣ds

+M1

t∫
0

∥∥α1(·, s)− α2(·, s)
∥∥
L1[0,l)

ds

6M1

t∫
0

∥∥α1(·, s)− α2(·, s)
∥∥
L1[0,l)

ds

+ (k1β̄ + k2)

t∫
0

∥∥u1(·, s)− u2(·, s)
∥∥
L1[0,l)

ds. (17)
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It follows from Grönwall’s inequality that

∥∥u1(·, t)− u2(·, t)
∥∥
L1[0,l)

6M1e(k1β̄+k2)T

t∫
0

∥∥α1(·, s)− α2(·, s)
∥∥
L1[0,l)

ds.

The proof is complete.

3 The adjoint system

In this section, we will derive the adjoint system of (3), which is necessary for optimality.
First, we give the following lemma, which can be proved by means of the normal cone
technique (see [4, Prop. 5.3]).

Lemma 4. Suppose that ϑ(x, t) ∈ L∞(Q) satisfies

T∫
0

l∫
0

[
ϑ(x, t)v(x, t) + ρ

∣∣v(x, t)
∣∣]dx dt > 0

for any v ∈ TU (α). Then there exists θ ∈ L∞(Q) such that ‖θ‖∞ 6 1 and ρθ − ϑ ∈
NU (α).

Here and in the following, we denote by TU (α) and NU (α) the tangent cone and the
normal cone of U at α, respectively.

Lemma 5. Let u∗(x, t) be the solution of system (3) corresponding to α∗ ∈ U . For each
v ∈ TU (α∗) such that α∗ + εv ∈ U for sufficiently small ε > 0, we have [uε − u∗]/ε →
z(x, t) as ε → 0, where uε is the solution of (3) corresponding to α∗ + εv ∈ U , and
z(x, t) is the solution of the following system:

Dϕz(x, t) = −
[
µ(x, t) + g′(x) + α∗(x, t)

]
z(x, t)− v(x, t)u∗(x, t),

(x, t) ∈ Q,
g(0)z(0, t) = φ′

(
P ∗(t)

)
Q(t) + f ′

(
I∗(t)

)
I∗(t)Z(t) + f

(
I∗(t)

)
Z(t),

t ∈ [0, T ],

z(x, 0) = 0, x ∈ [0, l),

Z(t) =

l∫
0

β(x, t)z(x, t) dx, Q(t) =

l∫
0

z(x, t) dx, t ∈ [0, T ],

(18)

in which φ′(P ∗(t)) and f ′(I∗(t)) are the derivatives of φ and f with respect to P ∗ and I∗,
respectively.

Proof. The existence and uniqueness of solution to (18) can be established by a simi-
lar way as that in the proofs of Theorems 1 and 2. According to Lemma 3.13 in [2],
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limε→0[uε − u∗]/ε makes sense. Note that uε and u∗ are solutions of (3) corresponding
to α∗ + εv and α∗, respectively. Thus, [uε − u∗]/ε must be the solution of the following
system:

Dϕ
1

ε

[
uε − u∗

]
= −[µ+ g′]

1

ε

[
uε − u∗

]
− 1

ε

[
(α∗ + εv)uε − α∗u∗

]
,

g(0)
1

ε

[
uε − u∗

]
(0, t)

=
1

ε

[
φ
(
P ε(t)

)
− φ

(
P ∗(t)

)]
+

1

ε

[
f
(
Iε(t)

)
Iε(t)− f

(
I∗(t)

)
I∗(t)

]
,

1

ε

[
uε − u∗

]
(x, 0) = 0,

1

ε

[
Iε(t)− I∗(t)

]
=

l∫
0

β(x, t)
1

ε

(
uε − u∗

)
dx,

1

ε

[
P ε(t)− P ∗(t)

]
=

l∫
0

1

ε

(
uε − u∗

)
dx.

(19)

Letting ε→ 0+, it follows from Theorem 2 and assumptions (A5)–(A6) that

1

ε

[
g
(
P ε(t)

)
− g
(
P ∗(t)

)]
→ g′

(
P ∗(t)

)
Q(t), (20)

1

ε

[
f
(
Iε(t)

)
Iε(t)− f

(
I∗(t)

)
I∗(t)

]
→ f ′

(
I∗(t)

)
I∗(t)Z(t) + f

(
I∗(t)

)
Z(t), (21)

Passing to the limit as ε → 0+ in (19) and using (20)–(21) produces the required result.
The proof is complete.

Next, we consider the following adjoint system of (3):

Dϕξ(x, t) = µ(x, t)ξ(x, t) +
[
ω(x, t) + ξ(x, t)

]
α∗(x, t)

− β(x, t)
[
f ′
(
I∗(t)

)
I∗(t) + f

(
I∗(t)

)]
ξ(0, t)

− ξ(0, t)φ′
(
P ∗(t)

)
− r1(t)φ′

(
P ∗(t)

)
− r2(t)h(x, t),

(x, t) ∈ Q,
ξ(l, t) = 0, ξ(x, T ) = 0, (x, t) ∈ Q,

I∗(t) =

l∫
0

β(x, t)u∗(x, t) dx, P ∗(t) =

l∫
0

u∗(x, t) dx, t ∈ [0, T ],

(22)

where ξ(x, t) is the dual variable and u∗ is the solution of system (3) corresponding to
α∗ ∈ U . Treating (22) in the same manner as that in Theorems 1 and 2, we can get the
following result with the proof being omitted.
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Theorem 3. Let assumptions (A1)–(A6) hold. For each α ∈ U , the adjoint system (22)
has a unique bounded solution ξ(x, t) ∈ L∞(Q), |ξ(x, t)| 6 B3. Moreover, there exists
a positive constant B4 such that

‖ξ1 − ξ2‖L1(Q) 6 B4‖α1 − α2‖∞,

where ξ1 and ξ2 are solutions of (22) corresponding to α1 and α2, respectively.

4 Optimality conditions

In this section, we will derive the first-order necessary conditions of optimality in the form
of an Euler–Lagrange system.

Theorem 4. Let α∗(x, t) be an optimal policy for the control problem (3)–(4). Under the
conditions of Theorem 2, we have

α∗(x, t) = F
{

[ω(x, t) + ξ(x, t)]u∗(x, t)

ρ

}
(23)

in which the truncated mapping F : L1(Q)→ L∞(Q) is given by

(Fη)(x, t) =


α, η(x, t) < α,

η(x, t), α 6 η(x, t) 6 α,

α, η(x, t) > α,

(24)

where ξ(x, t) is the solution of the adjoint system (22).

Proof. For any element of tangent cone v ∈ TU (α∗), we have αε .
= α∗ + εv ∈ U for

sufficiently small ε > 0. Let uε(x, t) be the solution of system (3) corresponding to αε.
Since α∗ is an optimal control, it follows that

T∫
0

l∫
0

ω(x, t)αε(x, t)uε(x, t) dx dt−
T∫

0

r1(t)φ
(
P ε(t)

)
dt

−
T∫

0

l∫
0

r2(t)h(x, t)uε(x, t) dx dt− 1

2

T∫
0

l∫
0

ρ(α∗ + εv)2(x, t) dxdt

6

T∫
0

l∫
0

ω(x, t)α∗(x, t)u∗(x, t) dxdt−
T∫

0

r1(t)φ
(
P ∗(t)

)
dt

−
T∫

0

l∫
0

r2(t)h(x, t)u∗(x, t) dx dt− 1

2

T∫
0

l∫
0

ρ
(
α∗(x, t)

)2
dx dt.
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It follows from Lemma 5 that

0 >

T∫
0

l∫
0

[
ω(x, t)α∗(x, t)− r1(t)φ′

(
P ∗(t)

)
− r2(t)h(x, t)

]
z(x, t) dxdt

+

T∫
0

l∫
0

ω(x, t)v(x, t)u∗(x, t) dxdt−
T∫

0

l∫
0

ρα∗(x, t)v(x, t) dxdt, (25)

where z(x, t) is the solution of (18). Multiplying the first equation of (18) by ξ and
integrating on Q, we obtain

T∫
0

l∫
0

(
Dϕξ(x, t)

)
z(x, t) dx dt

=

T∫
0

l∫
0

µ(x, t)ξ(x, t)z(x, t) dxdt+

T∫
0

l∫
0

α∗(x, t)ξ(x, t)z(x, t) dx dt

+

T∫
0

l∫
0

u∗(x, t)ξ(x, t)v(x, t) dx dt−
T∫

0

l∫
0

φ′
(
P ∗(t)

)
ξ(0, t)z(x, t) dxdt

−
T∫

0

l∫
0

β(x, t)
[
f ′
(
I∗(t)

)
I∗(t) + f

(
I∗(t)

)]
ξ(0, t)z(x, t) dxdt. (26)

Next, multiplying the first equation of (22) by z and integrating on Q, we have

T∫
0

l∫
0

(
Dϕξ(x, t)

)
z(x, t) dxdt

=

T∫
0

l∫
0

µ(x, t)ξ(x, t)z(x, t) dx dt+

T∫
0

l∫
0

α∗(x, t)ξ(x, t)z(x, t) dxdt

+

T∫
0

l∫
0

ω(x, t)α∗(x, t)z(x, t) dxdt−
T∫

0

l∫
0

φ′
(
P ∗(t)

)
ξ(0, t)z(x, t) dx dt

−
T∫

0

l∫
0

β(x, t)
[
f ′
(
I∗(t)

)
I∗(t) + f

(
I∗(t)

)]
ξ(0, t)z(x, t) dxdt

−
T∫

0

l∫
0

[
r1(t)g′

(
P ∗(t)

)
+ r2(t)h(x, t)

]
z(x, t) dxdt. (27)
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It follows from (26) and (27) that
T∫

0

l∫
0

[
ωα∗ − r1(t)φ′

(
P ∗(t)

)
− r2(t)h(x, t)

]
z dxdt =

T∫
0

l∫
0

vu∗ξ dxdt. (28)

Thus, from (25) and (28) we have
T∫

0

l∫
0

[(
ω(x, t) + ξ(x, t)

)
u∗(x, t)− ρα∗(x, t)

]
v(x, t) dxdt 6 0 (29)

for each v ∈ TU (α∗). Thus, (ω + ξ)u∗ − ρα∗ ∈ NΩ(α∗), which implies the conclusion
of this theorem. The proof is complete.

5 Existence of a unique optimal control

In this section, we study the existence and uniqueness of the optimal control.

Definition 3. The embedding mapping J̃ : L1(Q)→ [−∞,+∞) is given by

J̃(α) =

{
J(α), α ∈ U ,
+∞, α /∈ U .

(30)

By a similar way as that in Lemma 7.1 in [21], we can get the following result with the
proof being omitted.

Lemma 6. The functional J̃(α) is upper semicontinuous.

Theorem 5. If ρ−1(ωB2+B1B4+B3B2) < 1, then control problem (3)–(4) has a unique
solution.

Proof. (i) We prove the uniqueness by contraction mapping theory. Define the mapping
B : U ⊂ L∞(Q)→ U by

(Bα)(x, t) = F
{

[ω(x, t) + ξα(x, t)]uα(x, t)

ρ

}
. (31)

It is clear that (L∞(Q), ‖·‖∞) is a Banach space and U is a closed subset of L∞(Q).
Thus, (U , d) is a complete metric space, where d(u, v) = ‖u− v‖∞.

First, we show that B maps U into itself. For any α ∈ U , it follows from (24) that
α 6 (Bα)(x, t) 6 α for any (x, t) ∈ Q, which means (Bα) ∈ U , that is, B is a mapping
from U to U .

Next, we discuss the compressibility of the mapping B. For any (x, t) ∈ Q, it follows
from (31) that∣∣(Bα1)(x, t)− (Bα2)(x, t)

∣∣
6 ρ−1

[∣∣ω(x, t)
∣∣∣∣uα1(x, t)− uα2(x, t)

∣∣+
∣∣uα2(x, t)

∣∣∣∣ξα1(x, t)− ξα2(x, t)
∣∣]

+ ρ−1
[∣∣ξα2(x, t)

∣∣∣∣uα1(x, t)− uα2(x, t)
∣∣].
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Combining Theorem 2 with Theorem 3, we have∥∥Bα1 − Bα2

∥∥
∞ 6 ρ−1(ωB2 +B1B4 +B3B2)‖α1 − α2‖∞.

This, together with the hypothesis of this theorem, implies that the mapping B is a con-
traction on the complete metric space (U , d).

Then by Banach fixed-point theorem, B owns a unique fixed point α̂ ∈ U . Theorem 4
implies that any optimal controller α∗, if exists, must be a fixed point of B. Thus, the
uniqueness of optimal control is proved.

(ii) We prove the existence of the optimal control, that is, the control α̂ ∈ U is actually
optimal. It follows from Lemma 6 and Ekeland’s principle. We claim that, for each ε > 0,
there exists αε ∈ U such that

J̃(αε) > sup
α∈U

J̃(α)− ε, (32)

J̃(αε) > sup
α∈U

{
J̃(α)−

√
ε‖αε − α‖L1(Q)

}
. (33)

Thus, the perturbed functional J̃ε(α) = J̃(α)−
√
ε‖αε − α‖L1(Q) attains its supremum

at αε. Then, in the same manner as that in the previous section, for any v ∈ TU (αε), we
have

T∫
0

l∫
0

[
ραε(x, t)−

(
ω(x, t) + ξε(x, t)

)
uε(x, t)

]
v(x, t) dx dt

+
√
ε

T∫
0

l∫
0

|v(x, t)|dxdt > 0.

Therefore, by Lemma 4, we claim that there exists θ ∈ L∞(Q), ‖θ‖∞ 6 1 such that√
εθ(x, t) + (ω(x, t) + ξε(x, t))uε(x, t)− ραε(x, t) ∈ NΩ(αε). Consequently,

αε(x, t) = F
{

[ω(x, t) + ξε(x, t)]uε(x, t)

ρ
+

√
εθ(x, t)

ρ

}
. (34)

Now, we show that J̃(α̂) = sup{J̃(α): α ∈ U}. From (31), (34) one has ‖Bαε−αε‖∞ 6
ρ−1
√
ε‖θ(x, t)‖∞ 6 ρ−1

√
ε. It is easy to derive that

‖α̂− αε‖∞ 6 ρ−1(ωB2 +B1B4 +B3B2)
∥∥α̂− αε∥∥∞ + ρ−1

√
ε,

that is,
‖α̂− αε‖∞ 6

[
1− ρ−1(ωB2 +B1B4 +B3B2)

]
ρ−1
√
ε.

Therefore, αε → α̂ in L∞(Q) as ε → 0. From Lemma 6 and inequality (32) we have
J̃(α̂) = supα∈U J̃(α), which implies that α̂ ∈ U is the optimal policy.
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6 Numerical tests

In this section, we would like to examine a concrete example and try to obtain specifically
the optimal control once the parameters in the control problem (3)–(4) have been chosen.
In the following example, we do not consider the costs of controls and all the parameters
are 2-periodic with respect to time t.

Example 1. Consider problem (3)–(4) with

β(x, t) = 20x2(1− x)(1 + sinπt), µ(x, t) = e−4x(1− x)−1.4(2 + cosπt),

g(x) = 1− x, u0(x) = 2(1− x), ω(x, t) =
1

20
(2πx+ sin(πt) + 1),

h(x, t) =
1

40

(
2πx+ sin(πt)

)
, f

(
I(t)

)
= 0.8, φ

(
P (t)

)
= 10− 2P (t),

r1(t) = 0.8
(
1 + sin(πt)

)
, r2(t) = 1 + sin(πt),

α = 2, α = 6, l = 1, T = 10.

The following figures can be obtained from the results of the calculation.
From Fig. 2, if all the parameters in (3)–(4) are periodic with respect to the time t,

then the solution of (3) tends to a periodic solution. Note that the harvest is equivalent
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Figure 1. Egg-laying rate of the fish in Example 1 (left); mortality of the fish in Example 1 (right).
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Figure 2. Population density in Example 1 with α = 0 (left); with α = α∗ (right).
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Figure 3. Optimal harvesting efforts α∗(x, t) in Example 1 (left); trend of the total population in the case of
harvest and no harvest in Example 1 (right).

to death. It follows from Fig. 2 and the right of Fig. 3 that if µ1(x, t) < µ2(x, t) for
(x, t) ∈ Q, then u1(x, t) > u2(x, t) for (x, t) ∈ Q. Here u1 and u2 are the solutions
of system (3) corresponding to µ1 and µ2, respectively. It can be seen from the left of
Fig. 3 that the optimal harvesting effort basically owns a bang-bang structure. We observe
a significant similarity in the structure of optimal trajectories. It leads to the conclusion
that the bang-bang structure of solutions is much more common in optimal population
management.

7 Conclusion

In the previous sections, we have established the well-posedness of the state system by
Banach fixed-point theorem. More important results are the existence and uniqueness of
optimal policies, which supply us a solid theoretical ground for a practical application.
As for the structure of the optimal policy, we have presented a feedback strategy in
Theorem 4 by using an adjoint variable. The existence of a unique optimal policy is
proved via Ekeland’s variational principle and Banach fixed-point theorem. Moreover,
some numerical results demonstrate the effectiveness of the theoretical results.

In addition, the optimal solution for small t is not substantially influenced by the
choice of T if it is large enough. Assume that 0 < T1 < T2 < ∞. We can prove that
if (α∗, u∗) is the solution of the optimal control problem (3)–(4) on [0, l) × [0, T2], then
(α∗, u∗) is a solution of the following optimal control problem:

max
α∈U

J(α) = max
α∈U

{ T1∫
0

l∫
0

ω(x, t)α(x, t)uα(x, t) dxdt−
T1∫
0

r1(t)φ
(
Pα(t)

)
dt

−
T1∫
0

l∫
0

r2(t)h(x, t)uα(x, t) dx dt− 1

2

T1∫
0

l∫
0

ρα2(x, t) dxdt

}
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under the restrictions

∂u(x, t)

∂t
+
∂(g(x)u(x, t))

∂x
= −µ(x, t)u(x, t)− α(x, t)u(x, t),

(x, t) ∈ [0, l)× [0, T2],

g(0)u(0, t) = φ
(
P (t)

)
+ f

(
I(t)

)
I(t), t ∈ [0, T2],

u(x, 0) = u0(x), x ∈ [0, l),

u(x, T1) = u∗(x, T1), x ∈ [0, l).

The proof is similar to that of Lemma 2 in [6].
In our paper, we only consider the optimal control problem of the fixed horizon [0, T ],

where T < ∞. To our knowledge, most of optimal control problems for population
systems are naturally formulated on an infinite time-horizon. However, infinite-horizon
optimal control problems are still challenging even for systems of ordinary differential
equations. For example, it is difficult to establish suitable transversality conditions, which
allow one to choose the right solution of the adjoint system for which the Pontryagin max-
imum principle holds. In the infinite dimensional case (including age-structured systems
and size-structured systems), this issue is open. For more details, see [17]. We leave these
for our future work.
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