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Abstract. In this paper, by means of Leggett–Williams and Guo–Krasnosel’skii fixed point theo-
rems, together with height functions of the nonlinearity on different bounded sets, triple positive
solutions are obtained for some fractional differential equations with p–q-order derivatives involved
in multi-point boundary value conditions. The nonlinearity may not only take negative infinity but
also may permit singularities on both the time and the space variables.
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1 Introduction

The purpose of this paper is to obtain the existence result of triple positive solutions for
the following fractional differential equation (FDE for short):

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dp
0+u(1) =

m∑
i=1

aiD
q
0+u(ξi),

(1)
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where Dα
0+ represents Riemann–Liouville derivative of order α, n− 1 < α 6 n (n > 3),

ai > 0 (i = 1, 2, . . . , m,m ∈ N+), 0 < ξ1 < ξ2 < · · · < ξm < 1, p, q ∈ R, 1 6 p 6
n−2, 0 6 q 6 pwith∆ = Γ(α)/Γ(α−p)−(Γ(α)/Γ(α−q))

∑m
i=1 aiξ

α−q−1
i > 0. The

nonlinearity allows to take negative value and be unbounded below, that is, the problems
considered here are so called semipositone problems. In addition, f(t, u) may be singular
both at t = 0, 1 and/or u = 0.

Recently, great efforts have been made to investigate FDEs nonlocal problems for
their better effect in describing important phenomena in science, engineering, biology,
economics and so on. Many excellent works can be found in the literature (see [1–4,
6–13, 15–40] and the references therein). In a recent paper, when f permits singularity
on t and is semipositone, Henderson and Luca [9] gave an existence result of at least one
positive solution for fractional differential equation eigenvalue problems subject to the
boundary conditions given in (1). The main tool is the famous Guo–Krasnosel’skii fixed
point theorem. In another paper [10], under the assumption that f is either nonsingular
or singular on t, by means of fixed point index theory, they established an existence
result of at least one positive solution for some system of nonlinear ordinary fractional
differential equations with some coupled multi-point boundary conditions. By virtue of
height functions on some special bounded sets, Pu et al. [21] considered existence and
multiplicity of positive solutions for BVP (1) on the premise that the nonlinearity is
semipositone and permits singularity with respect to space variable. Very recently, Zhang
and Zhong [36] obtained an existence result of triple positive solutions for some fractional
differential equations integral boundary value problems.

This paper is a continuation of our paper [36]. We concentrate on investigating triple
positive solutions for semipositone BVP (1) by Leggett–Williams and Guo–Krasnosel’skii
fixed point theorems. Compared with the existing works, this paper admits some new
features. Firstly, the notable difference with the traditional results on triple solutions
(see [1, 4, 19, 37] for instance) lies in that the nonlinearity f possesses singularities with
respect the space variable. At present, there are relatively few results on triple solutions for
integer-order differential equations when Leggett–Williams fixed point theorem is used
under this circumstance, not to mention fractional differential equations. Secondly, not
only the method exploited here is different in essence from that in reference [21], but also
the bounded sets and height functions constructed in this paper are quite different from
those in [21]. Finally, the problem discussed in this paper is different from that in [36].
The nonlinearity permits taking negative infinity. Thus, the problem studied in this paper
is so called semipositone problem.

2 Preliminaries and several lemmas

Two typical Banach spaces E = C[0, 1] and L1(0, 1) are involved in this article, where
E = C[0, 1] and L1(0, 1) represent the spaces of the continuous functions and Lebesgue
integrable functions equipped with the norms ‖u‖ = max06t61 |u(t)| and ‖u‖1 =∫ 1

0
|u(t)| dt, respectively.

https://www.mii.vu.lt/NA



Triple positive solutions for semipositone fractional differential equations with singularities 891

Definition 1. (See [14].) A functional ζ : P → [0,+∞) is called a concave positive
functional on a cone P if

ζ
(
tx+ (1− t)y

)
> tζ(x) + (1− t)ζ(y) ∀x, y ∈ P, 0 6 t 6 1.

Lemma 1. (See [9].) Let ∆ 6= 0. Given y ∈ C(0, 1) ∩ L1(0, 1), the solution of the
following differential equation

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dp
0+u(1) =

m∑
i=1

aiD
q
0+u(ξi),

(2)

can be written as

u(t) =

1∫
0

G(t, s)y(s) ds, t ∈ [0, 1],

where

G(t, s) = G1(t, s) +
tα−1

∆

m∑
i=1

aiG2(ξi, s), (3)

G1(t, s) =
1

Γ(α)

{
tα−1(1− s)α−p−1 − (t− s)α−1, 0 6 s 6 t 6 1,

tα−1(1− s)α−p−1, 0 6 t 6 s 6 1,

G2(t, s) =
1

Γ(α− q)

{
tα−q−1(1− s)α−p−1 − (t− s)α−q−1, 0 6 s 6 t 6 1,

tα−q−1(1− s)α−p−1, 0 6 t 6 s 6 1.

Lemma 2. (See [9].) Assume that ai > 0 (i = 1, 2, . . . ,m) and ∆ > 0. Then the Green
function G of (2) given by (3) is a continuous function on [0, 1] × [0, 1] and satisfies the
inequalities:

(i) G(t, s) 6 J(s), for all t, s ∈ [0, 1], where J(s) = h1(s) +
∑m
i=1 aiG2(ξi, s)/∆,

h1(s) = (1− s)α−p−1(1− (1− s)p)/Γ(α), s ∈ [0, 1];
(ii) G(t, s) > tα−1J(s) for all t, s ∈ [0, 1];

(iii) G(t, s) 6 σtα−1 for all t, s ∈ [0, 1], where σ = 1/Γ(α) +
∑m
i=1 aiξ

α−q−1
i /

(∆Γ(α− q)).

Lemma 3. (See [21].) Suppose that w(t) ∈ C[0, 1] be the solution of

Dα
0+u(t) + k(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dp
0+u(1) =

m∑
i=1

aiD
q
0+u(ξi),

where k ∈ L1(0, 1), k(t) > 0. Then w(t) 6 σ‖k‖1tα−1, 0 6 t 6 1.

Nonlinear Anal. Model. Control, 23(6):889–903
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In this paper, let

K =
{
u ∈ E: u(t) > tα−1‖u‖, t ∈ [0, 1]

}
.

Obviously, K is a cone in E. For simplicity, denote

Kr =
{
u ∈ K: ‖u‖ < r

}
and

K(ζ, a, b) =
{
u ∈ K: a 6 ζ(u), ‖u‖ 6 b

}
,

K̊(ζ, a, b) =
{
u ∈ K: a < ζ(u), ‖u‖ 6 b

}
.

(4)

We make the following assumptions throughout this paper:

(H1) f ∈ C((0, 1) × (0,+∞), (−∞,+∞)), there exists a function k ∈ L1(0, 1),
k(t) > 0, such that f(t, u) > −k(t) for all t ∈ (0, 1), u > 0.

(H2) For any positive numbers r1 < r2, there exists a nonnegative continuous func-
tion γr1,r2 ∈ L1(0, 1) such that∣∣f(t, u)

∣∣ 6 γr1,r2(t), 0 < t < 1, r1t
α−1 6 u 6 r2,

with
1∫

0

(1− s)α−p−1γr1,r2(s) ds < +∞.

Lemma 4. (See [14].) Suppose that T : Kc → K is completely continuous and there
exist a concave positive functional ζ with ζ(u) 6 ‖u‖ (u ∈ K) and numbers b > a > 0
(b 6 c) satisfying the following conditions:

(i) {u ∈ K(ζ, a, b): ζ(u) > a} 6= ∅, and ζ(Tu) > a if u ∈ K(ζ, a, b);
(ii) Tu ∈ Kc if u ∈ K(ζ, a, c);

(iii) ζ(Tu) > a for all u ∈ K(ζ, a, c) with ‖Tu‖ > b.

Then i(T, K̊(ζ, a, c),Kc) = 1.

Lemma 5. (See [5].) Let K be a cone in Banach space X , and T : K → K be a com-
pletely continuous operator. Let a, b, c be three positive numbers with a < b < c.

(i) If ‖Tu‖ > ‖u‖ for u ∈ ∂(Ka) and ‖Tu‖ 6 ‖u‖ for u ∈ ∂(Kb), then

i(T, Kb \Ka, Kb) = 1,

(ii) If ‖Tu‖ > ‖u‖ for u ∈ ∂(Ka) and ‖Tu‖ < ‖u‖ for u ∈ ∂(Kb), then

i(T, Kb \Ka, Kc) = 1.
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3 Main result

Suppose that 0 < a∗ < b∗ < 1. In applications, a∗ and b∗ can be chosen according to the
properties of f(t, u). Denote σ∗ = mint∈[a∗,b∗] t

α−1. For any r, r1, r2 > 0 with r1 < r2,
define the height functions as follows:

ϕ̂(t, r) = max
{
f(t, u):

(
r − σ‖k‖1

)
tα−1 6 u 6 r

}
+ k(t),

ψ̂(t, r) = min
{
f(t, u):

(
r − σ‖k‖1

)
tα−1 6 u 6 r

}
+ k(t),

ϕ̂(t, r1, r2) = max
{
f(t, u):

(
r1 − σ‖k‖1

)
tα−1 6 u 6 r2

}
+ k(t),

ψ̂(t, r1, r2) = min
{
f(t, u):

(
r1 − σ‖k‖1

)
tα−1 6 u 6 r2

}
+ k(t).

Theorem 1. Suppose that (H1) and (H2) hold. In addition, there exist five positive num-
bers σ‖k‖1 < e1 < e2 < e3 < e4 6 e5 with e4 > e3σ

∗−1 satisfying

(A1)
∫ 1

0
J(s)ϕ̂(s, e2) ds < e2;

(A2)
∫ 1

0
J(s)ψ̂(s, e1) ds > e1;

(A3)
∫ 1

0
J(s)ϕ̂(s, e3, e5) ds 6 e5;

(A4)
∫ b∗
a∗
J(s)ψ̂(s, e3, e4) ds > σ∗−1e3.

Then, BVP (1) has at least three positive solutions û1, û2, û3 with e1 − σ‖k‖1 6 ‖û1‖ 6
e2, e3 − σ‖k‖1 6 ‖û2‖ 6 e5, e2 − σ‖k‖1 6 ‖û3‖ 6 e5 and

min
t∈[a∗,b∗]

û2(t) > e3 − σ‖k‖1, min
t∈[a∗,b∗]

û3(t) 6 e3.

Proof. First, consider the following modified approximating BVP (MABVP for short):

Dα
0+u(t) + f

(
t, χn(u− w)(t)

)
+ k(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dβ
0+(1) =

m∑
i=1

aiD
q
0+u(ξi),

where

χn(u) =

{
u, u > 1

n ,
1
n , u < 1

n .

Define operators Tn (n ∈ N+) as follows:

(Tnu)(t) =

1∫
0

G(t, s)
[
f
(
s, χn(u− w)(s)

)
+ k(s)

]
ds, 0 6 t 6 1, n ∈ N+.

In the sequel, we will give the proof by the following three steps.
(I) We show that for any σ‖k‖1 < r1 < r2 and sufficiently large n, operators Tn :

(Kr2 \Kr1)→ K is completely continuous.

Nonlinear Anal. Model. Control, 23(6):889–903
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The proof is as the same as the first part of Theorem 6 in [3], we omit it here. Thus,
for sufficiently large n, the same conclusion is valid for Tn : Ke5 \ Ke1 → K. Define
ζ(u) = mint∈[a∗,b∗] u(t) for any u ∈ K. In the following, K(ζ, e3, e4), K̊(ζ, e3, e4),
K(ζ, e3, e5) have the same meaning as those in (4).

(II) We demonstrate that for sufficiently large n, Tn has three fixed points. (See Fig. 1
for better comprehension.)

First, we are in position to show that for sufficiently large n,

i
(
Tn, K̊(ζ, e3, e5), Ke5

)
= 1. (5)

Set u0(t) ≡ (e3 + e4)/2. Then u0 ∈ K̊(ζ, e3, e4), which means that K̊(ζ, e3, e4) 6= ∅. If
u ∈ K(ζ, e3, e4), we have

e3 6 min
t∈[a∗,b∗]

u(t) 6 max
t∈[0,1]

u(t) = ‖u‖ 6 e4.

By the construction of cone K and Lemma 3 we know that 0 < (e3 − σ‖k‖1)tα−1 6
u(t)− w(t) 6 e4, t ∈ [0, 1], and(

e3 − σ‖k‖1
)
tα−1 6 max

{
u(t)− w(t),

1

n

}
6 e4, n > N1 =

[
1

e3

]
+ 1,

which means(
e3 − σ‖k‖1

)
tα−1 6 χn(u− w)(t) 6 e4, 0 < t < 1, n > N1. (6)

It follows from Lemma 2 and (A4) that

ζ(Tnu) = min
t∈[a∗,b∗]

(Tnu)(t) > min
t∈[a∗,b∗]

tα−1‖Tnu‖ = σ∗‖Tnu‖

= σ∗ max
t∈[0,1]

1∫
0

G(t, s)
[
f
(
s, χn(u− w)(s)

)
+ k(s)

]
ds

> σ∗ max
t∈[0,1]

tα−1
1∫

0

J(s)
[
f
(
s, χn(u− w)(s)

)
+ k(s)

]
ds

> σ∗
b∗∫
a∗

J(s)ψ̂(s, e3, e4) ds > e3.

If u ∈ K(ζ, e3, e5), then

e3 6 min
t∈[a∗,b∗]

u(t) 6 max
t∈[0,1]

u(t) = ‖u‖ 6 e5.

Hence, e3tα−1 6 u(t) 6 e5 for t ∈ [0, 1]. Similar to (6), one has(
e3 − σ‖k‖1

)
tα−1 6 χn(u− w)(t) 6 e5, 0 < t < 1, n > N1. (7)

https://www.mii.vu.lt/NA
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Figure 1. Illustration of proof.

This, together with Lemma 2 and (A3), means that

‖Tnu‖ = max
t∈[0,1]

1∫
0

G(t, s)
[
f
(
s, χn(u− w)(s)

)
+ k(s)

]
ds

6

1∫
0

J(s)
[
f
(
s, χn(u− w)(s)

)
+ k(s)

]
ds

6

1∫
0

J(s)ϕ̂(s, e3, e5) ds 6 e5, n > N1. (8)

Consequently, Tnu ∈ Ke5 .
For u ∈ K(ζ, e3, e5) with ‖Tnu‖ > e4, noticing that e4 > e3σ

∗−1, we have ‖Tnu‖ >
e3σ
∗−1. Therefore,

ζ(Tnu) = min
t∈[a∗,b∗]

(Tnu)(t) > σ∗‖Tnu‖ > σ∗e3σ
∗−1 = e3.

Thus, for n > N1, we know from Lemma 4 that (5) holds.
If u ∈ ∂(Ke5), then ‖u‖ = e5 and e3tα−1 6 e5t

α−1 6 u(t) 6 e5, t ∈ [0, 1]. Thus,
(7) holds. By (7), (A3) and Lemma 2, similar to the proof of (8), for any n > N1, one
gets

‖Tnu‖ = max
t∈[0,1]

1∫
0

G(t, s)
[
f
(
s, χn(u− w)(s)

)
+ k(s)

]
ds

6

1∫
0

J(s)
[
f
(
s, χn(u− w)(s)

)
+ k(s)

]
ds

6

1∫
0

J(s)ϕ̂(s, e3, e5) ds 6 e5 ∀u ∈ ∂(Ke5). (9)

Nonlinear Anal. Model. Control, 23(6):889–903
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If u ∈ ∂(Ke2), then ‖u‖ = e2 and e2tα−1 6 u(t) 6 e2, t ∈ [0, 1]. Thus, we have
0 < (e2 − σ‖k‖1)tα−1 6 u(t)− w(t) 6 e2 for t ∈ [0, 1] and

(
e2 − σ‖k‖1

)
tα−1 6 max

{
u(t)− w(t),

1

n

}
6 e2, n > N2 =

[
1

e2

]
+ 1,

i.e., (
e2 − σ‖k‖1

)
tα−1 6 χn(u− w)(t) 6 e2, 0 < t < 1, n > N2.

By (A1) and Lemma 2, for any n > N2, one has

‖Tnu‖ = max
t∈[0,1]

1∫
0

G(t, s)
[
f
(
s, χn(u− w)(s)

)
+ k(s)

]
ds

6

1∫
0

J(s)ϕ̂(s, e2) ds < e2 ∀u ∈ ∂(Ke2). (10)

If u∈ ∂(Ke1), then e1tα−16u(t)6 e1, t∈ [0, 1]. Thus, we have 0< (e1−σ‖k‖1)×
tα−1 6 u(t)− w(t) 6 e1 for t ∈ [0, 1] and

(
e1 − σ‖k‖1

)
tα−1 6 max

{
u(t)− w(t),

1

n

}
6 e1, n > N3 =

[
1

e1

]
+ 1,

i.e., (
e1 − σ‖k‖1

)
tα−1 6 χn(u− w)(t) 6 e1, 0 < t < 1, n > N3.

By (A2) and Lemma 2, for any n > N3, one gets

‖Tnu‖ = max
t∈[0,1]

1∫
0

G(t, s)
[
f
(
s, χn(u− w)(s)

)
+ k(s)

]
ds

> max
t∈[0,1]

tα−1
1∫

0

J(s)
[
f
(
s, χn(u− w)(s)

)
+ k(s)

]
ds

>

1∫
0

J(s)ψ̂(s, e1) ds > e1 ∀u ∈ ∂(Ke1). (11)

By (9), (10), (11) and Lemma 5, for any n > N = max{N1, N2, N3}, we both have
(5) and the following two equalities:

i(Tn, Ke5 \Ke1 , Ke5) = 1, i(Tn, Ke2 \Ke1 , Ke5) = 1. (12)

It is clear, (A1) implies that Tn has no fixed point on ∂(Ke2). In addition, for u ∈
K(ζ, e3, e4), we have that ζ(Tnu) > e3, and for u ∈ K(ζ, e3, e5) with ‖Tnu‖ > e4,

https://www.mii.vu.lt/NA
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we also have that ζ(Tnu) > e3. This is to say, Tn has no fixed point on K(ζ, e3, e5) \
K̊(ζ, e3, e5). Thus, for n > N , it follows from (5), (12) and the addition property of the
topological degree that

i
(
Tn, Ke5 \

(
K(ζ, e3, e5) ∪Ke2

)
, Ke5

)
= i(Tn, Ke5 \Ke1 , Ke5)− i(Tn, Ke2 \Ke1 , Ke5)

− i
(
Tn, K̊(ζ, e3, e5), Ke5

)
= −1.

As a consequence, for n > N , Tn has at least three fixed points u∗1n ∈ Ke2 \ Ke1 ,
u∗2n ∈ K̊(ζ, e3, e5), u∗3n ∈ Ke5 \ (K(ζ, e3, e5) ∪ Ke2) satisfying e1 6 ‖u∗1n‖ < e2,
e3 6 ‖u∗2n‖ 6 e5, e2 6 ‖u∗3n‖ < e5 with

min
t∈[a∗,b∗]

u∗2n(t) > e3, min
t∈[a∗,b∗]

u∗3n(t) < e3.

(III) We prove that BVP (1) has triple positive solutions.
Taking into account the construction of the cone K, one has that, for n > N and

i = 1, 2, 3,

u∗in(t) > ‖u∗in‖tα−1 > e1t
α−1 > σ‖k‖1tα−1 > w(t), t ∈ [0, 1], (13)

and

u∗in(t) =

1∫
0

G(t, s)
[
f
(
s, χn(u∗in − w)(s)

)
+ k(s)

]
ds, t ∈ [0, 1]. (14)

It is easy to know from (H2) that {u∗in: n > N} (i = 1, 2, 3) are bounded and equicon-
tinuous on [0, 1]. Thus, Arzelà–Ascoli theorem implies that there exist a subsequence N0

of N and corresponding continuous functions u∗i (i = 1, 2, 3) such that u∗in converges to
u∗i (i = 1, 2, 3) uniformly on [0, 1] as n → ∞ through N0. Let n → ∞ on both sides
of (14), one has

u∗i (t) =

1∫
0

G(t, s)
[
f
(
s, χ(u∗i − w)(s)

)
+ k(s)

]
ds, t ∈ [0, 1], i = 1, 2, 3, (15)

and
e1 6 ‖u∗1‖ 6 e2, e3 6 ‖u∗2‖ 6 e5, e2 6 ‖u∗3‖ 6 e5 (16)

with mint∈[a∗,b∗] u
∗
2(t) > e3, mint∈[a∗,b∗] u

∗
3(t) 6 e3. It can be easily seen from (13)

that u∗i (t) > tα−1‖u∗i ‖ > e1t
α−1 > σ‖k‖1tα−1 > w(t) (i = 1, 2, 3). Let ûi(t) =

u∗i (t) − w(t), then we know from (15) that ûi(t) (i = 1, 2, 3) are positive solutions for
BVP (1). This, together with (16) and Lemma 3, implies that e1 − σ‖k‖1 6 ‖û1‖ 6
e2, e3 − σ‖k‖1 6 ‖û2‖ 6 e5, e2 − σ‖k‖1 6 ‖û3‖ 6 e5 and mint∈[a∗,b∗] û2(t) >
e3 − σ‖k‖1, mint∈[a∗,b∗] û3(t) 6 e3.

Nonlinear Anal. Model. Control, 23(6):889–903
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4 An example

Consider the following singular fractional differential equations:

D
11/3
0+ u(t) + f

(
t, u(t)

)
− 1

104 3
√
t

= 0, 0 < t < 1,

u(0) = u′(0) = u′′(0) = 0,

D
3/2
0+ u(1) =

1

2
D

4/3
0+ u

(
1

4

)
+

2

3
D

4/3
0+ u

(
1

2

)
+

1

4
D

4/3
0+ u

(
4

5

)
,

(17)

where f(t, u(t)) = θ(u(t))/(30 3
√
t(1− t)2) and

θ(u) =


u1/3 + u−1/5, 0 < u 6 1,

u8 + 1, 1 < u 6 5,

u1/3 + 390626− 51/3, u > 5.

Clearly, α = 11/3, n = 4, p = 3/2, q = 4/3, m = 3, ξ1 = 1/4, ξ2 = 1/2, ξ3 = 4/5,
a1 = 1/2, a2 = 2/3, a3 = 1/4. It is easy to see that (H1) holds for k(t) = 1/(104 3

√
t)

and (H2) is valid for γr1,r2(t) = (1/(30 3
√
t(1− t)2))[r2

1/3 +(r1t
8/3)−1/5 +r82 +r

1/3
2 +

390627 − 51/3]. After direct calculation, we have α − p − 1 = 7/6, α − q − 1 = 4/3,
Γ(α) = 4.0122, Γ(α − p) = 1.0823, Γ(α − q) = 1.1906,

∑3
i=1 aiξ

α−q−1
i = 0.5290,

∆ = 1.9244, σ = 0.4801, ‖k‖1 = 1.5 · 10−4, σ‖k‖1 = 7.202 · 10−5. Take a∗ = 2/3,
b∗ = 1, e1 = 10−3, e2 = 1/2, e3 = 5, e4 = 20, e5 = 105. Then σ∗ = (2/3)8/3 =
0.3392, σ∗−1 = 2.9481, e4 > σ∗−1e3. We have

1∫
0

J(s)ϕ̂(s, e2) ds

6

1∫
0

[
(1− s)α−p−1(1− (1− s)p)

Γ(α)
+

∑m
i=1 aiξ

α−q−1
i (1− s)α−p−1

∆Γ(α− q)

]

× 1

30 3
√
s(1− s)2

max
{(
u1/3 + u−1/5

)
:
(
e2 − σ‖k‖1

)
sα−1 6 u 6 e2

}
ds

=

1∫
0

[
(1− s)7/6(1− (1− s)3/2)

Γ(α)
+

∑3
i=1 aiξ

4/3
i

∆Γ(α− q)
(1− s)7/6

]

× 1

30 3
√
s(1− s)2

max
{(
u1/3 + u−1/5

)
: 0.4999s8/3 6 u 6 2−1

}
ds

<
1

30

1∫
0

[0.2492(1− s)7/6 − 0.2492(1− s)8/3 + 0.2309(1− s)7/6]

s1/3(1− s)2/3

×
[
2−1/3 +

(
0.4999s8/3

)−1/5]
ds
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<
1

30

1∫
0

[0.4801(1− s)7/6 − 0.2492(1− s)8/3](0.7937 + 1.1487s−8/15)

s1/3(1− s)2/3
ds

=
1

30

[
0.4801 · 0.7937

1∫
0

(1− s)1/2

s1/3
ds− 0.2492 · 0.7937

1∫
0

(1− s)2

s1/3
ds

+ 0.4801 · 1.1487

1∫
0

(1− s)1/2

s13/15
ds− 0.2492 · 1.1487

1∫
0

(1− s)2

s13/15
ds

]

=
1

30
(0.4801 · 0.7937 · 1.1088− 0.2492 · 0.7937 · 0.6750

+ 0.4801 · 1.1487 · 6.9506− 0.2492 · 1.1487 · 6.2040)

= 0.0782 <
1

2
= e2.

Hence, (A1) is satisfied. By Lemma 2 we have

1∫
0

J(s)ψ̂(s, e1) ds

=

1∫
0

[
(1−s)α−p−1(1− (1−s)p)

Γ(α)
+

∑m
i=1 aiξ

α−q−1
i (1−s)α−p−1

∆Γ(α− q)

]
ψ̂(s, e1) ds

=

1∫
0

[
(1− s)7/6(1− (1− s)3/2)

Γ(α)
+

∑3
i=1 aiξ

4/3
i

∆Γ(α− q)
(1− s)7/6

]
1

30 3
√
s(1− s)2

×min
{(
u1/3 + u−1/5

)
: 9.2798 · s8/3 · 10−4 6 u 6 10−3

}
ds

=
1

30

1∫
0

[0.2492(1− s)7/6 − 0.2492(1− s)8/3 + 0.2309 · (1− s)7/6]

s1/3(1− s)2/3

×
[(

9.2798 · s8/3 · 10−4
)1/3

+
(
10−3

)−1/5]
ds

>
1

30

(
0.4801

1∫
0

(1− s)1/2

s1/3
ds− 0.2492

1∫
0

(1− s)2

s1/3
ds

)
· 103/5

=
1

30
(0.4801 · 1.1088− 0.2492 · 0.6750) · 3.9811

= 0.0483 >
1

103
= e1.
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Thus, (A2) is verified. On the other hand,
1∫

0

J(s)ϕ̂(s, e3, e5) ds

=

1∫
0

[
(1− s)α−p−1(1− (1− s)p)

Γ(α)
+

∑m
i=1 aiξ

α−q−1
i (1− s)α−p−1

∆Γ(α− q)

]
× 1

30 3
√
s(1− s)2

(
105/3 + 390626− 51/3

)
ds

<
1

30

1∫
0

[0.4801(1− s)7/6 − 0.2492(1− s)8/3]

s1/3(1− s)2/3
ds · 3.9067 · 105

= 4.7418 · 103 < 105 = e5.

As a result, (A3) is valid. We also have
1∫

2/3

J(s)ψ̂(s, e3, e4) ds

=

1∫
2/3

[
(1− s)7/6(1− (1− s)3/2)

Γ(α)
+

∑3
i=1 aiξ

4/3
i

∆Γ(α− q)
(1− s)7/6

]
ψ̂(s, e3, e4) ds

>

1∫
2/3

[
(1− s)7/6(1− (1− s)3/2)

Γ(α)
+

∑3
i=1 aiξ

4/3
i

∆Γ(α− q)
(1− s)7/6

]

× 1

30 3
√
s(1− s)2

(
58 + 1

)
ds

>
1

30

1∫
2/3

∑3
i=1 aiξ

4/3
i

∆Γ(α− q)
(1− s)7/6s−1/3(1− s)−2/3 ds

>
1

30
· 390626

1∫
2/3

∑3
i=1 aiξ

4/3
i

∆Γ(α− q)
(1− s)7/6(1− s)−2/3 ds

=
1

30
· 390626 · 0.2309

1∫
2/3

(1− s)1/2 ds

=
1

30
· 390626 · 0.2309 · 0.1283

= 385.7363 > 14.7405 = σ−1e3.
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This is to say that (A4) is checked. Thus, Theorem 1 guarantees that BVP (17) has
at least three positive solutions û1, û2, û3 satisfying 9.2798 · 10−4 6 ‖û1‖ 6 1/2,
4.9999 6 ‖û2‖ 6 105, 0.4999 6 ‖û3‖ 6 105 with mint∈[a∗,b∗] û2(t) > 4.9999,
mint∈[a∗,b∗] û3(t) 6 5.

Acknowledgment. The authors would like to thank the referee for his/her valuable
comments and suggestions.
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