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Abstract. This paper reports the investigation of eigenvalue problems for two classes of nonlinear
fractional differential equations with generalized p-Laplacian operator involving both Riemann–
Liouville fractional derivatives and Caputo fractional derivatives. By means of fixed point theorem
on cones, some sufficient conditions are derived for the existence, multiplicity and nonexistence
of positive solutions to the boundary value problems. Finally, an example is presented to further
verify the correctness of the main theoretical results and illustrate the wide range of their potential
applications.

Keywords: fractional differential equation, two-point boundary value condition, positive solution,
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1 Introduction

Eigenvalue problem is a class of homogeneous boundary value problems for differential
equations with parameters. In the last few years, fractional differential equations have
gained attentions due to their numerous applications in various aspects of science and
technology. Eigenvalue problems and their applications are gradually beginning to be
studied for fractional differential equations (see, e.g., [7–9,11,12,16,22]). In [22], Zhao et
al. considered eigenvalue intervals of the following boundary value problem for nonlinear
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fractional differential equations:
CDα

0+u(t) = λf
(
u(t)

)
, 0 < t < 1,

u(0) + u′(0) = 0, u(1) + u′(1) = 0,

where 1 < α 6 2, CDα
0+ is the Caputo fractional derivative. The authors studied the

existence, multiplicity and nonexistence of positive solutions. In [8], Eloe et al. used the
theory of u0-positive operators to study boundary value problem for a class of linear
fractional differential equations

Dα
0+u(t) = λh(t)u(t), 0 < t < 1,

where 1 < α 6 2. The existence and a comparison theorem of smallest positive eigenval-
ues were obtained. In [7], criteria were established to characterize the conjugate point to
a kind of conjugate boundary value problems for linear fractional differential equations.
In [12], eigenvalue comparison results of boundary value problems for linear fractional
differential equations with the Caputo fractional derivative were obtained. In [9], Eloe et
al. established the existence of smallest eigenvalues for the linear fractional differential
equations with right focal boundary conditions.

In addition, p-Laplacian operator, which is a nonlinear generalization of the Laplace
operator, is widely used in analyzing mathematical models about physical phenomena
and many other related fields. For instance, when studying the steady-state turbulent flow
with reaction, Bobisud (cf. [2]) introduced the differential equation(

ϕp
(
u′(t)

))′
= f

(
t, u(t), u′(t)

)
with an operator ϕp(x) = |x|p−1x. This problem appears in the study of non-Newtonian
fluids. It yields the usual problem for diffusion in a porous medium when p = 1, i.e.,
ϕp(x) = x. In 2003, Wang introduced a general assumption for this kind of operators:

(H1) φ : R → R is an odd and increasing homeomorphism, and there exist two
increasing homeomorphisms ψ1, ψ2 : R+ → R+ such that ψ1(x)φ(y) 6
φ(xy) 6 ψ2(x)φ(y) for all x, y > 0.

For φ satisfying (H1), we call it a generalized p-Laplacian operator (cf. [19, 20]), which
is satisfied by two important cases φ(x) = x and φ(x) = |x|p−2x, p > 1.

The research of boundary value problems for fractional differential equations with
(generalized) p-Laplacian operator has begun in recent years. Lots of important results
can be seen in [3, 4, 11, 13, 16–18] and references therein. In [18], Liu et al. studied
a class of integral boundary value problems for nonlinear fractional differential equations.
In [11], Han et al. investigated the existence of positive solutions to the following eigen-
value problem for nonlinear fractional differential equation with generalized p-Laplacian
operator:

Dβ
0+

(
φ
(
Dα

0+u(t)
))

= λf
(
u(t)

)
, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0,

φ
(
Dα

0+u(0)
)

=
(
φ
(
Dα

0+u(1)
))′

= 0,
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where 2 < α 6 3, 1 < β 6 2, Dα
0+ and Dβ

0+ are the standard Riemann–Liouville
fractional derivatives. By using a fixed-point theorem on cones, several existence and
nonexistence results of positive solutions in terms of different eigenvalue intervals are ob-
tained. In [16], Li et al. studied the eigenvalue problems for a class of nonlinear fractional
q-difference equations with generalized p-Laplacian operator. In [17], Liu et al. consid-
ered four-point boundary value problem for autonomous fractional differential equation
with mixed fractional derivatives

Dα
0+

(
ϕp
(
CDβ

0+u(t)
))

= f
(
t, u(t),CDβ

0+u(t)
)
, 0 < t < 1,

CDβ
0+u(0) = u′(0) = 0,

u(1) = r1u(η), CDβ
0+u
′(1) = CDβ

0+r2u(ξ),

where 1 < α, β 6 2 and r1, r2 > 0.
Since the fractional calculus, eigenvalue problem and p-Laplacian operator arise from

many applied fields, it is worth studying the eigenvalue problems for fractional differential
equations with p-Laplacian operator. However, to the best of our knowledge, there are
relatively few results on this kind of problems with generalized p-Laplacian operator,
and no paper is concerned with this kind of problems with both generalized p-Laplacian
operator and mixed fractional derivatives. In this context, our purpose is to consider the
following two kinds of eigenvalue problems:

CDβ
0+

(
φ
(
Dα

0+u(t)
))

= λa(t)f
(
t, u(t)

)
, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) = η,

φ
(
Dα

0+u(0)
)

=
(
φ
(
Dα

0+u(0)
))′

= 0

(1)

and
CDβ

0+

(
φ
(
Dα

0+v(t)
))

= λa(t)f
(
t, v(t) + ϕ(t)

)
, 0 < t < 1,

v(0) = v′(0) = v′(1) = 0,

φ
(
Dα

0+v(0)
)

=
(
φ
(
Dα

0+v(0)
))′

= 0,

(2)

here ϕ(t) = η/(α− 1) · tα−1 is the unique solution to

Dα
0+ϕ(t) = 0, 0 < t < 1,

ϕ(0) = ϕ′(0) = 0, ϕ(1) = η,

where 2 < α 6 3, 1 < β 6 2, Dα
0+ is the standard Riemann–Liouville fractional

derivative, CDβ
0+ is the standard Caputo fractional derivative and λ, η > 0. We always

assume that:

(H2) a : [0, 1] → [0,+∞) is a continuing real-valued function and differentiable on
(0, 1);

(H3) f : [0, 1]× R→ [0,+∞) is continuous and satisfied with the following condi-
tion: there exists ` > 0 such that for all t1, t2 ∈ [0, 1] and u1, u2 ∈ R,∣∣f(t2, u2)− f(t1, u1)

∣∣ 6 `max
{
|t2 − t1|, |u2 − u1|

}
.

https://www.mii.vu.lt/NA



Eigenvalue problems for FDEs with mixed derivatives and generalized p-Laplacian 833

Motivated by [11,16,17,22], we utilize Guo–Krasnosel’skii fixed point theorem to obtain
the existence, multiplicity and nonexistence of solutions to problems (1) and (2).

Compared with the aforementioned references, problems considered here are novel.
Specifically, the objects in this paper not only are eigenvalue problems with generalized p-
Laplacian operator, but also involve two different types of derivatives, Riemann–Liouville
type and Caputo type. This work fills the gap in the literature by discussing the existence,
multiplicity and nonexistence of solutions to this kind of problems.

The remainder of the paper is organized as follows. In Section 2, some basic defini-
tions and lemmas are collected and derived. In Section 3, conditions that boundary value
problems transform into integral equations are discussed carefully; and then, the exis-
tence, multiplicity and nonexistence of solutions to problems (1) and (2) are investigated.
In Section 4, an example is given to illustrate our main results. In Section 5, summary
and prospect for our present work are made.

2 Preliminaries

For the convenience of the reader, we present here some necessary knowledge, which will
be used in the following sections. More detailed information can be found in [5, 14].

Definition 1. The Riemann–Liouville fractional integral of order α > 0 of a function
y : (0,+∞)→ R is given by

Iα0+y(t) =
1

Γ(α)

t∫
0

(t− s)α−1y(s) ds,

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2. The Riemann–Liouville fractional derivative of order α > 0 of a continuous
function y : (0,+∞)→ R is given by

Dα
0+y(t) =

1

Γ(n− α)

(
d

dt

)n t∫
0

(t− s)n−α−1y(s) ds,

provided that the right-hand side is pointwise defined on (0,+∞), where n = dαe and
dαe denotes the ceiling function of the number α.

Lemma 1. (See [1, Lemma 2.1].) Let α > 0. If we assume y ∈ C(0, 1) ∩ L(0, 1), then
the fractional differential equation

Dα
0+y(t) = 0

has y(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, ci ∈ R, i = 1, 2, . . . , n, as a general

solution.
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Lemma 2. (See [1, Lemma 2.2].) Assume that y ∈ C(0, 1) ∩ L(0, 1) with a fractional
derivative of order α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+Dα
0+y(t) = y(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n

for some ci ∈ R, i = 1, 2, . . . , n.

Definition 3. The Caputo fractional derivative of order α > 0 of a continuous function
y : (0,+∞)→ R is given by

CDα
0+y(t) = In−α0+ y(n)(t) =

1

Γ(n− α)

t∫
0

(t− s)n−α−1y(n)(s) ds,

provided that the right-hand side is pointwise defined on (0,+∞), where n = dαe.

For n ∈ N+ := {1, 2, . . .}, ACn[a, b] denotes the space of real-valued functions
f : [a, b] → R, which have continuous derivatives up to order n − 1 on [a, b] such that
f (n−1) ∈ AC[a, b]:

ACn[a, b] =
{
f : [a, b]→ R and f (n−1) ∈ AC[a, b]

}
,

where AC[a, b] is the space of functions f , which are absolutely continuous on [a, b].

Lemma 3. (See [22, Lemma 2.1].) Let α > 0. If we assume y ∈ ACn[0, 1], then the
fractional differential equation

CDα
0+y(t) = 0

has y(t) = c0 + c1t+ · · ·+ cn−1t
n−1, ci ∈ R, i = 0, 2, . . . , n− 1, as a general solution.

Lemma 4. (See [22, Lemma 2.2].) Let α > 0. Assume that y ∈ ACn[0, 1]. Then

Iα0+
CDα

0+y(t) = y(t) + c0 + c1t+ · · ·+ cn−1t
n−1

for some ci ∈ R, i = 0, 2, . . . , n− 1.

Lemma 5. Given h ∈ AC[0, 1]. Then the boundary value problem

CDβ
0+

(
φ
(
Dα

0+u(t)
))

= h(t), 0 < t < 1,

u(0) = u′(0) = 0, u′(1) = 0,

φ
(
Dα

0+u(0)
)

=
(
φ
(
Dα

0+u(0)
))′

= 0,

(3)

where 2 < α 6 3, 1 < β 6 2, has a unique solution, which is expressed by

u(t) =

1∫
0

G(t, s)φ−1
(
Iβ0+h(s)

)
ds, (4)

https://www.mii.vu.lt/NA
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where

G(t, s) =
1

Γ(α)

{
tα−1(1− s)α−2 − (t− s)α−1, 0 6 s 6 t 6 1,

tα−1(1− s)α−2, 0 6 t 6 s 6 1,
(5)

is called the Green’s function of problems (3); operator φ−1 denotes the inverse of gen-
eralized p-Laplacian operator φ.

Proof. Let w = φ(Dα
0+u) ∈ AC2[0, 1]. Then from problem (3) one gets

CDβ
0+w(t) = h(t), 0 < t < 1,

w(0) = w′(0) = 0.
(6)

For the sake of clarity, the proof can subsequently be separated into two steps.

Step 1. Boundary value problem (6) is equivalent to w(t) = Iβ0+h(t). From Lemma 4
and 1 < β 6 2 we have

w(t) = Iβ0+h(t) + c0 + c1t.

Noticing w(0) = w′(0) = 0, we get c0 = c1 = 0. It follows that

w(t) = Iβ0+h(t). (7)

Conversely, due to h ∈ AC[0, 1] ⊂ L∞(0, 1), we know that
∫ 1

0
(1−s)β−2h(s) ds < +∞.

So,

w′(t) = Iβ−1
0+ h(t) =

1

Γ(β − 1)

t∫
0

(t− s)β−2h(s) ds

is well defined on [0, 1]. According to [15, Lemma 2.3(i)] and in view of h ∈ AC[0, 1],
we get w′ = Iβ−1

0+ h ∈ AC[0, 1], which means that w ∈ AC2[0, 1]. Hence, w satisfies
boundary value problem (6).

Step 2. Boundary value problem (3) is equivalent to equation (4). Taking action from
both sides of equation (7) by φ−1, we have Dα

0+u(t) = φ−1(w(t)) = φ−1(Iβ0+h(t)).
Now we consider boundary value problem

Dα
0+u(t) = φ−1

(
Iβ0+h(t)

)
,

u(0) = u′(0) = u′(1) = 0.

From Lemma 2 and 2 < α 6 3 we have

u(t) = Iα0+

(
φ−1

(
Iβ0+h(t)

))
+ c1t

α−1 + c2t
α−2 + c3t

α−3.

Nonlinear Anal. Model. Control, 23(6):830–850
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Noticing u(0) = u′(0) = u′(1) = 0, we get c1 = −
∫ 1

0
(1−s)α−2φ−1(Iβ0+h(s)) ds/Γ(α)

and c2 = c3 = 0. Therefore,

u(t) =
1

Γ(α)

t∫
0

(t− s)α−1φ−1
(
Iβ0+h(s)

)
ds−

1∫
0

tα−1(1− s)α−2

Γ(α)
φ−1

(
Iβ0+h(s)

)
ds

=

1∫
0

G(t, s)φ−1
(
Iβ0+h(s)

)
ds.

Conversely, equation (4) obviously satisfies boundary value problem (3). The proof is
completed.

Lemma 6. (See [6, Lemma 2.8].) Function G defined as (5) satisfies the following prop-
erties:

(i) G(t, s) > 0, G(1, s) > G(t, s) for 0 6 t, s 6 1.
(ii) G(t, s) > k(t)G(1, s) for 0 6 t, s 6 1, where k(t) = tα−1.

Lemma 7. Boundary value problem (2) is equivalent to boundary value problem (1), i.e.,
if v(t) is a solution to (2), then u(t) = v(t) + ϕ(t) is a solution to (1) and vice versa.

Proof. Since Dα
0+u(t) = Dα

0+(v(t) + ϕ(t)) = Dα
0+v(t) + Dα

0+ϕ(t) = Dα
0+v(t), then

φ(Dα
0+u(t)) = φ(Dα

0+v(t)).
Let v(t) be a solution to problem (2). Then we have

CDβ
0+

(
φ
(
Dα

0+u(t)
))

=CDβ
0+

(
φ
(
Dα

0+v(t)
))

= λa(t)f
(
t, v(t) + ϕ(t)

)
= λa(t)f

(
t, u(t)

)
.

Consider the boundary condition. Since u(t) = v(t) + ϕ(t), we have

u(0) = v(0) + ϕ(0) = 0, u′(0) = v′(0) + ϕ′(0) = 0,

u′(1) = v′(1) + ϕ′(0) = η,

φ
(
Dα

0+u(0)
)

= φ
(
Dα

0+v(0)
)

= 0 and
(
φ
(
Dα

0+u(0)
))′

=
(
φ
(
Dα

0+v(0)
))′

= 0.

On the contrary, let u(t) be a solution to (1). Then we have

CDβ
0+

(
φ
(
Dα

0+v(t)
))

=CDβ
0+

(
φ
(
Dα

0+u(t)
))

= λa(t)f
(
t, u(t)

)
= λa(t)f

(
t, v(t) + ϕ(t)

)
.

Consider the boundary condition. Since v(t) = u(t)− ϕ(t), we have

v(0) = u(0)− ϕ(0) = 0, v′(0) = u′(0)− ϕ′(0) = 0,

v′(1) = u′(1)− ϕ′(0) = η,

φ
(
Dα

0+v(0)
)

= φ
(
Dα

0+u(0)
)

= 0 and
(
φ
(
Dα

0+v(0)
))′

=
(
φ
(
Dα

0+u(0)
))′

= 0.

The proof is completed.
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Lemma 8. (See [19, Lemma 2.6].) Assume that (H1) holds. Then, for all x, y > 0,
ψ−1

2 (x)y 6 φ−1(xφ(y)) 6 ψ−1
1 (x)y.

Lemma 9 [Guo–Krasnosel’skii fixed point theorem]. (See [10, Thm. 2.6].) Let Ω1 and
Ω2 be two bounded open sets in Banach space E such that θ ∈ Ω1 and Ω1 ⊂ Ω2. Let
operator A : P ∩ (Ω2 \ Ω1) → P be completely continuous, where θ denotes the zero
element of E, and P is a cone of E. Suppose that one of the two conditions:

(i) ‖Ax‖ 6 ‖x‖ for all x ∈ P ∩ ∂Ω1 and ‖Ax‖ > ‖x‖ for all x ∈ P ∩ ∂Ω2;
(ii) ‖Ax‖ > ‖x‖ for all x ∈ P ∩ ∂Ω1 and ‖Ax‖ 6 ‖x‖ for all x ∈ P ∩ ∂Ω2.

Then A has at least one fixed point in P ∩ (Ω2 \Ω1).

3 Main results

To begin with, we establish an important lemma, which transforms boundary value prob-
lem (2) into a certain integral equation. It is necessary to discuss relations between the so-
lutions to differential equations and the solutions to the corresponding integral equations
because the continuity assumptions on nonlinearities used previously are not sufficient
when it comes to Caputo fractional derivative. However, few people pay enough attention
to this issue.

Lemma 10. Suppose that conditions (H1)–(H3) hold. Function v is a solution to bound-
ary value problem (2) if v is a continuous solution to integral equation

v(t) =

1∫
0

G(t, s)φ−1
(
λIβ0+a(s)f

(
s, v(s) + ϕ(s)

))
ds, t ∈ [0, 1]. (8)

Proof. Assume that v is a continuous solution to (8) on [0, 1]. Let y(s) = a(s)f(s, v(s)+
ϕ(s)) for s ∈ [0, 1]. From conditions (H2) and (H3) we know that y ∈ AC[0, 1]. In fact,
from hypothesis (H2) there exists

ξ1 ∈ J :=
(
min{s1, s2}, max{s1, s2}

)
⊆ [0, 1]

such that a(s2) − a(s1) = a′(ξ1)(s2 − s1) for any s1, s2 ∈ [0, 1]. Similarly, there exists
ξ3 ∈ J such that ϕ(s2)−ϕ(s1) = (η/(α− 1))(sα−1

2 − sα−1
1 ) = ηξα−2

3 (s2− s1) for any
s1, s2 ∈ [0, 1]. From the hypothesis that v is continuous on [0, 1] we know v is bounded
on [0, 1], which is follows that f(t, v(t) + ϕ(t)) is bounded for all t ∈ [0, 1]. So, noticing
2 < α 6 3, 1 < β 6 2 and according to Lemma 8, we get

∣∣v′(t)∣∣ =

∣∣∣∣∣
t∫

0

(t− s)α−2

Γ(α− 1)
φ−1

(
Iβ0+y(s)

)
ds−

1∫
0

tα−2(1− s)α−2

Γ(α− 1)
φ−1

(
Iβ0+y(s)

)
ds

∣∣∣∣∣
6

2

Γ(α− 1)

1∫
0

φ−1
(
Iβ0+a(s)f

(
s, v(s) + ϕ(s)

))
ds

Nonlinear Anal. Model. Control, 23(6):830–850
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6
2

Γ(α− 1)

1∫
0

φ−1

(
Ma

Γ(β)

s∫
0

f
(
τ, v(τ) + ϕ(τ)

)
dτ

)
ds

6
2

Γ(α− 1)

1∫
0

φ−1

(
MaMf

Γ(β)

)
ds 6 +∞

for any t ∈ [0, 1], where Ma := maxt∈[0,1] a(t) and Mf := maxt∈[0,1] f(t, v(t) + ϕ(t)).
Hence, there exists ξ2 ∈ J such that v(s2) − v(s1) = v′(ξ2)(s2 − s1) for any s1, s2 ∈
[0, 1]. These, together with hypothesis (H3), imply that for s1, s2 ∈ [0, 1],∣∣y(s2)− y(s1)

∣∣
6
∣∣a(s2)− a(s1)

∣∣f(s2, v(s2) + ϕ(s2)
)

+ a(s1)
∣∣f(s2, v(s2) + ϕ(s2)

)
− f

(
s1, v(s1) + ϕ(s1)

)∣∣
6
∣∣a(s2)− a(s1)

∣∣f(s2, v(s2) + ϕ(s2)
)

+ `a(s1) max
{
|s2 − s1|,

∣∣v(s2)− v(s1)
∣∣+
∣∣ϕ(s2)− ϕ(s1)

∣∣}
=
[
f
(
s2, v(s2) + ϕ(s2)

)∣∣a′(ξ1)
∣∣

+ `a(s1) max
{

1,
∣∣v′(ξ2)

∣∣+ ηξα−2
3

}]
· |s2 − s1|

6
[
Mf

∣∣a′(ξ1)
∣∣+ `Ma max

{
1, |v′(ξ2)|+ ηξα−2

3

}]
· |s2 − s1|.

It follows that y ∈ AC[0, 1].
Set w = φ(Dα

0+u) ∈ AC2[0, 1]. Then from problem (2) one gets

CDβ
0+w(t) = λa(t)f

(
t, v(t) + ϕ(t)

)
, 0 < t < 1,

w(0) = w′(0) = 0.
(9)

From condition (H3) an argument similar to Step 1 in the proof of Lemma 5 shows that

w(t) = λIβ0+y(t) =
λ

Γ(β)

t∫
0

(t− s)β−1y(s) ds

and

w′(t) = λIβ−1
0+ y(t) =

λ

Γ(β − 1)

t∫
0

(t− s)β−2y(s) ds

are well defined on [0, 1]. According to [15, Lemma 2.3(i)] and in view of y ∈ AC[0, 1]
again, we get w′ = Iβ−1

0+ y ∈ AC[0, 1], which means that w ∈ AC2[0, 1]. Hence,
w satisfies boundary value problem (9). The remainder of the argument is analogous to
Step 2 in the proof of Lemma 5 and so is omitted. The proof is completed.
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Throughout the rest of this part, Banach space is taken as E = C[0, 1] equipped with
the maximum norm ‖x‖ = maxt∈[0,1] |x(t)|. Set P = {x ∈ E: x(t) > k(t)‖x‖ for all
t ∈ [0, 1]}. Then P is a cone in E. From Lemma 10 define an operator Tλ : P → E as

(Tλv)(t) =

1∫
0

G(t, s)φ−1
(
λIβ0+a(s)f

(
s, v(s) + ϕ(s)

))
ds, t ∈ [0, 1].

Lemma 11. Suppose that conditions (H1)–(H3) hold. Then the operator Tλ : P → P is
completely continuous.

Proof. For the sake of clarity, the proof can subsequently be separated into three steps.

Step 1. Tλ(P ) ⊆ P . First, according to the definition of the operator Tλ, the
continuity and nonnegativity of functions a, f and G, it is easy to know Tλv ∈ C[0, 1] for
all v ∈ P . Second, in view of Lemma 6(i), we have

(Tλv)(t) =

1∫
0

G(t, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)f
(
τ, v(τ) + ϕ(τ)

)
dτ

)
ds

6

1∫
0

G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)f
(
τ, v(τ) + ϕ(τ)

)
dτ

)
ds,

which means that

‖Tλv‖ =

1∫
0

G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)f
(
τ, v(τ) + ϕ(τ)

)
dτ

)
ds.

Then from Lemma 6(ii), for t ∈ [0, 1], we get

(Tλv)(t) >

1∫
0

tα−1G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)f
(
τ, v(τ) + ϕ(τ)

)
dτ

)
ds

> k(t)‖Tλv‖.

Therefore, Tλ(P ) ⊆ P .
Let Ω ∈ P be bounded, i.e., there exists a constant M > 0 such that ‖x‖ 6M for all

x ∈ Ω.

Step 2. Tλ(Ω) is bounded. From continuity of f , denote

L =: max
t∈[0,1], v∈[0,M ]

∣∣f(t, v + ϕ)
∣∣+ 1.
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Then from Lemma 8, for t ∈ [0, 1] and v ∈ Ω, we have

(Tλv)(t) 6

1∫
0

G(t, s)φ−1

(
λL

Γ(β)

s∫
0

(s− τ)β−1a(τ) dτ

)
ds

6 ψ−1
1

(
λL

Γ(β)

) 1∫
0

G(t, s)φ−1

( s∫
0

(s− τ)β−1a(τ) dτ

)
ds

6 ψ−1
1

(
λL

Γ(β)

) 1∫
0

G(1, s)φ−1

( 1∫
0

a(τ) dτ

)
ds

=
1

(α− 1)Γ(α+ 1)
ψ−1

1

(
λL

Γ(β)

)
φ−1

( 1∫
0

a(τ) dτ

)
,

which means that

‖Tλv‖ 6
1

(α− 1)Γ(α+ 1)
ψ−1

1

(
λL

Γ(β)

)
φ−1

( 1∫
0

a(τ) dτ

)
< +∞.

So, Tλ(Ω) is bounded.

Step 3. Tλ(Ω)(t) is equicontinuous on [0, 1]. Since G(t, s) is continuous on [0, 1] ×
[0, 1], it is uniformly continuous on [0, 1] × [0, 1]. Thus, for any ε > 0, there exists
a constant δ > 0 such that t1, t2 ∈ [0, 1] with |t2 − t1| < δ imply∣∣G(t2, s)−G(t1, s)

∣∣ 6 ε

ψ−1
1 ( λL

Γ(β) )φ−1(
∫ 1

0
a(τ) dτ)

for all s ∈ [0, 1]. Hence, for any v ∈ Ω, one gets∣∣Tλ(v)(t2)− Tλ(v)(t1)
∣∣

6

1∫
0

∣∣G(t2, s)−G(t1, s)
∣∣φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)f
(
τ, v(τ) + ϕ(τ)

)
dτ

)
ds

6 ψ−1
1

(
λL

Γ(β)

) 1∫
0

∣∣G(t2, s)−G(t1, s)
∣∣φ−1

( s∫
0

a(τ) dτ

)
ds

6 ψ−1
1

(
λL

Γ(β)

)
φ−1

( 1∫
0

a(τ) dτ

) 1∫
0

∣∣G(t2, s)−G(t1, s)
∣∣ ds < ε.

Therefore, Tλ(Ω)(t) is equicontinuous on [0, 1].
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By the Arzelá–Ascoli theorem, we conclude that Tλ is a compact operator. Addition-
ally, it is easy to see that the operator Tλ is continuous in view of continuity of G, φ
and f . Therefore, we obtain that Tλ : P → P is completely continuous. The proof is
completed.

Now, we will establish some conditions for the existence, multiplicity and nonex-
istence of solutions to boundary value problems (1) and (2), and we obtain some new
results. For notational convenience, denote

F0 = lim
v→0+

sup
t∈[0,1]

f(t, v + ϕ(t))

φ(v)
, F∞ = lim

v→+∞
sup
t∈[0,1]

f(t, v + ϕ(t))

φ(v)
,

f0 = lim
v→0+

inf
t∈[0,1]

f(t, v + ϕ(t))

φ(v)
, f∞ = lim

v→+∞
inf

t∈[0,1]

f(t, v + ϕ(t))

φ(v)
,

A1 =
1

(α− 1)Γ(α+ 1)
ψ−1

1

( 1∫
0

a(τ) dτ

)
,

A2 = k(δ)

1∫
0

G(1, s)ψ−1
2

( s∫
0

(s− τ)β−1a(τ)ψ1

(
k(τ)

)
dτ

)
ds,

A3 = k(δ)

1∫
0

G(1, s)ψ−1
2

( s∫
0

(s− τ)β−1a(τ) dτ

)
ds,

where δ is a constant which are defined later in this section.

3.1 Existence

Theorem 1. Suppose that conditions (H1)–(H3) hold. If there exists δ ∈ (0, 1) such that
F0ψ2(A−1

2 ) < f∞ψ1(A−1
1 ) holds, then for each

λ ∈
(
Γ(β)ψ2

(
A−1

2

)
f−1
∞ , Γ(β)ψ1

(
A−1

1

)
F−1

0

)
, (10)

boundary value problems (1) and (2) have at least one positive solution, respectively.
Here we impose f−1

∞ = 0 if f∞ = +∞ and F−1
0 = +∞ if F0 = 0.

Proof. From (10) there exists ε > 0 such that

Γ(β)ψ2

(
A−1

2

)
(f∞ − ε)−1 6 λ 6 Γ(β)ψ1

(
A−1

1

)
(F0 + ε)−1. (11)

In order to utilize Lemma 9, the proof can subsequently be separated into two steps.

Step 1. By the definition of F0, there exists r1 > 0 such that

f
(
t, v + ϕ(t)

)
6 φ(v)(F0 + ε) (12)
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for t ∈ [0, 1] and v ∈ (0, r1]. So, if v ∈ P with ‖v‖ = r1, then from (11) and (12) one
gets

(Tλv)(t) 6

1∫
0

G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)f
(
τ, v(τ) + ϕ(τ)

)
dτ

)
ds

6

1∫
0

G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)φ
(
v(τ)

)
(F0 + ε) dτ

)
ds

6

1∫
0

G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)φ(r1)(F0 + ε) dτ

)
ds

6

1∫
0

G(1, s)φ−1

(
λ(F0 + ε)

Γ(β)

1∫
0

φ(r1)a(τ) dτ

)
ds

6 ψ−1
1

(
λ(F0 + ε)

Γ(β)

) 1∫
0

G(1, s)φ−1

(
φ(r1)

1∫
0

a(τ) dτ

)
ds

6 ψ−1
1

(
λ(F0 + ε)

Γ(β)

) 1∫
0

G(1, s)ψ−1
1

( 1∫
0

a(τ) dτ

)
ds · r1

= A1 · ψ−1
1

(
λ(F0 + ε)

Γ(β)

)
r1 6 r1 = ‖v‖.

Hence, if we choose Ω1 = {x ∈ E: ‖x‖ < r1}, then

‖Tλv‖ 6 ‖v‖ for v ∈ P ∩ ∂Ω1. (13)

Step 2. By the definition of f∞, there exists r3 > 0 such that

f
(
t, v + ϕ(t)

)
> φ(v)(f∞ − ε) (14)

for t ∈ [0, 1] and v ∈ [r3,+∞). So, if v ∈ P with ‖v‖ = r2 := max{2r1, r3}, then from
(11) and (14) one has∥∥(Tλv)

∥∥ > (Tλv)(δ)

=

1∫
0

G(δ, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)f
(
τ, v(τ) + ϕ(τ)

)
dτ

)
ds

>

1∫
0

k(δ)G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)φ
(
v(τ)

)
(f∞ − ε) dτ

)
ds
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> k(δ)

1∫
0

G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)φ
(
k(τ)‖v‖

)
(f∞ − ε) dτ

)
ds

> k(δ)

1∫
0

G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)ψ1

(
k(τ)

)
φ
(
‖v‖
)
(f∞ − ε) dτ

)
ds

> k(δ)ψ−1
2

(
λ(f∞− ε)

Γ(β)

) 1∫
0

G(1, s)φ−1

( s∫
0

(s− τ)β−1a(τ)ψ1

(
k(τ)

)
dτ · φ(r2)

)
ds

> k(δ)ψ−1
2

(
λ(f∞− ε)

Γ(β)

) 1∫
0

G(1, s)ψ−1
2

( s∫
0

(s− τ)β−1a(τ)ψ1

(
k(τ)

)
dτ

)
ds · r2

= A2 · ψ−1
2

(
λ(f∞− ε)

Γ(β)

)
r2 > r2 = ‖v‖.

Hence, if we choose Ω2 = {x ∈ E: ‖x‖ < r2}, then

‖Tλv‖ > ‖v‖ for v ∈ P ∩ ∂Ω2. (15)

Now, from Lemma 9(i) and inequalities (13) and (15) we conclude that operator Tλ
has a fixed point v∗ ∈ P ∩ (Ω2 \Ω1) with r1 6 ‖v∗‖ 6 r2. It is clear that v∗ is a solution
to boundary value problem (2). By Lemma 7, u∗(t) = v∗(t) + ϕ(t) is a solution to
boundary value problem (1). The proof is completed.

Theorem 2. Suppose that conditions (H1)–(H3) hold. If there exists δ ∈ (0, 1) such that
F∞ψ2(A−1

2 ) < f0ψ1(A−1
1 ) holds, then for each

λ ∈
(
Γ(β)ψ2

(
A−1

2

)
f−1

0 , Γ(β)ψ1

(
A−1

1

)
F−1
∞
)
, (16)

boundary value problems (1) and (2) have at least one positive solution, respectively.
Here we impose f−1

0 = 0 if f0 = +∞ and F−1
∞ = +∞ if F∞ = 0.

Proof. From (16) there exists ε > 0 such that

Γ(β)ψ2

(
A−1

2

)
(f0 − ε)−1 6 λ 6 Γ(β)ψ1

(
A−1

1

)
(F∞ + ε)−1. (17)

In order to utilize Lemma 9, the proof can subsequently be separated into two steps.
Step 1. By the definition of f0, there exists r1 > 0 such that

f
(
t, v + ϕ(t)

)
> φ(v)(f0 − ε)

for t ∈ [0, 1] and v ∈ (0, r1]. So, if v ∈ P with ‖v‖ = r1, we choose Ω1 = {x ∈ E:
‖x‖ < r1}, then an argument similar to Step 2 in the proof of Theorem 1 shows that

‖Tλv‖ > ‖v‖ for v ∈ P ∩ ∂Ω1. (18)
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Step 2. By the definition of F∞, there exists r5 > 0 such that

f
(
t, v + ϕ(t)

)
6 φ(v)(F∞ + ε) (19)

for t ∈ [0, 1] and v ∈ [r5,+∞). Next, it is considered in two cases:
Case 1. Function f is bounded. Then there exists some N > 0 such that f(t, v +

ϕ(t)) 6 N for t ∈ [0, 1] and v ∈ (0,+∞). So, choosing v ∈ P with ‖v‖ = r3 :=
max{2r1, r5, A1φ

−1(λN/Γ(β))}, then from (17) and (19) one has

(Tλv)(t) 6

1∫
0

G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)f
(
τ, v(τ) + ϕ(τ)

)
dτ

)
ds

6

1∫
0

G(1, s)φ−1

(
λN

Γ(β)

s∫
0

(s− τ)β−1a(τ) dτ

)
ds

6 φ−1

(
λN

Γ(β)

) 1∫
0

G(1, s)ψ−1
1

( s∫
0

(s− τ)β−1a(τ) dτ

)
ds

6 φ−1

(
λN

Γ(β)

) 1∫
0

G(1, s)ψ−1
1

( 1∫
0

a(τ) dτ

)
ds

= A1 · φ−1

(
λN

Γ(β)

)
6 r3 = ‖v‖.

Hence, if we choose Ω3 = {x ∈ E: ‖x‖ < r3}, then ‖Tλv‖ 6 ‖v‖ for v ∈ P ∩ ∂Ω3.
Case 2. Function f is unbounded. Then there exists some r4 > max{2r1, r5} such

that f(t, v + ϕ(t)) 6 f(t, r4 + ϕ(t)) for t ∈ [0, 1] and v ∈ (0, r4]. So, if v ∈ P with
‖v‖ = r4, we choose Ω4 = {x ∈ E: ‖x‖ < r4}, then an argument similar to Step 1 in
the proof of Theorem 1 shows that ‖Tλv‖ 6 ‖v‖ for v ∈ P ∩ ∂Ω4.

Let r2 := max{r3, r4}. On account of Cases 1 and 2, setting Ω2 = {x ∈ E: ‖x‖ <
r2}, we have

‖Tλv‖ 6 ‖v‖ for v ∈ P ∩ ∂Ω2. (20)

Now, from Lemma 9(ii) and inequalities (18) and (20) we conclude that operator Tλ
has a fixed point v∗ ∈ P ∩ (Ω2 \Ω1) with r1 6 ‖v∗‖ 6 r2. It is clear that v∗ is a solution
to boundary value problem (2), and u∗(t) = v∗(t) + ϕ(t) is a solution to boundary value
problem (1). The proof is completed.

Theorem 3. Suppose that conditions (H1)–(H3) hold. If there exist r2 > r1 > 0 such
that

λ min
t∈[0,1], v∈[0,r1]

f
(
t, v + ϕ(t)

)
> Γ(β)φ

(
r1

A3

)
,

λ max
t∈[0,1], v∈[0,r2]

f
(
t, v + ϕ(t)

)
6 Γ(β)φ

(
r2

A1

)
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hold, then boundary value problems (1) and (2) have at least one positive solution,
respectively.

Proof. First, choose Ω1 = {x ∈ E: ‖x‖ < r1}. Then, for t ∈ [0, 1] and v ∈ P ∩ ∂Ω1,
we get

∥∥(Tλv)
∥∥ >

1∫
0

k(δ)G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)f
(
τ, v(τ) + ϕ(τ)

)
dτ

)
ds

> k(δ)

1∫
0

G(1, s)φ−1

(
φ

(
r1

A3

) s∫
0

(s− τ)β−1a(τ) dτ

)
ds

> k(δ)
r1

A3

1∫
0

G(1, s)ψ−1
2

( s∫
0

(s− τ)β−1a(τ) dτ

)
ds

= r1 = ‖v‖.

Second, choose Ω2 = {x ∈ E: ‖x‖ < r2}. Then, for t ∈ [0, 1] and v ∈ P ∩ ∂Ω2, we
get

(Tλv)(t) 6

1∫
0

G(1, s)φ−1

(
λ

Γ(β)

s∫
0

(s− τ)β−1a(τ)f
(
τ, v(τ) + ϕ(τ)

)
dτ

)
ds

6

1∫
0

G(1, s)φ−1

(
φ

(
r2

A1

) s∫
0

(s− τ)β−1a(τ) dτ

)
ds

6
r2

A1

1∫
0

G(1, s)ψ−1
1

( s∫
0

(s− τ)β−1a(τ) dτ

)
ds

6
r2

(α− 1)Γ(α+ 1)A1
ψ−1

1

( 1∫
0

a(τ) dτ

)
= r2 = ‖v‖.

Therefore, according to Lemma 9(ii), boundary value problems (1) and (2) have
a positive solution, respectively. The proof is completed.

Theorem 4. Suppose that conditions (H1)–(H3) hold. Set

λ∗ = sup
r>0

Γ(β)φ(r)

ψ2(A1) maxt∈[0,1],v∈[0,r] f(t, v + ϕ(t))
.

If f0 = +∞ and f∞ = +∞, then boundary value problems (1) and (2) have at least two
positive solutions for each λ ∈ (0, λ∗), respectively.
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Proof. Define

x(r) =
Γ(β)φ(r)

ψ2(A1) maxt∈[0,1],v∈[0,r] f(t, v + ϕ(t))
. (21)

On the one hand, from f0 = +∞, f∞ = +∞ and the continuity of f we know that
x : R+ → R+ is continuous with limr→0+ x(r) = limr→+∞ x(r) = 0. Hence, there
exists r0 ∈ (0,+∞) such that

x(r0) = sup
r>0

x(r) = λ∗.

So, for λ ∈ (0, λ∗), there exist two constants a1, a2 with 0 < a1 < r0 < a2 < +∞ and
x(a1) = x(a2) = λ. From (21) we have

x(r) max
t∈[0,1], v∈[0,r]

f
(
t, v + ϕ(t)

)
=

Γ(β)φ(r)

ψ2(A1)
.

Therefore,

λf
(
t, v + ϕ(t)

)
6

Γ(β)φ(a1)

ψ2(A1)
6 Γ(β)φ

(
a1

A1

)
(22)

for t ∈ [0, 1] and v ∈ [0, a1];

λf
(
t, v + ϕ(t)

)
6

Γ(β)φ(a2)

ψ2(A1)
6 Γ(β)φ

(
a2

A1

)
(23)

for t ∈ [0, 1] and v ∈ [0, a2].
On the other hand, in view of f0 = +∞ and f∞ = +∞ again, there exist two

constants b1, b2 with 0 < b1 < a1 < r0 < a2 < b2 < +∞ such that

f(t, v + ϕ(t))

φ(v)
>

Γ(β)

λψ1(k(δ))ψ1(A3)

for t ∈ [0, 1] and v ∈ (0, b1) ∪ (k(δ)b2,+∞). Therefore,

λ min
t∈[0,1]

v∈[k(δ)b1,b1]

f
(
t, v + ϕ(t)

)
> Γ(β)φ

(
b1
A3

)
, (24)

λ min
t∈[0,1]

v∈[k(δ)b2,b2]

f
(
t, v + ϕ(t)

)
> Γ(β)φ

(
b2
A3

)
. (25)

From inequalities (22) and (24), inequalities (23) and (25), combining with Theo-
rem 3, boundary value problems (1) and (2) have at least two positive solutions for each
λ ∈ (0, λ∗), respectively. The proof is completed.

3.2 Nonexistence of positive solutions

Next, we derive some sufficient conditions for nonexistence of positive solutions to prob-
lems (1) and (2).
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Theorem 5. If F0 < +∞ and F∞ < +∞, then there exists λ0 > 0 such that for all
λ ∈ (0, λ0), boundary value problem (2) has no positive solution.

Proof. From F0 < +∞ and F∞ < +∞ we know that there exist four constants M1,M2,
r1, r2 > 0 with r1 < r2 such that

f
(
t, v + ϕ(t)

)
6M1φ(v), t ∈ [0, 1], v ∈ [0, r1],

f
(
t, v + ϕ(t)

)
6M2φ(v), t ∈ [0, 1], v ∈ [r2,+∞).

Let

M0 = max

{
M1, M2, max

t∈[0,1], v∈[r1,r2]

f(t, v + ϕ(t))

φ(v)

}
.

Then f(t, v + ϕ(t)) 6M0φ(v) for t ∈ [0, 1] and v ∈ [0,+∞).
Suppose µ(t) is a solution to boundary value problem (2). Take λ0 = M−1

0 Γ(β) ×
ψ1(A−1

1 ) > λ > 0. An argument similar to Step 1 in the proof of Theorem 1 shows that

(Tλµ)(t) 6 A1ψ
−1
1

(
λM0

Γ(β)

)
‖µ‖ < A1ψ

−1
1

(
λ0M0

Γ(β)

)
‖µ‖ = ‖µ‖.

From Tλµ(t) = µ(t) on [0, 1] we have ‖µ‖ = ‖Tλµ‖ < ‖µ‖. This is a contradiction. The
proof is completed.

Theorem 6. If f0 > 0 and f∞ > 0, then there exists λ0 > 0 such that for all λ ∈
(λ0,+∞), boundary value problem (2) has no positive solution.

Proof. From f0 > 0 and f∞ > 0 we know that there exist four constantsm1,m2, r1, r2 >
0 with r1 < r2 such that

f
(
t, v + ϕ(t)

)
> m1φ(v), t ∈ [0, 1], v ∈ [0, r1],

f
(
t, v + ϕ(t)

)
> m2φ(v), t ∈ [0, 1], v ∈ [r2,+∞).

Let

m0 = min

{
m1, m2, min

t∈[0,1], v∈[r1,r2]

f(t, v + ϕ(t))

φ(v)

}
.

Then f(t, v + ϕ(t)) > m0φ(v) for t ∈ [0, 1] and v ∈ [0,+∞).
Suppose µ(t) is a solution to boundary value problem (2). Take λ0 = m−1

0 Γ(β) ×
ψ2(A−1

2 ) < λ. From Tλµ(t) = µ(t) on [0, 1] an argument similar to Step 2 in the proof
of Theorem 1 shows that

‖µ‖ =
∥∥(Tλµ)

∥∥ > A2ψ
−1
2

(
λm0

Γ(β)

)
‖µ‖ > A2ψ

−1
2

(
λ0m0

Γ(β)

)
‖µ‖ = ‖µ‖.

This is a contradiction. The proof is completed.
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4 An example

In this section, we will present an example to illustrate our main results. Consider the
following problem:

CD1.5
0+

(
D2.5

0+ u(t)
)

= λ

∣∣∣∣120u(t)− 117 sin

(
u(t)− 2

3
t1.5
)
− 80t1.5

∣∣∣∣, 0 < t < 1,

u(0) = u′(0) = 0, u′(1) = 1, φ
(
Dα

0+u(0)
)

=
(
φ
(
Dα

0+u(0)
))′

= 0,

(26)

where α = 2.5, β = 1.5, φ(x) = x, a(t) ≡ 1, f(t, u) = |120u−117 sin(u−(2/3)t1.5)−
80t1.5| and η = 1.

Notice φ(x) = x, a(t) ≡ 1 on [0, 1]. For any t1, t2 ∈ [0, 1] and u1, u2 ∈ R, one gets∣∣f(t2, u2)− f(t1, u1)
∣∣

6 120|u2 − u1|+ 117

∣∣∣∣ sin(u2 −
2

3
t1.52

)
− sin

(
u1 −

2

3
t1.51

)∣∣∣∣+ 80
∣∣t1.52 − t1.51

∣∣
6 120|u2 − u1|+ 117|u2 − u1|+ 78

∣∣t1.52 − t1.51

∣∣+ 80
∣∣t1.52 − t1.51

∣∣
6 237|u2 − u1|+ 158|t2 − t1| 6 395 max

{
|t2 − t1|, |u2 − u1|

}
.

From the above analysis it is shown that conditions (H1)–(H3) hold.
Take ψ1(x) = ψ2(x) = x and δ = 0.9. By a simple calculation, we get

F0 = lim
v→0+

sup
t∈[0,1]

|120v − 117 sin v|
v

= lim
v→0+

120v − 117 sin v

v
= 3,

f∞ = lim
v→+∞

inf
t∈[0,1]

|120v − 117 sin v|
v

= lim
v→+∞

120v − 117 sin v

v
= 120,

A1 =
1

(2.5− 1)Γ(2.5 + 1)
≈ 0.2006,

A2 = 0.91.5

1∫
0

(1− s)0.5 − (1− s)1.5

Γ(2.5)

s∫
0

(s− τ)0.5τ1.5 dτ ds ≈ 0.0093,

where ϕ(t) = η/(α − 1) · tα−1 = (2/3)t1.5. Then F0ψ2(A−1
2 ) < f∞ψ1(A−1

1 ) holds.
Therefore, by Theorem 1, problem (26) has at least one positive solution for each λ ∈
(0.7926, 1.4726).

On the other hand, from f(t, v + ϕ(t))′v = 120− 117 cos v > 0 and

f0 = lim
v→0+

inf
t∈[0,1]

|120v − 117 sin v|
v

= lim
v→0+

120v − 117 sin v

v
= 3,

then we have 3v < f(t, v + ϕ(t)) < 237v for t ∈ [0, 1], v ∈ (0,+∞). Therefore,

(i) by Theorem 5, problem (26) has no positive solution for all λ ∈ (0, 0.0186);
(ii) by Theorem 6, problem (26) has no positive solution for all λ ∈ (31.7051,+∞).
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5 Conclusion

By using Guo–Krasnosel’skii fixed point theorem, we have discussed the eigenvalue
problems for a new class of nonautonomous fractional differential equations that involve
both mixed fractional derivatives and generalized p-Laplacian operator. This work is
a good complement to [8, 11] due to the introduction of Caputo fractional derivatives
and nonlinear time-varying forcing terms. Through analysis, it is not difficult to find that
continuity assumptions on nonlinearities are not sufficient when one studies the fractional
differential equations involving Caputo fractional derivatives. Our present work builds up
Lipschitzian-type conditions for nonlinearities to makes up for a shortcoming of the con-
tinuity hypotheses that are widely used. This provides theoretical support for applications
in engineering and technology better. Moreover, singularity of function a, as we know, can
be taken into consideration with

∫ 1

0
a(s) ds < +∞ under continuity assumption but with

Riemann–Liouville fractional derivatives (see, e.g., [21]). So, a natural and interesting
problem is how to introduce singularity of function a into our problems here. Predictably,
there is a lot of work that can be extended in these aspects.

Acknowledgment. The authors sincerely thank the reviewers for their valuable sugges-
tions and useful comments that have led to the present improved version of the original
manuscript. The first author is also indebted to Dr. H. Li for numerous helpful discussions.
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