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Abstract. The modified nonlocal feedback controller is used to control the production of drugs
in a simple bioreactor. This bioreactor is based on the enzymatic conversion of substrate into
the required product. The dynamics of this device is described by a system of two nonstationary
nonlinear diffusion–convection–reaction equations. The analysis of the influence of the convection
transport is one the aims of this paper. The control loop is defined using the relation, which shows
how the amount of the drug produced in the bioreactor and delivered into a human body depends
on the substrate concentration specified on the external boundary of the bioreactor. The system of
PDEs is solved by using the finite volume and finite difference methods, the control loop parameters
are defined from the analysis of stationary linearized equations. The second aim of this paper is to
solve the inverse problem and to determine optimal boundary conditions. These results enable us to
estimate the potential accuracy of the proposed devices.

Keywords: nonlocal delayed feedback control, numerical simulation, inverse problems, bio-
reactors.

1 Introduction

In this paper, we continue the analysis of bioreactors based on the enzymatic conversion
of substrate into the required product. In [3], the control loop was defined by using
the relation how the amount of the drug produced in the bioreactor and delivered into
a human body depends on the substrate concentration specified on the external boundary
of the bioreactor. Only diffusion transport and nonlinear reaction processes were taken
in account. The control loop parameters were defined from the analysis of stationary
linearized equations. In this paper, we add the convection transport possibility. Thus the
dynamics of the new device is described by a system of two nonstationary nonlinear
diffusion–convection–reaction equations.
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Numerical algorithms for solving the optimal control problem of simple bioreactors 627

We note that the feedback control mechanism is used in many technological applica-
tions [11,12]. The recent developments of this technique for optimal control of processes
in smart bioreactors is one of the interesting new theoretical and computational challenges
[3, 7, 13].

The first aim of this paper is to investigate the influence of the convection transport
to the efficiency of the bioreactor device. The second aim is to solve the inverse problem
and to determine optimal boundary conditions for the control loop. These results enable
us to estimate the accuracy of the proposed control loop technology.

We note that smart biochemical devices enable automatic adaptation of rates of pro-
duced drugs to the treatment procedures specified by medical doctors. Such devices are
convenient, flexible and robust tools for patients.

The rest of this paper is organized as follows. In Section 2, a system of two non-
stationary nonlinear diffusion–convection–reaction equations is formulated. This model
describes the dynamics of the substrate S (prodrug) and the product P (drug). The three
classical boundary conditions (two for P and one for S) are specified at the boundary
of domain. The last fourth boundary condition should be determined from the objective
function of the optimization problem, since the required flux of the product P is specified
at the boundary x = 0. In order to define a well-posed boundary value problem, we
formulate the inverse problem to find the equivalent boundary condition for the substrate
function S(X, t). Here X defines the length of the bioreactor.

In Section 3, the algorithm of the proportional nonlocal controller is formulated.
It is based on a modification of the algorithm proposed in [3]. The parameters of the
control function are defined by solving the stationary (limit) system of equations when
the nonlinear interaction term is linearized around some constant value of S.

The finite volume method is used to approximate the diffusion and convection pro-
cesses in Section 4. The time derivatives and reaction terms are approximated by the
symmetrical Euler method. The predictor–corrector method is applied to linearize the
obtained system of nonlinear discrete equations.

The inverse problem to find optimal reconstructed boundary conditions S(X, t) is
solved in Section 5. A simple derivative-free heuristic algorithm is proposed to solve the
given problem.

In Section 6, results of computational experiments are presented and analysed. Final
conclusions are presented in Section 7.

2 Mathematical models

In this paper, we consider an one-dimensional mathematical model used to simulate
dynamics of simple bioreactors [5]. It is based on a system of two equations

∂S

∂t
= DS

∂2S

∂x2
+ α

∂S

∂x
− V S

KM + S
, (x, t) ∈ D,

∂P

∂t
= DP

∂2P

∂x2
+ α

∂P

∂x
+

V S

KM + S
,

(1)

Nonlinear Anal. Model. Control, 24(4):626–638

https://doi.org/10.15388/NA.2019.4.8
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where D = {0 < x < X, 0 < t 6 T}, S(x, t) and P (x, t) are real valued functions,
S defines the concentration of the substrate of the enzyme and P is the concentration of
a product. During the enzymatic reaction, the substrate S (which is a prodrug material) is
converted into the active drug P . Such a technology is an example of smart technologies
targeted to produce the drug on demand. The reaction conversation is described as the
most simple Michaelis–Menten process. It is interesting also to consider more compli-
cated bioreaction processes [5].

Diffusion coefficients DS , DP and convection coefficient α are assumed to be con-
stants. The enzyme is uniformly distributed in the reactor, and the substrate S and the
product of the reaction P are transported by the diffusion and convection processes inside
the reactor.

The well-written review of mathematical models on nonlinear bioreactions is given
in [2, 10], a practical user guide on such models is presented in [5]. Similar diffusion–
reaction models are considered in [3, 7].

In order to define a full mathematical model, we formulate initial conditions

S(x, 0) = 0, P (x, 0) = 0, 0 6 x 6 X, (2)

and three boundary conditions:

P (0, t) = 0, DP
∂P

∂x
(X, t) + αP (X, t) = 0, 0 < t 6 T,

DS
∂S

∂x
(0, t) + αS(0, t) = 0.

(3)

The last condition specifies the flux of P at the boundary x = 0:

DP
∂P

∂x
(0, t) + αP (0, t) = Q(t), 0 < t 6 T, (4)

whereQ(t) defines the flux of the drug prescribed by a medical doctor in accordance with
the therapeutic protocol (the objective function in the optimization task).

Equation (4) is written by using the full flux of the product P (x, t) at the boundary
x = 0. This form is consistent with the conservation law defining the physical process,
and it should be used for the approximation in order to guarantee the discrete conservation
property. Still in the definition of the full mathematical model, condition (4) can be written
in a more simple form

DP
∂P

∂x
(0, t) = Q(t).

It is clear that such a combination of boundary conditions (3)–(4) is not used in any
classical well-posed boundary value problem. In order to apply such bioreactors in real
life applications, it is proposed in [3] to find the equivalent boundary condition for the
substrate function

S(X, t) = s(t), (5)

where s(t) is unknown function. When this function is specified (or obtained by solving
some auxiliary problem), then we get a well-posed nonstationary boundary value problem
to find S.
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In general, the inverse problems are ill posed [1]. As a more flexible approach, we
consider the variational problem [14]: find s(t) such that∥∥∥∥DP

∂Ps

∂x
(0)−Q

∥∥∥∥ = min
s̃∈W

∥∥∥∥DP
∂Ps̃

∂x
(0)−Q

∥∥∥∥, (6)

where W defines a feasible set of boundary conditions, and Ps defines a product function
when s(t) is used as a boundary condition in (5). In the following sections, we will solve
this inverse problem for some typical cases of the objective function Q.

3 The feedback control loop

In this section, we briefly define a modification of the feedback control loop technology
from [3], where it was used to achieve the desired regime of drug production for the
diffusion–reaction model. We generalize it for the diffusion–convection–reaction models.

The main idea is instead of solving directly the inverse problem (6) to define a simple
control algorithm based on some efficiently manipulated variable. In this way, an equiv-
alent well-posed boundary value problem is formulated. It should guarantee that a close
approximation of the required flux of drugs at the boundary x = 0 is produced. Thus,
in general, we are interested to develop a dynamic control system based on proportional
feedback controllers.

Our approach is different from a classical proportional–integral–derivative controller
(PID controller) technique, which was used in paper [7]. It is well known that the main
challenge in application of PID controllers deals with the selection of optimal values of
coefficients Kp, Ki, Kd. This task requires to do big scale computational experiments
and the stability analysis of the obtained controllers is very nontrivial.

Our approach to construct the proportional controller is based on the idea to control
a so-called steady-state error [3]. The asymptotic analysis of stationary (limit) system of
equations is done and the nonlinear interaction term is linearized around some constant
value of S. Due to the maximum principle, it is recommended to linearize this term around
a zero value of S.

The following system of two linear differential equations for functions S̃(x) and P̃ (x)
is considered:

−DSS̃
′′ − αS̃′ + V

KM
S̃ = 0, 0 < x < X,

DSS̃
′(0) + αS̃(0) = 0, S̃(X) = A,

(7)

−DP P̃
′′ − αP̃ ′ = V

KM
S̃, 0 < x < X,

P̃ (0) = 0, DP P̃
′(X) + αP̃ (X) = 0.

(8)

The solution of problem (7) is given by

S̃(x) = A
r1e

r1x − r2e
r2x

r1er1X − r2er2X
, r1,2 = − α

2DS
±

√
α2

4D2
S

+
V

KMDS
.
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Substituting it into (8) and integrating, we get the full flux of P̃ at x = 0:

DP P̃
′(0) + αP̃ (0) = µ(α)A, µ(α) =

V

KM

er1X − er2X

r1er1X − r2er2X
. (9)

The control algorithm based on the boundary value of substrate S

It is proposed in [3] to use relation (9) in order to define the proportional controller
algorithm. The supply of the substrate into the bioreactor is specified as

S(X, t) =
1

µ(α)
Q(t), (10)

whereQ(t) defines the required flux of the product at the boundary x = 0. The coefficient
1/µ(α) defines the so-called control gain parameter [12]. The dependence of 1/µ(α)
on the convection velocity α is presented in Fig. 1. The remaining parameters of the
mathematical model are defined in Section 6.

Remark 1. It follows from the presented results that, due to the convection process, the
required amount of substrate supply is decreasing for the increased velocity α, thus the
convection reduces the costs of the bioreactor.

The smart bioreactors have a possibility to perform the electrochemical monitoring
of the enzymatic reaction. It is assumed that the concentration of the produced drug
flux QR(t) can be measured. Then we can use the feedback control loop to regulate the
total amount of the produced product. Following [3], we add the correction term in the
definition of the modified objective function Q̃(t):

Q̃(t) = Q(t) +

∫ t

0
Q(s) ds−

∫ t

0
QR(s) ds

T + T0 − t
, T0 > 0. (11)

Then Q̃(t) is used in the definition of the control boundary condition (10). In this algo-
rithm, the surplus/deficit of the produced drug is distributed uniformly over the remaining
time interval, and the surplus of the product is compensated dynamically.
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Figure 1. The dependence of the coefficient 1/µ(α) on the convection velocity α measured in mm s−1.
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4 The discrete scheme

In this section, we consider the discrete approximation of problem (1)–(4). Let Ωt be
a t-grid

Ωt =
{
tn: tn = tn−1 + τ, n = 1, . . . , N, tN = T

}
,

where τ is the discretization step size. Also we introduce a uniform spatial grid

Ωx =
{
xj : xj = xj−1 + h, j = 1, . . . , J − 1

}
, x0 = 0, xJ = X.

We consider numerical approximation Un
j to the exact solution values of function

U(xj , t
n) at the grid points (xj , tn).

For functions defined on the grid Ωx × Ωt, we introduce the backward difference
quotient and the averaging operator with respect to t and three difference operators with
respect to x:

∂t̄U
n
j =

Un
j − U

n−1
j

τ
, U

n−1/2
j =

Un
j + Un−1

j

2
,

∂xU
n
j :=

Un
j+1 − Un

j

h
, ∂x̃U

n
j :=

Un
j+1 − Un

j−1

2h
,

AhUn
j :=

∂xU
n
j − ∂xUn

j−1

h
.

We use the finite volume method to approximate the diffusion and convection pro-
cesses in each space control volume [xj−1/2, xj+1/2]. The obtained fluxes are approxi-
mated by the standard finite difference operators. This method leads to the conservative
discretization in space. The finite difference method is used to approximate the time de-
pendent operators by the symmetrical Euler scheme. Thus the differential problem (1)–(4)
is approximated by the discrete scheme

∂t̄S
n
j = DSA

hS
n−1/2
j + αKhS

n−1/2
j −

V S
n−1/2
j

KM + S
n−1/2
j

, xj ∈ Ωx,

−DS∂xS
n−1/2
0 − αS̃n−1/2

1/2 +
h

2

(
∂t̄S

n
0 +

V S
n−1/2
0

KM + S
n−1/2
0

)
= 0,

(12)

Sn
J =

1

µ

(
Q
(
tn
)
+

∫ tn−1

0
Q(s) ds−

∑n−1
m=1Q

m
Rhτ

T + T0 − tn−1

)
, (13)

∂t̄P
n
j = DPA

hP
n−1/2
j + αKhP

n−1/2
j +

V S
n−1/2
j

KM + S
n−1/2
j

, xj ∈ Ωx,

Pn
0 = 0, DP∂xP

n−1/2
J−1 + αP̃

n−1/2
J−1/2 +

h

2

(
∂t̄P

n
J −

V S
n−1/2
J

KM+S
n−1/2
J

)
= 0,

(14)
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where QRh defines a measured value of the product

QRh := DP∂xP
n−1/2
0 .

The convection process can be approximated by using the monotone upwind approxima-
tion

KhUn
j = ∂xU

n
j , S̃n

1/2 = Sn
1 , P̃n

J−1/2 = Pn
J

or the central difference scheme

KhUn
j = ∂x̃U

n
j , S̃n

1/2 =
Sn

0 + Sn
1

2
, P̃n

J−1/2 =
Pn
J−1 + Pn

J

2
.

The proposed discrete model includes the dynamic control condition (13).
The nonlinear boundary value problem (12) is linearized by using the predictor–cor-

rector technique. The approximation error is of order two with respect to time and space
if the central difference scheme is used to approximate the convection process, i.e. it is
bounded by C(τ2 + h2). If the convection is approximated by the upwind scheme, then
the approximation error is bounded by C(τ2 + h).

For a fixed proportional type control algorithm, the boundary condition S(X, t) is
defined as a scaled functionQ(t). Thus we have a classical set of boundary conditions, and
this modified initial–boundary value problem is well posed. In this case, the known theo-
retical results [4, 6] can be applied to prove that the solution of the discrete scheme (12)–
(14) converges in the L∞-norm with the order equal to the accuracy of approximation. It
is obvious that we are getting only a control based solution of the modified problem. The
main aim is to select efficient control strategies enabling us to approximate accurately the
objective function Q(t).

Remark 2. The boundary condition (13) is nonlocal. Since the nonlocal and nonlinear
terms are approximated on (n− 1)th level, the standard factorization algorithm is used to
solve the obtained systems of linear equations. More details on discrete approximations
of problems with nonlocal boundary conditions are given in [8].

5 Inverse reconstruction of the boundary condition

In this section, we solve the discrete version of the variational problem (6). Our aim is to
do an inverse reconstruction of the boundary condition (5). Let ωt be a set of time points

ωt =
{
0 6 t1 < t2 < · · · < tM = T

}
.

At time moments tj , we consider approximations of the boundary condition S̃M (t)

S̃M (tj) = sj , j = 1, . . . ,M.

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Numerical algorithms for solving the optimal control problem of simple bioreactors 633

Then a feasible set W of boundary conditions of the variation problem (6) is defined by
the piecewise linear splines

S̃M (t) =

{
0, t < t1,

sj +
sj+1−sj
tj+1−tj (t− t

j), 1 6 j < M.
(15)

Thus we formulate the following discrete variational problem:

arg
s1,...,sM

min
S̃M∈W

∥∥QRh(S̃M )−Q
∥∥. (16)

Next, we define the algorithm to find an approximate solution of problem (16). In
order to get an initial approximation of the solution, we use an appriori information
defined by the control formula (10). We also mention general derivative-free DIRECT
type algorithms, which are widely used to solve global optimization problems for a black
box type applications [9].

The proposed optimization algorithm consists of two steps.
Step 1: The local optimization step. Let us assume that, for each j, three different

values of sj are selected:
sj1 < sj2 < sj3, j = 1, . . . ,M. (17)

Then applying the full search technique we find the optimal set of parameters

(s∗1, s
∗
2, . . . , s

∗
M ), s∗j = sjkj , 1 6 kj 6 3, j = 1, . . . ,M.

This step requires to solve the discrete problem (12)–(14) for 3M different boundary
conditions S̃M .

Remark 3. All 3M problems are independent, thus they are solved by using a parallel
master and slave version of the algorithm. For selected sizes of discrete meshes, the
computation time of one job is much larger than the communication time between the
master and slave processes. The tasks are distributed dynamically, and a deterministic
predictor–corrector algorithm is used to solve nonlinear systems of equations. Thus the
efficiency of the parallel algorithm is close to one.

Step 2: A set of parameters is updated. After finishing Step 1, the feasible set of
parameters (17) is updated in the following way. If kj = 2, then

snew
j1 :=

sj1 + sj2

2
, snew

j2 := sj2, snew
j3 :=

sj2 + sj3

2
.

If kj = 1, then

snew
j2 := sj1, snew

j3 :=
sj1 + sj2

2
, snew

j1 := snew
j2 − (sj2 − sj1).

If kj = 3, then

snew
j2 := sj3, snew

j1 :=
sj2 + sj3

2
, snew

j3 := snew
j2 + sj3 − sj2.

The iteration stopping condition is defined as

sj3 − sj1 6 ε, j = 1, . . . ,M.
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6 Results and discussion

In this section, we present results of some computational experiments. The model
constants are selected as in [7], see also [3]: V = 1.1 · 10−3 mol m−3 s−1, KM =
2 · 10−1 mol m−3, DS = 5 · 10−6 m2 s−1, DP = 5 · 10−6 m2 s−1, X = 1 · 10−3 m. The
constant α is measured in mm s−1.

Our aim is to test the robustness of the proposed control scheme in cases when the
convection starts to be a dominating transport process. Also we compare this simple pro-
portional control algorithm with more sophisticated control schemes, which include the
ideas of time-delayed feedback control [12] or the inverse determination of the control
function [14].

First, we remind the important fact, that the drug production process reacts with
a fixed delay to the changes of the substrate boundary condition (5) [3]. A brief theoretical
justification of this effect in the case of pure diffusion transport process is given in [3].
Here we present results of numerical experiments when the convection transport process
is also included into the model.

First, we investigate the case when α = 1. In this example, the convection transport
is still weak. In Fig. 2, the dynamics of product P molar flow rate at x = 0 is shown
(a scale factor 10−6 should be added) when the objective function Q is a stepwise func-
tion:

Q(t) =

{
0, t < 0.5;

5µ(0), t > 0.5,
(18)

where 1/µ(α) is the gain control coefficient. Such scaling of P function is used in all
figures.

The three control algorithms are compared. Our first conclusion is that the simple
proportional control algorithm (10) is quite robust and the produced flux of the product
follows the requite regime of the objective function. Still we see two weaknesses of this

0 0.5 1 1.5 2 2.5 3

t

0

0.005

0.01

0.015

0.02

0.025

0.03

J
(P
)

Figure 2. Product (P ) molar flow rate J0(Pn), mol s−1 at x = 0 when the objective function Q is defined
by (18) (black line). Three control algorithms are compared – the proportional control algorithm (10) (blue line),
the corrected proportional algorithm (11) (green line), the boundary condition for (S) is defined by solving the
inverse problem (6) (red line). Time t is measured in s.
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)

Figure 3. Product (P ) molar flow rate J0(P ), mol s−1 at x = 0 when the objective function Q is defined by
(18) (black line). The corrected proportional algorithm (11) is used. Three different values of α are applied:
α = 0 (red line), α = 5 (green line), α = 10 (blue line). The results of time-delayed feedback control algorithm
with τ = 0.1 are presented by brown line. Time t is measured in s.

algorithm. First, it produces the amount of product smaller than required. To address
this topic, the corrected control algorithm (11) is applied. This technique dynamically
compensates the deficit of the produced drug. Second, the standard proportional control
algorithm generates the flux of the product, which follows the dynamics of the objective
function with some time delay. In order to show that the latter issue can be resolved
within the framework of the mathematical model (1)–(4), we present results when the
control boundary condition is obtained solving the inverse variational problem (6). The
spline function S̃M (t) (15) is defined on M = 7 time points. It follows from the obtained
results that state of the art modelling techniques can help to develop very accurate smart
medical devices.

Computations of the optimization algorithm were performed using resources at the
High Performance Computing Centre “HPC Saulėtekis” in Vilnius University Faculty
of Physics. The master and slaves template was used to implement the given search
algorithm.

Next, we investigate the dependence of the solutions of problem (1)–(4) on the convec-
tion velocity α. The corrected proportional algorithm (11) is used in all experiments. The
results are presented in Fig. 3. It is clearly seen that, for larger values of α, the convection
transport process starts to dominate, and the substrate (S) is moved to the left side of the
device faster than the enzymatic conversion reaction is going on. Thus too much of the
unused substrate is accumulated near the boundary x = 0. Still we want to note that, for
larger values of α, the required amount of substrate is reduced in comparison with pure
diffusion transport case (see Fig. 1).

We propose one more modification of the control algorithm, which is based on the
well-known time-delayed feedback control method [12]. In our algorithm, we apply the
forward looking control boundary condition

S(X, t) =
1

µ(α)
Q(t+ τ),

Nonlinear Anal. Model. Control, 24(4):626–638
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)

Figure 4. Product (P ) molar flow rate J0(P ), mol s−1 at x = 0 when the objective function Q is defined by
(19) (black line). The corrected proportional algorithm (11) is used. Three different values of α are applied:
α = 0 (red line), α = 5 (green line), α = 10 (blue line). The results of time-delayed feedback control algorithm
with τ = 0.1 are presented by brown line. The violet line presents results obtained for boundary conditions
reconstructed by solving the inverse variational problem (6) when α = 10. Time t is measured in s.

where τ defines the time delay in the changes of the product flow with respect to perturba-
tions of the control boundary conditions. This parameter should be fitted to experimental
results. The results of this modified control algorithm are shown in Fig. 3 (the brown
line).

Next, we use the proposed algorithms to reconstruct a flux function typical in real-
world applications

Q2(t) =
1

µ(α)

{
4t/0.25, t < 0.25;

4 exp(−(t− 0.25)/2), t > 0.25.
(19)

The corrected proportional control algorithm (11) is used to define the required bound-
ary conditions. The results of experiments are presented in Fig. 4 for α = 0, 5, 10. Again,
we see that the proposed control algorithm is robust for both the diffusion and convection
dominated transport cases. The modified time-delayed feedback control scheme with
τ = 0.1 reduces the delay effect.

It is important to note that the variational approach to define the optimal control
boundary conditions gives a very good quality of the flux dynamics. For the convection
parameter α = 10, the spline function S̃9(t) (15) is defined by using M = 9 time points.
The results of computations are presented in Fig. 4 (see the violet line).

7 Conclusions

In this paper, we have modified the feedback control algorithm from [3] for a mathe-
matical model, which includes also the convection transport process and describes the
drug delivery system. The diffusion–convection–reaction system simulates the enzyme-
containing bioreactor, and the prodrug is converted into an active drug during the reaction.
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The model is simulated numerically, and the finite volume method is used to approxi-
mate the given nonstationary equations. The system of partial differential equations is
approximated with the second-order accuracy in space and time. Results of computational
experiments show that the proposed control algorithm is accurate and robust. Thus it can
be used in medical practices.

The potential accuracy of the proposed control algorithms is analysed by comparing
the obtained boundary conditions with the optimal boundary conditions. Such optimal
conditions are computed by solving the inverse variational problem. The parallel master–
slaves method is used to implement the search algorithm. The efficiency of the obtained
parallel algorithm is close to one.
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