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Abstract. In this paper, we study the approximate controllability of nonlocal fractional differential
inclusions involving the Caputo fractional derivative of order q ∈ (1, 2) in a Hilbert space. Utilizing
measure of noncompactness and multivalued fixed point strategy, a new set of sufficient conditions
is obtained to ensure the approximate controllability of nonlocal fractional differential inclusions
when the multivalued maps are convex. Precisely, the results are developed under the assumption
that the corresponding linear system is approximately controllable.
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1 Introduction

In recent years, fractional calculus has been applied in many real processes, and notable
contributions have been made to both theory and applications of fractional differential
equations. Fractional differential equations have been used in various fields such as fluid
flow, viscoelasticity, electrical networks, dynamical processes in porous structures, optics
and signal processing, hydraulics of dams, diffusion problems and so on [13–18]. On
the other hand, fractional evolution inclusions are an important form of differential in-
clusions within a nonlinear mathematical analysis [20]. Compared to fractional evolution
equations, research on the theory of fractional differential inclusions is however only in
its initial stage of development. This is essential since differential models involving the
fractional derivative give a brilliant tool for depiction of memory and genetic proper-
ties, and have recently been demonstrated as significant tools in the modeling of many
physical phenomena. Applied problems requiring definitions of fractional derivatives are
those, which can be physically interpreted for initial conditionscontaining u(0), u′(0), etc.
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Similar requirements are valid for boundary conditions. Caputo’s fractional derivative
fulfills these requests. Recently, the existence results for different kind of fractional dif-
ferential inclusions have been reported in [6–8, 16, 21, 22].

The notion of controllability is closely related to the theory of optimal control and
minimal realization [14, 15]. In particular, two important concepts such as exact and
approximate controllability are developed in the case of infinite-dimensional systems. It
should be noted that it is not easy to understand the conditions of exact controllability
for infinite-dimensional systems, and hence the approximate controllability becomes an
essential topic for dynamical systems. Therefore, in fact, it is necessary to study the
approximate controllability for nonlinear dynamical control systems [9, 23]. Several au-
thors [2, 17] studied the approximate controllability results of various class of nonlinear
systems utilizing compact semigroup, compact sectorial operator under the assumption
that corresponding linear system is approximately controllable. In this work, we attempt
to consider the approximate controllability of fractional nonlocal differential inclusion
using measure of noncompactness instead of assuming compactness of sectorial operator.
Byszewski [5] first considered a differential equation with nonlocal initial conditions and
proved that the corresponding models more precisely describe some physical phenomena
better than the standard initial condition since more data was used in its design. For
example, several physical phenomena in engineering, physics and life sciences can be
described with the help of differential equations subject to nonlocal boundary conditions
[10]. On the other hand, measure of noncompactness is an important tool in the wide
areas of functional analysis, topology, operator theory, for example, metric fixed point
theory, theory of operators in Banach spaces, optimizations, differential equations and so
on [1, 11].

Motivated by the previous works, in this paper, we investigate the approximate con-
trollability of the following integro-differential inclusions involving nonlocal conditions
in a separable Banach space (E, ‖·‖) in the following form:

CDq
t

[
u(t)−

t∫
0

(t− s)G

(
s, u

(
h1(t)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds

]
∈ Au(t) +Bx(t) + F

(
t, u(t)

)
+H

(
t, u(t)

)
, t ∈ [0, T ], (1)

u(0) = u0 + g(u), u′(0) = u1 + h(u) ∈ E, (2)

where 1 < q < 2, CDq
t denotes the generalized fractional derivative in Caputo sense,

A : D(A) ⊂ E → E is a closed and linear operator with the dense domain D(A) defined
in a Hilbert space E, the state u(t) takes its values in E, x(t) represents the control
function given in L2([0, T ], X), a Banach space of admissible control functions with X
as a Hilbert space, B : X → E is a bounded linear operator, F,H : [0, T ]× E → P(E)
are multivalued functions, g, h : E → E, a1 : D1×E → E andG : [0, T ]×E×E → E
are continuous functions satisfying certain conditions to be mentioned later, where D1 =
{(t, s) ∈ [0, T ] × [0, T ]: s 6 t} and h1, h2 : [0, T ] → [0, T ] are continuous functions
such that h1(t), h2(t) 6 t for t ∈ [0, T ].
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2 Preliminaries

In this section, we provide some definitions and lemmas, which are needed to establish
our main results. Throughout this paper, it is assumed thatE andX are Hilbert spaces. Let
C([0, T ];E) denote the Banach space of all the continuous functions from [0, T ] into E
equipped with the norm ‖z(t)‖C = supt∈[0,T ] ‖z(t)‖E . Let Lp((0, T );E) denote the Ba-
nach space of all Bochner-measurable functions from (0, T ) to E with the norm ‖z‖Lp =
(
∫
(0,T )

‖z(s)‖pE ds)1/p. Denote P(E) = {Z ⊂ E: Z 6= ∅}, PCcv(E) = {Z ∈ P(E):

Z is convex}, Pcp(E) = {Z ∈ P(E): Y is compact}, Pcv,cp(E) = Pcv(E) ∩ Pcp.
A multivalued map H : E → P(E) has convex values if H(u) is convex for all

u ∈ E. H is bounded on bounded set if H(C) = ∪u∈CH(u) is bounded in E for any
bounded set C ⊂ E (i.e. supu∈C{sup{|z|: z ∈ H(u)}} < +∞).

The multivalued map H is upper semicontinuous (u.s.c.) on E if for each u0 ∈ E, the
set H(u0) is a nonempty, closed subset of E, and if for each open set N of E containing
H(u0), there exists an open neighborhood M of u0 such that H(M) ⊂ N . Also, H is
lower semicontinuous (l.s.c.) if H : E → P(E) is a multivalued operator with nonempty
closed values, and if the set {u ∈ E: H(u) ∩ C 6= ∅} is open for any open set C ⊂ E,
H is completely continuous if H(C) is relatively compact for every bounded subset
C ⊂ E. If the multivalued function H is completely continuous with nonempty compact
values, then H is u.s.c. if and only if H has a closed graph. The multivalued function H
has a fixed point if there exists u ∈ E such that u ∈ H(u). A multivalued function
H : [0, T ]→Pcl(E) is called measurable if for each u∈E, the function Y : [0, T ]→R+

defined by Y(t) = d(u,H(t)) = inf{‖u− z‖: z ∈ H(t)} is measurable.

Definition 1. (See [4].) The Hausdorff measure of noncompactness χ of bounded subset
W ofE is given by χ(W ) = inf{ε > 0: W admits a finite cover by balls of radius 6 ε}.

Definition 2. (See [3].) A sequence {Fn}n>1 is called semicompact if

(i) it is integrable bounded;
(ii) the set {Fn}n>1 is relatively compact in E for almost all t ∈ [0, T ].

Lemma 1. (See [3].) Let {Wn}n>1 be a sequence of subsets of E. Assume that there is
a compact and convex subset W ⊂ E such that for any neighborhood M of W , there is
an N with Wm ⊂M for any m > N . Then ∩N>0 conv(∪n>NWn) ⊂W .

Let (E, d) denote a metric space induced from the normed space (E, ‖·‖). Define
Hd : P(E) × P(E) → R+ ∪ {∞} by Hd(W1,W2) = max{supw1∈W1

d(w1,W2),
supw2∈W2

d(W1, w2)}, where d(w1,W2) = infw2∈W2 d(w1, w2) and d(W1, w2) =
infw1∈W1 d(w1, w2). Then (Pbd,cl(E), Hd) is a metric space and (Pcl(E), Hd) is a gen-
eralized metric space.

Definition 3. A multivalued map G : E → Pcl(E) is said to be

(i) γ-Lipschitz if and only if there exists µ > 0 such that Hd(G(u1) − G(u2)) 6
µd(u1, u2) for every u1, u2 ∈ E;

(ii) a contraction if and only if it is µ-Lipschitz with µ < 1.
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Lemma 2. (See [12].) Let W be a closed convex subset of a Banach space E and
G : W → Pcv,cp(W ) be a closed multivalued function, which is χ-condensing. Then
G has a fixed point, where χ means a nonsingular measure of noncompactness defined on
subsets of W .

Now, we provide some basic definitions and properties of fractional calculus.

Definition 4. The Riemann–Liouville fractional integral operator J of order q > 0 is
defined as

Jqt F (t) =
1

Γ(q)

t∫
0

(t− s)q−1F (s) ds,

where F ∈ L1((0, T ), E).

Definition 5. The Riemann–Liouville fractional derivative as Dq
tF (t) = Dm

t J
m−q
t F (t),

m − 1 < q < m, m ∈ N, where Dm
t = dm/dtm, F ∈ L1((0, T );E), Jm−qt ∈

Wm,1((0, T );E). Here the notation Wm,1((0, T );E) stands for the Sobolev space de-
fined as Wm,1((0, T );E) = {y ∈ E: ∃z ∈ L1((0, T );E): y(t) =

∑m−1
k=0 dkt

k/k! +
tm−1/(m− 1)! · z(t), t ∈ (0, T )}. Note that z(t) = ym(t), dk = yk(0).

Definition 6. The Caputo fractional derivative is given as CDα
t F (t) = (1/Γ(m− α))×∫ t

0
(t−s)m−α−1Fm(t) dt,m−1 < α < m, whereF ∈ Cm−1((0, T ), E)∩L1((0, T ), E).

Definition 7. The definition of one parameter Mittag–Leffler function is given byEα(z) =∑∞
k=0 z

k/Γ(αk + 1), and two parameter function of Mittag–Leffler type is defined
by Eα,β(z) =

∑∞
k=0 z

k/Γ(αk + β) = (2πi)−1
∫
C
µα−βeµ/(µa − z) dµ, 0 < α, β,

z ∈ C, where C is a contour, which starts and ends at −∞ and encircles the disc
|µ| 6 |z|1/2 counter clockwise. The Laplace transform of Mittag–Leffler function is
defined by L(tβ−1Eα,β(−ραtα)) = λα−β/(λα + ρα), Reλ > ρ1/α, ρ > 0.

Definition 8. (See [19].) Let A :D(A) ⊂ E → E be a closed linear operator. A is
said to be sectorial operator of type (M, θ, µ) if there exist 0 < θ < π/2, M > 0 and
µ ∈ R such that the q-resolvent of A exists outside the sector µ+ Sθ = {µ+ λ̂: λ̂ ∈ C,
|arg(−λ̂)| < θ}, and ‖(λ̂I −A)−1‖ 6M/|λ̂− µ|, λ̂ /∈ µ+ Sθ.

Definition 9. (See [19].) Let A be a densely defined operator in E that satisfies the
conditions:

(i) For some 0 < θ < π/2, µ+ Sθ = {µ+ λ̂: λ̂ ∈ C, |arg(−λ̂)| < θ};
(ii) There is a constant M > 0 such that ‖(λ̂I −A)−1‖ 6M/(|λ̂−µ|), λ̂ /∈ µ+Sθ.

Then A is the infinitesimal generator of a semigroup T (t) satisfying ‖T (t)‖ 6 C. More-
over, T (t) = (2πi)−1

∫
Γ̃

eλ̂tR(λ̂, A) dλ̂, where Γ̃ is a suitable path for λ̂ /∈ µ + Sθ and
λ̂ ∈ Γ̃ .

Definition 10. (See [19].) A closed linear operator A : D(A) ⊂ E → E said to be a sec-
torial operator of type (M, θ, q, µ) if there exist 0 < θ < π/2,M > 0 and µ ∈ R such that
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the q-resolvent of A exists outside the sector µ+Sθ = {µ+λ̂q: λ̂ ∈ C, |arg(−λ̂q)| < θ},
and ‖(λ̂qI −A)−1‖ 6M/|λ̂q − µ|, λ̂q /∈ µ+ Sθ.

Remark 1. If A is a sectorial operator of type (M, θ, q, µ), then it is easy to see that A is
the infinitesimal generator of a q-resolvent family {Sq(t)}t>0 in a Banach space, and
Sq(t) = (2πi)−1

∫
Γ̃

eλ̂tλ̂q−1R(λ̂q, A) dλ̂, Kq(t) = (2πi)−1
∫
Γ̃

eλ̂tλ̂q−2R(λ̂q, A) dλ̂,
Rq(t) = (2πi)−1

∫
Γ̃

eλ̂tR(λ̂q, A) dλ̂, and Γ̃ is a suitable path with λ̂q /∈ µ + Sθ, where
λ̂ ∈ C.

Throughout this paper, we assume that Sq(t), Kq(t) and Rq(t) are equicontinuous
and there exists a positive constant M̃ such that ‖Sq(t)‖, ‖Kq(t)‖, ‖Rq(t)‖ 6 M̃ for all
t > 0.

Lemma 3. Let f be a function that satisfies the uniform Hölder condition with the
exponent β ∈ (0, 1], and letA be a sectorial operator of type (M, θ, q, µ). Then the unique
solution of the fractional system Dqu(t) = Au(t) + f(t), t ∈ [0, T ], 1 < q < 2, u(0) =
u0 ∈ E, u′(0) = u1 ∈ E is given by

u(t) = Sq(t)u0 +Kq(t)u1 +

t∫
0

Rq(t− s)f(s) ds, t ∈ [0, T ].

For any u ∈ E, define the sets as follows:

SH,u =
{
v ∈ L1

(
[0, T ], E

)
: v(t) ∈ H

(
t, u(t)

)
for a.e. t ∈ [0, T ]

}
,

SF,u =
{
f ∈ L1

(
[0, T ], E

)
: f(t) ∈ F

(
t, u(t)

)
for a.e. t ∈ [0, T ]

}
.

Consider the infinite-dimensional linear control system in the following form:

Dqu(t) = Au(t) +Bx(t), t ∈ [0, T ], 1 < q < 2,

u(0) = u0 ∈ E, u′(0) = u1 ∈ E,

where x(t) ∈ L2([0, T ], X), A : E → E, B : X → E and T > 0. It is appropriate at this
point to define the operator ΓTτ : E → E by

ΓTτ =

T∫
τ

Rq(T − s)BB∗R∗q(T − s) ds,

R
(
λ, ΓTτ

)
=
(
λI + ΓTτ

)−1
, λ > 0,

where B∗ represents the adjoint of B, ‖B‖ = MB and R∗q(t) is the self adjoint of Rq(t).
It is clear that ΓT0 is a linear bounded operator for τ = 0.

Lemma 4. (See [17].) The linear system (1)–(2) is approximately controllable if and only
if λR(λ, ΓT0 ) = λ(λI + ΓT0 )−1 → 0 as λ→ 0+ in the strong operator topology.

Now, the definition of the mild solution of (1)–(2) is presented.

Nonlinear Anal. Model. Control, 24(4):503–522
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Definition 11. A continuous function u : [0, T ] → E is called a mild solution for the
fractional control system (1)–(2) if for each t > 0 and x ∈ L2([0, T ], E), u(t) satisfies
the following integral equation:

u(t) = Sq(t)
[
u0 + g(u)

]
+Kq(t)

[
u1 + h(u)

]
+

t∫
0

Kq(t− s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds

+

t∫
0

Rq(t− s)Bx(s) ds+

t∫
0

Rq(t− s)f(s) ds

+

t∫
0

Rq(t− s)ρ(s) ds, t ∈ [0, T ], (3)

where f ∈ SF,u, and ρ ∈ SH,u.

3 Main results

To prove the results, we need to impose the following conditions on the data of the
system (1)–(2).

(A1) (i) The function G : [0, T ] × E × E → E is continuous, compact and there
exists a constant LG > 0 such that ‖G(t1, u1, v1) − G(t2, u2, v2)‖ 6
LG[|t1− t2|+ ‖u1− u2‖+ ‖v1− v2‖] for all t1, t2 ∈ [0, T ] and (u1, v1),
(u2, v2) ∈ E × E, C1 = supt∈[0,T ] ‖G(t, 0, 0)‖.

(ii) The map a1 :D×E → E is a continuous mapping and there exists a pos-
itive constant La1 such that∥∥∥∥∥

t∫
0

[
a1(t, s, u1)− a1(t, s, u2)

]
ds

∥∥∥∥∥ 6 La1‖u1 − u2‖

for (t, s) ∈ D, u1, u2 ∈ E, and C2 = T sup(t,s)∈D1
‖a1(t, s, 0)‖.

(A2) (i) The map t → H(t, u) is measurable for each u ∈ E and a.e. t ∈ [0, T ],
and u→ H(t, u) is upper semicontinuous for almost all t ∈ [0, T ].

(ii) There exists a functionmH(t) ∈ L1([0, T ],R+) and a continuous increas-
ing function WH : R+ → R+ such that ‖H(t, u)‖E := sup{‖ρ‖: ρ ∈
H(t, u)} 6 mH(t)WH(‖u‖E) for a.e. t ∈ [0, T ] and for each u ∈ E.

(iii) There exists a function α1 ∈ L1([0, T ],R+) such that for every bounded
subset W ⊂ E, χ(H(t,W )) < α1(t)χ(W ).

(A3) (i) The map t → F (t, u) is measurable for each u ∈ E and a.e. t ∈ [0, T ],
and u→ F (t, u) is upper semicontinuous for almost all t ∈ [0, T ].
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(ii) There exists a functionmF (t) ∈ L1([0, T ],R+) and a continuous increas-
ing function WF : R+ → R+ such that ‖F (t, u)‖E := sup{‖f‖: f ∈
F (t, u)} 6 mF (t)WF (‖u‖E) for a.e. t ∈ [0, T ] and for each u ∈ E.

(iii) There exists a function α2 ∈ L1([0, T ],R+) such that for every bounded
subset W ⊂ E, χ(F (t,W )) < α2(t)χ(W ).

(A4) The functions g, h : E → E are continuous, compact, and there exist constants
L1
g, L

2
g, L

1
h, L

2
h > 0 such that ‖g(u)‖E 6 L1

g‖u‖E + L2
g , for all u ∈ E, and

‖h(u)‖E 6 L1
h‖u‖E + L2

h for all u ∈ E.
(A5) For λ > 0, limr0→∞ sup(b/λ + c/λ + dW (r0)/(λr0)) < 1 and 2TM̃ ×

(1 +
√
TM2

BM̃
2/λ)(‖α1‖L1 + ‖α2‖L1) < 1, where W (r0) = max{WF (r0),

WH(r0)}.

In the following derivation, it will be proved that the fractional control system (1)–(2)
is approximately controllable if for all λ > 0, there is a continuous function u(·) ∈ E
defined in (3) and a control function x(t) such that

x(t) = xλ(t, u) = B∗R∗q(T − t)R
(
λ, ΓT0

)
p
(
u(·)

)
,

where

p
(
u(·)

)
= uT − Sq(T )

[
u0 + g(u)

]
−Kq(T )

[
u1 + h(u)

]
−

T∫
0

Kq(T − s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds

−
T∫

0

Rq(T − s)f(s) ds−
T∫

0

Rq(T − s)ρ(s) ds.

For convenience, let us introduce some other notations.

L = max
{

1,MBM̃, M̃M2
B , M̃

2,MBM̃
√
T
}
,

b1 = 3L
(
‖uT ‖+ M̃

(
‖u0‖+ L2

g + ‖u1‖+ L2
h

)
+ TM̃(LGC2 + C1)

)
,

b2 = 3M̃
(
‖u0‖+ L2

g + ‖u1‖+ L2
h + T (LGC2 + C1)

)
,

c1 = 3LM̃
(
L1
g + L1

h + TLG(1 + La1)
)
,

c2 = 3M̃
(
L1
g + L1

h + TLG(1 + La1)
)
,

d1 = 3LM̃MBT
(
‖mF ‖L1 + ‖mH‖L1

)
,

d2 = 3M̃T
(
‖mF ‖L1 + ‖mH‖L1

)
,

b = max{b1, b2}, c = max{c1, c2}, d = max{d1, d2}.

Theorem 1. If conditions (A1)–(A5) hold, then the set of solution for fractional control
system (1)–(2) is nonempty.

Nonlinear Anal. Model. Control, 24(4):503–522

https://doi.org/10.15388/NA.2019.4.2


510 A. Chadha et al.

Proof. For λ > 0, the multivalued operator Π : E → 2E is defined by

Π(u) =

{
y ∈ E: y(t) = Sq(t)

[
u0 + g(u)

]
+Kq(t)

[
u1 + h(u)

]
+

t∫
0

Kq(t− s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds

+

t∫
0

Rq(t− s)Bx(s) ds+

t∫
0

Rq(t− s)f(s) ds

+

t∫
0

Rq(t− s)ρ(s) ds, f ∈ SF,u, ρ ∈ SH,u

}
.

The proof of this theorem will be divided into several steps.

Step 1. To prove that the values of Π(u) are closed and convex.
Let u ∈ Br = {u ∈ E: ‖u‖ 6 r} and {yn, n > 1} be a sequence in Π(u) such

that yn → y ∈ E as n → ∞. Then there exist sequences {fn, n > 1} in SF,u and
{ρn, n > 1} in SH,u such that

yn(t) = Sq(t)
[
u0 + g(u)

]
+Kq(t)

[
u1 + h(u)

]
+

t∫
0

Kq(t− s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds

+

t∫
0

Rq(t− ξ)B

{
B∗R∗q(T − ξ)

[(
λI + ΓT0

)−1
uT − Sq(T )

[
u0 + g(u)

]
−Kq(T )

[
u1 + h(u)

]]
−B∗R∗q(T − ξ)

×
T∫

0

(
λI+ΓTs

)−1
Kq(T−s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds

−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)fn(s) ds

−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)ρn(s) ds

}
dξ

+

t∫
0

Rq(t− s)fn(s) ds+

t∫
0

Rq(t− s)ρn(s) ds. (4)
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It follows from (A2) and (A3) that ‖fn(t)‖ 6 mF (t)WF (‖u(t)‖E), ‖ρn(t)‖ 6
mH(t)WH(‖u(t)‖E) for every n > 1 and a.e. t ∈ [0, T ]. This implies that the sets
{fn, n > 1} and {ρn, n > 1} are integral bounded. Since {fn(t), n > 1} ⊂ F (t, u(t))
and {ρn(t), n > 1} ⊂ H(t, u(t)) for a.e. t ∈ [0, T ], the sets {fn(t), n > 1} and
{ρn(t), n > 1} are relatively compact in E for a.e. t ∈ [0, T ]. Therefore, the sets
{fn, n > 1} and {ρn, n > 1} are semicompact. Also, without loss of generality, we
can assume that fn and ρn converge weakly to the functions f ∈ L1([0, T ], E) and
ρ ∈ L1([0, T ], E), respectively. From Mazur’s lemma, for every number j ∈ N, there
are natural number m0(j) > j and a sequence of positive real numbers λj,m, m =

j, . . . ,m0(j), such that
∑m0(j)
m=j λj,m = 1. Moreover, the sequence of convex combina-

tions zj =
∑m0(j)
m=j λj,mfm and wj =

∑m0(j)
m=j λj,mρm, j > 1, converge strongly to

f ∈ L1([0, T ], E) and ρ ∈ L1([0, T ], E) as j → ∞, respectively. Therefore, we assume
that zj(t) → f(t) and wj(t) → ρ(t) for a.e. t ∈ [0, T ]. Since F and H take convex and
closed values, we have

f(t) ∈
⋂
j>1

{
zm(t), m > j

}
⊆
⋂
j>1

conv{fm, m > j} ⊆ F
(
t, u(t)

)
for a.e. t ∈ [0, T ],

and

ρ(t) ∈
⋂
j>1

{
wm(t), m > j

}
⊆
⋂
j>1

conv{ρm, m > j} ⊆ H
(
t, u(t)

)
for a.e.. t ∈ [0, T ].

For every t, s ∈ [0, T ] with s ∈ (0, t] and every n > 1, we have ‖Rq(t−s)zn(s)‖ 6 M̃×
mF (s)WF (‖u(s)‖E) ∈ L1([0, T ],R+), ‖Rq(t−s)wn(s)‖ 6 M̃mH(s)WH(‖u(s)‖E)∈
L1([0, T ],R+). Taking yj =

∑m0(j)
m=j λj,mym, from equation (4) it follows that

yn(t) = Sq(t)
[
u0 + g(u)

]
+Kq(t)

[
u1 + h(u)

]
+

t∫
0

Kq(t− s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds

+

t∫
0

Rq(t− ξ)B

{
B∗R∗q(T − ξ)

[(
λI + ΓT0

)−1
uT − Sq(T )

[
u0 + g(u)

]
−Kq(T )

[
u1 + h(u)

]]
−B∗R∗q(T − ξ)

×
T∫

0

(
λI+ΓTs

)−1
Kq(T−s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds
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−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)zn(s) ds

−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)wn(s) ds

}
dξ

+

t∫
0

Rq(t− s)zn(s) ds+

t∫
0

Rq(t− s)wn(s) ds, t ∈ [0, T ]. (5)

Since yn → y(t), zn(t) → f(t) and wn(t) → ρ(t) as n → ∞, from equation (5) and
Lebesgue’s dominated convergence theorem we get

y(t) = Sq(t)
[
u0 + g(u)

]
+Kq(t)

[
u1 + h(u)

]
+

t∫
0

Kq(t− s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds

+

t∫
0

Rq(t− ξ)B

{
B∗R∗q(T − ξ)

[(
λI + ΓT0

)−1
uT

− Sq(T )
[
u0 + g(u)

]
−Kq(T )

[
u1 + h(u)

]]
−B∗R∗q(T − ξ)

×
T∫

0

(
λI+ΓTs

)−1
Kq(T−s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds

−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)f(s) ds

−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)ρ(s) ds

}
dξ

+

t∫
0

Rq(t− s)f(s) ds+

t∫
0

Rq(t− s)ρ(s) ds,

where f ∈ SF,u and ρ ∈ SH,u. This demonstrates that Π(u) is closed. Since SF,u and
SH,u are convex, therefore the convexity of Π(u) is obvious.

Step 2. To construct a nonincreasing sequence {Sn, n > 1} of nonempty, bounded,
closed and convex subsets of E.

By assumption (A5), we have that for any λ > 0, there exists a positive constant
r = r0(λ) such that b/λ+cr/λ+dW (r)/λ 6 r. Take S0 = Br = {u ∈ E: ‖u‖ 6 r}. It
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is clear that S0 is a bounded, closed and convex subset of E. We claim that Π(S0) ⊆ S0.
To prove this, let u ∈ S0 and y ∈ Π(u). Now it follows from (A1)–(A4) and Hölder
inequality that∥∥y(t)

∥∥ 6 M̃
{[
‖u0‖+ L1

g‖u‖+ L2
g

]
+
(
‖u1‖+ L1

h‖u‖+ L2
g

)
+ T

[
LG
(∥∥u(t)

∥∥+ La1
∥∥u(t)

∥∥+ C2

)
+ C1

]
+ TMB

∥∥x(t)
∥∥

+ T‖mF ‖L1WF (r) + T‖mH‖L1WH(r)
}
.

For t ∈ [0, T ], we have∥∥x(t)
∥∥ 6 ‖B∗‖ ·

∥∥R∗q(T − t)R(λ, ΓT0 )∥∥[‖uT ‖+ M̃
[
‖u0‖+ L1

g‖u‖+ L2
g

]
+ M̃

[
‖u1‖+ L1

h‖u‖+ L2
h

]
+ M̃T

[
LG
(∥∥u(t)

∥∥+ La1
∥∥u(t)

∥∥+ C2

)
+ C1

]
+ M̃T‖mF ‖L1WF (r) + M̃T‖mH‖L1WH(r)

]
6
MBM̃

λ

[
‖uT ‖+ M̃

(
‖u0‖+ L2

g + ‖u1‖+ L2
h

)
+ TM̃(LGC2 + C1)

]
+
MBM̃

2

λ

[
L1
g + L1

h + TLG(1 + La1)
]
r

+
MBM̃

λ

[
M̃ · T‖mF ‖L1 + TM̃‖mH‖L1

]
W (r)

6
b

3λL
+

c

3λL
r +

d

3λL
W (r) 6

r

3L
.

Therefore, we get∥∥y(t)
∥∥ 6 M̃

{[
‖u0‖+ L1

g‖u‖+ L2
g

]
+
(
‖u1‖+ L1

h‖u‖+ L2
h

)
+ T

[
LG
(∥∥u(t)

∥∥+ C2 + La1
∥∥u(t)

∥∥)+ C1

]
+
√
TMB‖x‖L2 + T‖mF ‖L1WF (r) + T‖mH‖L1WH(r)

}
6
b

3
+
c

3
r +

d

3
W (r) +

r

3

6
1

3

[
b+ cr + dW (r)

]
+
r

3

6
2r

3
6 r.

Therefore, we get Π(S0)⊆S0. Next, define Sn=convΠ(Sn−1), n>1. For every n>1,
it is clear that the set Sn is nonempty, closed and convex in E. By induction, we have
that the sequence {Sn, n > 1} is decreasing. Since S0 is convex and closed, therefore
we get S1 ⊆ S0. Hence S2 ⊆ convS1 ⊆ convS0 = S1. Assume Sn ⊂ Sn−1. Then it
is obvious Sn+1 ⊆ convSn ⊆ convSn−1 = Sn. Furthermore, S0 being bounded, Sn is
also bounded for every n > 1.
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Step 3. Let V = Π(S0). We claim that V is equicontinuous. Now, we show that Sn
is equicontinuous for every n > 1.

Let u ∈ V , then there exist u ∈ S0 with y ∈ Π(u). Therefore, there exist f ∈ SF,u
and ρ ∈ SH,u such that

y(t) = Sq(t)
[
u0 + g(u)

]
+Kq(t)

[
u1 + h(u)

]
+

t∫
0

Kq(t− s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds

+

t∫
0

Rq(t− s)Bx(s) ds+

t∫
0

Rq(t− s)f(s) ds

+

t∫
0

Rq(t− s)ρ(s) ds, t ∈ [0, T ].

Let t, t+ ε ∈ [0, T ] with ε > 0. Then we get∥∥y(t+ ε)− y(t)
∥∥

6
∥∥Sq(t+ ε)− Sq(t)

∥∥[‖u0‖+ L1
g‖u‖+ L2

g

]∥∥
+
∥∥Kq(t+ ε)−Kq(t)

[
‖u1‖+ L1

h‖u‖+ L2
h

]
+ εM̃

[
LG
(∥∥u(t)

∥∥+ La1
∥∥u(t)

∥∥+ C2

)
+ C1

]
+

t∫
0

∥∥Kq(t+ε−s)−Kq(t−s)
∥∥∥∥∥∥∥G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)∥∥∥∥∥ds

+ εM̃WF (r)

t+ε∫
t

mF (s) ds+WF (r)

t∫
0

∥∥Rq(t+ ε)−Rq(t− s)
∥∥mF (s) ds

+ εM̃WH(r)

t+ε∫
t

mH(s) ds+WH(r)

t∫
0

∥∥Rq(t+ ε)−Rq(t− s)
∥∥mF (s) ds. (6)

Utilizing the continuity of Sq(t),Kq(t) and Rq(t) in t in the uniform operator topology,
it can be obtained that righthand side of (6) tends to zero independently of u ∈ E, which
gives that U is equicontinuous. Then we can prove that S1 is equicontinuous for each
t ∈ [0, T ]. Evidenced by the same as above, Sn is equicontinuous for each n > 1.

Step 4. By using the previous results, we make a subset S = ∩∞n=1Sn, which is
nonempty in E. Now, it is sufficient to prove that limn→∞ χC(Sn) = 0.

Let ε > 0 and n > 1 be a fixed natural number. Now, there exists a sequence
{ym, m > 1} in Π(Sn−1) such that χC(Sn) = χCΠ(Sn−1) 6 2χC{yk, k > 1} + ε.
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For t ∈ [0, T ], from the above inequality, we get

χC(Sn) 6 2χ(W ) + ε, (7)

whereW = {ym, m > 1}. For every n > 1, Sn is equicontinuous. Then we get χ(W ) =
supt∈[0,T ] χ(W (t)). Thus, utilizing the nonsingularity of χ, inequality (7) becomes

χC(Sn) 6 2 sup
t∈[0,T ]

χ
(
W (t)

)
+ ε = 2 sup

t∈[0,T ]

χ
({
ym(t), m > 1

})
+ ε. (8)

Since ym ∈ Π(Sn−1), m > 1, there exists um ∈ Sn−1 such that ym ∈ Π(um), m > 1.
Then there exist fm ∈ SF,um and ρm ∈ SH,um such that

χ
{
ym(t), m > 1

}
6 χ

{
Sq(t)

[
u0 + g(um)

]}
+ χ

{
Kq(t)

[
u1 + h(um)

]}
+ χ

{ t∫
0

Kq(t− s)G

(
s, um

(
h1(s)

)
,

s∫
0

a1
(
s, τ, um

(
h2(τ)

))
dτ

)
ds

}

+ χ

{ t∫
0

Rq(t− s)Bxm(s) ds

}
+ χ

{ t∫
0

Rq(t− s)fm(s) ds

}

+ χ

{ t∫
0

Rq(t− s)ρm(s) ds

}
,

where

xm(s) = B∗R∗q(T − ξ)
[(
λI + ΓT0

)−1
uT − Sq(T )

[
u0 + g(um)

]
−Kq(T )

[
u1 + h(um)

]]
−B∗R∗q(T − ξ)

×
T∫

0

(
λI+ΓTs

)−1
Kq(T−s)G

(
s, um

(
h1(s)

)
,

s∫
0

a1
(
s, τ, um

(
h2(τ)

))
dτ

)
ds

−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)fm(s) ds

−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)ρm(s) ds.

Since g, h and G are compact, thus we only need to estimate χ{
∫ t
0
Rq(t − s)fm(s) ds},

χ{
∫ t
0
Rq(t− s)ρm(s) ds} and χ{

∫ t
0
Rq(t− s)Bx(s) ds}. From (A2) and (A3) we have

χ
{
fm(t), m > 1

}
6 χ

{
F
(
t, um(t)

)
, m > 1

}
6 α2(t)χ

{
um(t), m > 1

}
6 α2(t)χC(Sn−1) = γ1(t),
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χ
{
ρm(t), m > 1

}
6 χ

{
H
(
t, um(t)

)
, m > 1

}
6 α1(t)χ

{
um(t), m > 1

}
6 α1(t)χC(Sn−1) = γ2(t),

where γ1, γ2 ∈ L1([0, T ],R+). Moreover, for any m > 1, from assumptions (A2)(ii)
and (A3)(ii) we have ‖fm(t)‖ 6 mF (t)WF (r) and ‖ρm(t)‖ 6 mH(t)WH(r) for almost
t ∈ [0, T ]. Consequently, fm, ρm ∈ L1([0, T ], E). Therefore, we get α2(t)χC(Sn−1),
α1(t)χC(Sn−1) ∈ L1([0, T ], E). Then there is a compact set Vε ⊆ E, a measurable
set Jε ⊂ [0, T ] with measure less than ε and sequences of functions {f̃ εm}, {ρ̃εm} ∈
L1([0, T ], E) such that {f̃ εm(s), m > 1}, {ρm(s), m > 1} ⊂ Vε for all s ∈ [0, T ]

and ‖fm(s) − f̃ εm(s)‖ < 2γ1(s) + ε for every m > 1 and every s ∈ J ′ε = [0, T ] − Jε,
‖ρm(s) − ρ̃εm(s)‖ < 2γ2(s) + ε for every m > 1 and every s ∈ J ′ε = [0, T ] − Jε.
Therefore, we can get∥∥∥∥∥

t∫
0

Rq(t− s)
[
fm(s)− f̃ εm(s)

]
ds

∥∥∥∥∥
6 M̃T

∥∥2γ1(s) + ε
∥∥
L1 6 2M̃T

(
‖α2‖L1χC(Sn−1) + εT

)
(9)

and ∥∥∥∥∥
t∫

0

Rq(t− s)
[
ρm(s)− ρ̃εm(s)

]
ds

∥∥∥∥∥
6 M̃T

∥∥2γ2(s) + ε
∥∥
L1 6 2M̃T

(
‖α1‖L1χC(Sn−1) + εT

)
, (10)

also, ‖
∫
Jε
Rq(t−s)fm(s) ds‖ 6 M̃TWF (r)

∫
Jε
mF (s) ds, ‖

∫
Jε
Rq(t−s)ρm(s) ds‖ 6

M̃TWH(r)
∫
Jε
mH(s) ds. From (9)–(10) we obtain

χ

{ t∫
0

Rq(t− s)fm(s) ds

}

6 χ

{∫
J′
ε

Rq(t− s)fm(s) ds, m > 1

}
+ χ

{∫
Jε

Rq(t− s)fm(s) ds, m > 1

}

6 2M̃T
(
‖α2‖L1χC(Sn−1) + εT

)
+ TM̃WF (r)

∫
Jε

mF (s) ds,

and similarly, we can get χ{
∫ t
0
Rq(t−s)ρm(s) ds} 6 2M̃T (‖α1‖L1 ·χC(Sn−1)+εT )+

TM̃WH(r)
∫
Jε
mH(s) ds. Since ε is arbitrary and that the measure of Jε is less than ε,

we conclude that for all t ∈ [0, T ], χ{
∫ t
0
Rq(t − s)fm(s) ds} 6 2M̃T‖α2‖L1 ×

χC(Sn−1), χ{
∫ t
0
Rq(t − s)ρm(s) ds} 6 2M̃T‖α1‖L1 · χC(Sn−1). Next, we estimate

χC{
∫ t
0
Rq(t − s)Bxk(s) ds}. Let t ∈ [0, T ] and let χ{xm, m > 1} = β. Then for all

β′ > β, there exists a finite family {v1, v2, . . . , vj} ⊂ L2([0, T ], X) such that for any
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xm ∈ L2([0, T ], X), there is i ∈ {1, 2, . . . , j} with ‖xm− vi‖L2([0,T ],X) 6 β′. Thus, we
conclude that∥∥∥∥∥

t∫
0

Rq(t− s)Bxm(s) ds−
t∫

0

Rq(t− s)Bvi(s) ds

∥∥∥∥∥
6 M̃MB

t∫
0

∥∥xm(s)− vi(s)
∥∥ ds 6 M̃MB

√
T‖xm − vi‖L2([0,T ],X)

6 M̃MB

√
Tβ′,

and hence χC({
∫ t
0
Rq(t − s)Bxm(s) ds, m > 1}) 6 M̃MB

√
T · χ({xm, m > 1}).

Since χC{xm, m > 1} 6 MBM̃/λ · (2TM̃(‖α‖L1 + ‖α2‖L1)) · χC(Sn−1), which
gives that χ{

∫ t
0
Rq(t−s)Bxk(s) ds} 6 (2MBM̃

3/λ)T 3/2(‖α1‖L1 +‖α2‖L1)·χ(Sn−1).
Therefore, for all t ∈ [0, T ], we have χ{ym(t), m > 1} 6 2TM̃(1 +

√
TM2

BM̃
2/λ) ×

(‖α1‖L1 + ‖α2‖L1) · χ(Sn−1). Using the fact that ε is arbitrary and from inequality (8),
we obtain

χC(Sn) 6 2TM̃

(
1 +

√
TM2

BM̃
2

λ

)(
‖α1‖L1 + ‖α2‖L1

)
χC(Sn−1).

By means of a finite number of steps, we can write

0 6 χC(Sn)

6

(
2TM̃

(
1 +

√
TM2

BM̃
2

λ

)(
‖α1‖L1 + ‖α2‖L1

))n−1
χC(S1), n > 2.

From (A2) and (A3) we obtain limn→∞ χC(Sn) = 0.

Step 5. The multivalued function Π|S : S → 2S has a closed graph.
Let un → u in S ⊂ E, yn ∈ Π(un) and yn → y. We show that y ∈ Π(u). Indeed,

yn ∈ Π(un), it gives that there exist fn ∈ SF,un and ρn ∈ SH,un such that

yn(t) = Sq(t)
[
u0 + g

(
un
)]

+Kq(t)
[
u1 + h

(
un
)]

+

t∫
0

Kq(t− s)G

(
s, un

(
h1(s)

)
,

s∫
0

a1
(
s, τ, un

(
h2(τ)

))
dτ

)
ds

+

t∫
0

Rq(t− ξ)B

{
B∗R∗q(T − ξ)

[(
λI + ΓT0

)−1
uT

− Sq(T )
[
u0 + g

(
un
)]
−Kq(T )

[
u1 + h

(
un
)]]
−B∗R∗q(T − ξ)

×
T∫

0

(
λI+ΓTs

)−1
Kq(T−s)G

(
s, un

(
h1(s)

)
,

s∫
0

a1
(
s, τ, un

(
h2(τ)

))
dτ

)
ds
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−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)fn(s) ds

−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)ρn(s) ds

}
dξ

+

t∫
0

Rq(t− s)fn(s) ds+

t∫
0

Rq(t− s)ρn(s) ds. (11)

Now, we must show that there exist f ∈ SF,u and ρ ∈ SH,u such that

y(t) = Sq(t)
[
u0 + g(u)

]
+Kq(t)

[
u1 + h(u)

]
+

t∫
0

Kq(t− s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1
(
s, τ, u

(
h2(τ)

))
dτ

)
ds

+

t∫
0

Rq(t− ξ)B

{
B∗R∗q(T − ξ)

[(
λI + ΓT0

)−1
uT

− Sq(T )
[
u0 + g(u)

]
−Kq(T )

[
u1 + h(u)

]]
−B∗R∗q(T − ξ)

×
T∫

0

(
λI+ΓTs

)−1
Kq(T−s)G

(
s, u

(
h1(s)

)
,

s∫
0

a1(s, τ, u
(
h2(τ)

))
dτ

)
ds

−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)f(s) ds

−B∗R∗q(T − ξ)
T∫

0

(
λI + ΓTs

)−1
Rq(T − s)ρ(s) ds

}
dξ

+

t∫
0

Rq(t− s)f(s) ds+

t∫
0

Rq(t− s)ρ(s) ds. (12)

For every n > 2 and for a.e. t ∈ [0, T ], we have ‖fn(t)‖ 6 mF (t)WF (r), ‖ρn(t)‖ 6
mH(t)WH(r), which gives that the sets {fn, n > 1} and {ρn, n > 1} are integral
bounded. Additionally, conditions (A2), (A3) and convergence of {un}n>1 imply that
χ{fn(t), n > 1} 6 χ{F (t, un(t)), n > 1} 6 α2(t)χ{un(t), n > 1} = 0, χ{ρn(t),
n > 1} 6 χ{H(t, un(t)), n > 1} 6 α1(t)χ{un(t), n > 1} = 0. Therefore, the set
{fn, n > 1} and {ρn, n > 1} are relatively compact for a.e. t ∈ [0, T ]. Therefore,
the sequence {fn}n>1 and {ρn}n>1 are semicompact, and then we have that {fn}n>1

and {ρn}n>1 are weakly compact in L1([0, T ], E). Without loss of generality, it can be
assumed that fn and ρn converge weakly to function f and ρ, respectively. By Mazur’s
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lemma, for every natural number j, there exists a natural number m0(j) > j and a se-
quence of nonnegative real numbers λj,m, m= j, . . . ,m0(j), such that

∑m0(j)
m=j λj,m=1.

Thus, the sequences of convex combinations zj =
∑m0(j)
m=j λj,mf

m, j > 1, and wj =∑m0(j)
m=j λj,mρ

m, j > 1, converge strongly to f ∈ L1([0, T ], E) and ρ ∈ L1([0, T ], E) as
j → ∞, respectively. So, we may assume that zj → f(t) := f(t) and wj(t) → ρ(t) :=
ρ(t) for a.e. t ∈ [0, T ].

Let t be such that F (t, ·) and H(t, ·) are upper semicontinuous. Then, for any neigh-
borhood N1 of F (t, ·) and neighborhood N2 of H(t, ·), there exists a natural number n0
such that for any n > n0, F (t, un(t)) ⊆ N1, and H(t, un(t)) ⊆ N2. Since F and H
take convex and compact values, Lemma 1 gives that

⋂
j>1 conv(

⋃
n>j F (t, un(t))) ⊂

F (t, u(t)),
⋂
j>1 conv(

⋃
n>j H(t, un(t))) ⊂ H(t, u(t)). From Mazur’s theorem, there

exist sequences {zn}n>1 of convex combinations of fn and {wn}n>1 of convex com-
binations of ρn such that f(t) ∈

⋂
j>1 {zn(t), n > j} ⊆

⋂
j>1 conv{fn(t), n > j}

for a.e. t ∈ [0, T ] and zn converges strongly to f ∈ L1([0, T ], E). Also, ρ(t) ∈⋂
j>1 {wn(t), n > j} ⊆

⋂
j>1 conv{ρn(t), n > j} and wn converges strongly to ρ ∈

L1([0, T ], E). Then, for a.e. t ∈ [0, T ], f(t) ∈
⋂
j>1 conv{fn(t), n > j} ⊆⋂

j>1 conv{F (t, un(t)), n > j} ⊆ F (t, u(t)), and ρ(t) ∈
⋂
j>1 conv{ρn(t), n > j} ⊆⋂

j>1 conv{H(t, un(t)), n > j} ⊆ H(t, u(t)). In other words, we have that there exist
f ∈ SF,u and ρ ∈ SH,u. Moreover, by the continuity of G, h, g, Sq , Kq and Tq , from
equation (11) it is concluded that equation (12) holds true. Hence,Π|S has a closed graph.
As a consequence of above steps, it is concluded that the multivalued Π|S : S → 2S is
closed and χC-condensing with nonempty convex compact values. Thus, from Lemma 2
there exists a u ∈ S, which is a fixed point of Π , such that u ∈ Π(u). Hence, u(·) is
a mild solution for system (1)–(2).

Next, we make some additional assumptions to prove approximate controllability of
the fractional control system.

(A2) G is uniformly bounded.
(A3) The associated fractional linear differential inclusion of (1)–(2) is approximately

controllable.
(A4) R(λ, ΓT0 ) = (λI + ΓT0 )−1. For each t ∈ [0, T ], the operator λR(λI, ΓT0 )→ 0

as λ→ 0 in the strong operator topology.

Theorem 2. Assume that assumptions (A1)–(A7) hold. Then the control problem (1)–(2)
is approximately controllable.

Proof. Let uλ(·) be a fixed point of Π . Any fixed point of Π is a mild solution of (1)–(2)
under the control

xλ(t) = B∗R∗q(T − t)R
(
λ, ΓT0

)
p
(
uλ(·)

)
,

such that

uλ(t) = Sq(t)
[
u0 + g(uλ)

]
+Kq(t)

[
u1 + h(uλ)

]
+

t∫
0

Kq(t− s)G

(
s, uλ

(
h1(s)

)
,

s∫
0

a1
(
s, τ, uλ

(
h2(τ)

))
dτ

)
ds
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+

t∫
0

Rq(t− s)Bxλ(s) ds+

t∫
0

Rq(t− s)fλ(s) ds

+

t∫
0

Rq(t− s)ρλ(s) ds, t ∈ [0, T ],

where fλ ∈ SF,uλ = {fλ ∈ L1([0, T ], E): fλ(t) ∈ F (t, uλ(t)), for a.e. t ∈ [0, T ]},
ρλ ∈ SH,uλ = {ρλ ∈ L1([0, T ], E): ρλ(t) ∈ H(t, uλ(t)), for a.e. t ∈ [0, T ]} and
satisfies uλ(T ) = uT − λR(λ, ΓT0 )p(uλ), where

p(uλ) = uT − Sq(T )
[
u0 + g(uλ)

]
−Kq(T )

[
u1 + h(uλ)

]
−

T∫
0

Kq(T − s)G

(
s, uλ

(
h1(s)

)
,

s∫
0

a1
(
s, τ, uλ

(
h2(τ)

))
dτ

)
ds

−
T∫

0

Rq(T − s)fλ(s) ds−
T∫

0

Rq(T − s)ρλ(s) ds.

We have that F , G and H are uniformly bounded on [0, T ]. Then there are subsequences,
denoted by {G(t, uλ(h1(t)),

∫ t
0
a1(t, ζ, uλ(h2(ζ))) dζ)}, {F (t, uλ(t))} and {H(t, uλ(t))},

which converge weakly to, say, G(s), F (s) and H(s). Define

w(u) = uT − Sq(T )
[
u0 + g(u)

]
−Kq(T )

[
u1 + h(u)

]
−

T∫
0

Kq(T − s)G(s) ds−
T∫

0

Rq(T − s)f(s) ds

−
T∫

0

Rq(T − s)ρ(s) ds,

with f ∈ SF,u and ρ ∈ SH,u. For t ∈ [0, T ], it follows that∥∥p(uλ)− w(u)
∥∥

6
∥∥Sq(t)[g(uλ)− g(u)

]∥∥+
∥∥Kq(t)

[
h(uλ)− h(u)

]∥∥
+

∥∥∥∥∥
T∫

0

Kq(T − s)

[
G

(
s, uλ

(
h1(s)

)
,

s∫
0

a1
(
s, τ, uλ

(
h2(τ)

))
dτ

)
−G(s)

]
ds

∥∥∥∥∥
+

∥∥∥∥∥
T∫

0

Rq(T − s)
[
fλ(s)− f(s)

]
ds‖+

∥∥∥∥∥
T∫

0

Rq(T − s)
[
ρλ(s)− ρ(s)

]
ds

∥∥∥∥∥.
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Using (A1)–(A4) and strongly continuity of Sq(t),Kq(t) andRq(t), we have that p(uλ)→
w(u) as λ→ 0+ and∥∥uλ(T )− uT

∥∥ 6
∥∥λR(λ, ΓT0 )w(u)

∥∥+
∥∥λR(λ, ΓT0 )∥∥ · ∥∥p(uλ)− w(u)

∥∥
6
∥∥λR(λ, ΓT0 )w(u)

∥∥+
∥∥p(uλ)− w(u)

∥∥.
Then uλ(T )→ uT as λ→ 0+. Therefore, the nonlocal fractional control system (1)–(2)
is approximately controllable on [0, T ]. Hence, the proof of the theorem is completed.

4 Conclusion

Very few works are available in the literature, which deal with solvability and approximate
controllability of nonlocal differential inclusion involving fractional derivative utilizing
measure of noncompactness. Evolution inclusions of fractional order are committed to a
quickly developing area of the examination for inclusions and their applications to control
theory. Both linear and nonlinear differential inclusions can describe many phenomena
investigated in hybrid systems with dry friction, processes of controlled heat transfer, ob-
stacle problems and others. This work studied the approximate controllability of nonlocal
neutral differential inclusion of fractional order q ∈ (1, 2) utilizing sectorial operator,
multivalued fixed point strategy and measure of noncompactness under the assumption
that the corresponding linear system is approximately controllable. The approximate
controllability of neutral fractional differential inclusion with nonlocal and impulsive
conditions will be investigated in our future work.
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