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Abstract. A two-dimensional medium is considered in which the fields are described by the
Helmholtz equation. The linearized formulation of the problem of restoring the parameters of
the medium (the inverse problem for the Helmholtz equation) is studied. The conditions for the
uniqueness of detection of thin conducting layers are established. Examples are given of the
multivaluedness of the solution of the inverse problem in information, which was initially thought
to be even redundant for an unambiguous solution.
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1 Introduction

We consider the Helmholtz equation

∆u+ µσ(x, y)u ≡ ∂2u

∂x2
+
∂2u

∂y2
+ µσ(x, y)u = 0 (1)

in the band D = {(x, y): −∞ < x <∞, 0 < y < 1}.
Suppose that the solution u(x, y, µ) of equation (1) satisfies the boundary conditions

u(x, y = 1, µ) = 0;
∂u

∂y
(x, y = 0, µ) = −1. (2)

Let the parameter µ and the coefficient σ(x, y) be such that the solution of the boundary
value problem (1), (2) – a function u(x, y, µ) – exists and is unique. The exact conditions
on µ and σ will be indicated below.
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122 A.S. Barashkov

Definition 1. A direct problem for system (1), (2) is the problem of finding a function

ϕ(x, µ) = u(x, y = 0, mu). (3)

Definition 2. The inverse problem for system (1), (2) is the problem of determination the
coefficient σ(x, y) of the function ϕ(x, µ) from (3).

These problems are modeled in the calculation of fields and in the interpretation of
sounding data. In applications, for example, in electrical prospecting [6], the coefficient
σ(x, y) from (1) characterizes the structure of the Earth, the parameter µ has a sense of
the sounding frequency, u|y=0, ∂u/∂y|y=0 expressed in terms of the values of the electric
and magnetic field strengths on the Earth’s surface.

We note that for a one-dimensional analogue of equation (1), that is, for equation
∂2u/∂y2 +µσ(y)u = 0, the inverse problem is solved in an exhaustive manner [2,8,16].

In particular, the uniqueness theorem for the recovery of the coefficient σ(y) is proved
for a wide class of functions that includes piecewise-continuous functions σ(y).

The results on the inverse multidimensional problem for equation (1) are much more
modest – special cases were studied within the framework of simplifying assumptions
[1, 4, 10, 12, 13].

In this paper, we study the linearized version of problem (1), (2). The procedure for
linearization is as follows [14].

We consider the coefficient σ(x, y) = σ0 + γ(x, y), where ‖γ(x, y)‖ � ‖σ0‖. We
introduce a new parameter ε into system (1), (2) and expand the solution u(x, y, µ, ε) in
a series in this parameter: u = u0 + εu1 + ε2u2 + · · · .

ε: ∆u+ µ
(
σ0 + εγ(x, y)

)
u = 0,

ε0: ∆u0 + µσ0u0 = 0, u0|y=1 = 0;
du0
dy

∣∣∣∣
y=0

= −1,

ε1: ∆u1 + µσ0u1 = −µu0γ(x, y), u1|y=1 = 0;
∂u1
∂y

∣∣∣∣
y=0

= 0,

. . .

εn: ∆un + µσ0un = −µun−1γ(x, y), un|y=1 = 0;
∂un
∂y

∣∣∣∣
y=0

= 0.

We confine ourselves to the approximation u ≈ u0 + εu1. In this case, we consider
that ε equal to 1. To shorten the entries, we denote w = u0, v = u1. Then u = w + v,
where

d2w

dy2
+ µσ0w = 0, w|y=1 = 0;

dw

dy

∣∣∣∣
y=0

= −1, (4)

∆v + µσ0v = −µw(y, µ)γ(x, y), v|y=1 = 0;
∂v

∂y

∣∣∣∣
y=0

= 0. (5)

Next, we set and study inverse problems for system (4), (5).

https://www.mii.vu.lt/NA



On the possibility of remote detection of conductive layers 123

2 A single-layer medium

We assume in (4) that µ = −1, γ(x, y) = δ(y − b)α(x), where δ(t) is the Dirac delta
function (

∫∞
−∞ δ(t)f(t) dt = f(0), b ∈ (0; 1)) [17]. In the application to electrical

prospecting, this kind of function γ(x, y) means that a thin conductive layer with total
conductivity α(x) lies at the depth b [6].

Concerning relations (5), it will be convenient for us to use another equivalent form,
which obviously does not contain a delta function:

∆v − σ0v = 0, 0 < y < 1, y 6= b,

v|y=1 = 0;
∂v

∂y

∣∣∣∣
y=0

= 0, [v]|y=b = 0,

[
∂v

∂y

]∣∣∣∣
y=b

= w(b)α(x).
(6)

We recall the notation: [v]|y=b = v(x, b+ 0)− v(x, b− 0).
Thus, according to (6), the solution v(x, y) satisfies the equation for y 6= b, 0 < y < 1,

is continuous on the inner boundary y = b, and the derivative of the solution suffers
a discontinuity on this boundary.

We rewrite relation (4) for the case under consideration as

d2w

dy2
− σ0w = 0, w|y=1 = 0;

dw

dy

∣∣∣∣
y=0

= −1. (7)

We study system (7), (6). The function w(y) from (7) is written explicitly:

w(y) =
sh(
√
σ0(1− y))

√
σ0 ch

√
σ0

. (8)

The following result concerns the solution of system (6) [4, 15].

Theorem 1. Letα(x) be a bounded, infinitely differentiable function with bounded deriva-
tives. Then the bounded solution of problem (6) exists and is unique. In this case, the
solution v(x, y) is a continuous function in the domain D̄ = {(x, y): −∞ < x < ∞,
0 6 y 6 1} and an infinitely differentiable function in the domains D̄1 = {(x, y): −∞ <
x <∞, 0 6 y 6 b}, D̄2 = {(x, y): −∞ < x <∞, b 6 y 6 1}.

Definition 3. A direct problem for system (7), (6) is the problem of determining the
function

ϕ(x) = v(x, y = 0). (9)

In this case, the coefficient (number) σ0 and the function α(x) in (6) are assumed to be
known.

Comment. The function ϕ in Definitions 1, 3 differs by a term w(0), where w(y) is the
function from (7).

Definition 4. The inverse problem for system (7), (6) is the problem of reconstructing the
coefficient α(x) from (6) with respect to the functionϕ(x) in (7). In this case, the numbers
σ0, b participating in (6) are assumed to be known.
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The solution of the direct problem for system (7), (6) can be written out in explicit
form. To this end, we represent the function v(x, y) in (6) as the sum of a Fourier series:

v(x, y) =

∞∑
n=0

an(x) cosλny, (10)

where λn = π/2 + πn, n = 0, 1, 2, . . . .
Using the formula for calculating the coefficients of the Fourier series

an(x) = 2

1∫
0

v(x, y) cos(λny) dy,

the form of the function w(y) in (8), relation (6), we obtain equations for determining the
coefficients an(x):

d2an
dx2

−
(
λ2n + σ0

)
an =

2 cos(λnb) sh(
√
σ0(1− b))

√
σ0 ch

√
σ0

α(x). (11)

We recall that α(x) from (11) is an infinitely differentiable function bounded on the whole
axis. For equation (11), the Green’s function is easily written [9], so the solution of the
equation, bounded on the entire numerical axis, is given by the following formula:

an(x) = −
cos(λnb) sh(

√
σ0(1− b))

√
σ0 ch

√
σ0

∞∫
−∞

exp
(
−
√
λ2n + σ0|t− x|

)
α(t) dt (12)

Taking into account (12), (10), (9), we obtain an explicit formula for the solution of the
direct problem

ϕ(x) =

∞∫
−∞

K(x− t)α(t) dt, (13)

where

K(x) = −
sh((1− b)√σ0)
√
σ0 ch

√
σ0

∞∑
n=0

cos(λnb) exp(−
√
λ2n + σ0|x|)√

λ2n + σ0
.

Result (13) can easily be generalized to a multilayer medium using the linearity of the
problem.

In (4), (5), we take that µ ∈ {−η1,−η2, . . . ,−ηN}, where ηN > ηN−1 > · · · >
η1 > 0, γ(x, y) =

∑n
i=1 αi(x)δ(y − bi), where αi(x) ∈ L̃(∞)

1 (R), 0 < b1 < b2 · · · <
bn < 1. In an application to electrical prospecting, this kind of function means that thin
conductive layers with total conductivity αi(x) lie at depths bi, respectively.
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Concerning relations (5), it will be convenient for us to use another equivalent form,
which obviously does not contain a delta function:

∆vk − ηkσ0vk = 0, 0 < y < 1, y 6= bi, i = 1, 2, . . . , n,

vk|y=1 = 0;
∂vk
∂y

∣∣∣∣
y=0

= 0, [vk]|y=bi = 0,

[
∂vk
∂y

]∣∣∣∣
y=bi

= wk(bi)αi(x),

wk(y) =
sh(
√
σ0ηk(1− y))

√
σ0ηk ch(

√
σ0ηk)

, k = 1, 2, . . . , N.

(14)

We will explain that, according to (14), the solution vk(x, y) satisfies the equation for
0 < y < 1, y 6= bi, is continuous on internal boundaries y = bi, and the derivative of
solutions suffers a discontinuity at these boundaries.

The following result is true about the solution of system (14) [3, 4].

Theorem 2. Let αi(x), i = 1, 2, . . . , n, be bounded and infinitely differentiable func-
tions with bounded derivatives. Then the bounded solution vk(x, y), k = 1, 2, . . . , N , of
problem (14) exists and is unique.

Moreover, the solution vk(x, y) is a continuous function in a domain D̄ = {(x, y):
−∞ < x < ∞, 0 6 y 6 1} and an infinitely differentiable function in the domains
D̄1 = {(x, y): −∞ < x < ∞, 0 6 y 6 b1}, D̄i = {(x, y): −∞ < x < ∞, bi−1 6
y 6 bi}, i = 1, 2, . . . , n, D̄n+1 = {(x, y): −∞ < x <∞, bn 6 y 6 1}.

Definition 5. A direct problem for system (14) is the problem of defining functions

ϕk(x) = vk(x, y = 0), k = 1, 2, . . . , N. (15)

In this case, the coefficient (number) σ0, functions αi(x), numbers bi, i = 1, 2, . . . , n,
from (14) are considered known.

The solution of the direct problem for system (14), (15) can be written out in explicit
form:

ϕm(x) =

∞∫
−∞

n∑
j=1

Kmj(x− t)αj(t) dt, m = 1, 2, . . . , N. (16)

The functions Kmj(x) are completely analogous to the function K(x) in (13):

Kmj(x) = −
sh((1− bj)

√
ηmσ0)

√
ηmσ0 ch

√
ηmσ0

∞∑
n=0

cos(λnbj) exp(−
√
λ2n + ηmσ0|x|)√

λ2n + ηmσ0
.

Let us return to the problem with one layer.
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We apply to equation (13) the Fourier transform [7], assuming in addition that α(x) ∈
L1(−∞,∞). Let Φ(ω), K̃(ω), A(ω) be the Fourier images of the functions ϕ(x), K(x),
α(x), respectively. In particular,

K̃(ω) =
1√
2π

∞∫
−∞

K(x)e−iωx dx = −
√

2

π

sh((1− b)√σ0)
√
σ0 ch

√
σ0

∞∑
n=0

cos(λnb)

λ2n + σ0 + ω2
. (17)

For Fourier images, equation (11) can be written in the form
√

2πK̃(ω)A(ω) = Φ(ω). (18)

The uniqueness of the solution of (13) depends on the presence of zeros of the function
K̃(ω) in (18). If K̃(ω) 6= 0, ω ∈ (−∞,∞), ϕ(x) ≡ 0 and therefore Φ(ω) ≡ 0, then
A(ω) ≡ 0, and therefore α(ω) ≡ 0.

For b = 0, the series in (17) consists of positive terms, therefore K̃(ω) < 0, ω ∈
(−∞,∞). In addition, it turned out that, in this case, the sum of the series was calculated
[11, (1.421.2)].

For b ∈ (0; 1), the series in (17) is alternating, and the author has not succeeded in
finding the final result for calculating the sum of such a series.

Independent calculations led to the following result:

K̃(ω) =
− sh((1− b)√σ0)√

2π
√
σ0 ch

√
σ0

sh((1− b)
√
ω2 + σ0)√

ω2 + σ0 ch
√
ω2 + σ0

. (19)

It follows from (19) that K̃(ω) 6= 0, ω ∈ R. This yields

Theorem 3. The inverse problem (6), (7), (9) has at most one solution in the class of
infinitely differentiable bounded functions α(x) belonging to L1(R).

The class of functions indicated in the theorem can be extended without loss of
uniqueness of the solution, for example, adding to α(x) the term of the form

n∑
k=1

(ak cosωkx+ bk sinωkx).

In this case, the function α(x) will have both a continuous and a discrete spectrum; its
Fourier image – a function A(ω) – will have several delta functions in its record.

We introduce the notation for the extended class of functions L̃(∞)
1 (−∞,∞) – func-

tions of the form α(x) = β(x) +T (x), where β(x) is an infinitely differentiable function
bounded together with the derivatives belongingL1(−∞,∞), that is,

∫∞
−∞|β(x)|dx<∞,

and T (x) is a trigonometric polynomial.
Note that for practical applications, this class is enough. They are usually interested in

the conductivity of the form α(x) = A+ β(x), where A is a number, and β(x) is a finite
function. Such functions are represented in L̃(∞)

1 (−∞,∞).
We state the uniqueness theorem for the introduced class of functions.
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Theorem 4. The inverse problem (6), (7), (9) has no more than one solution in the class
of functions L̃(∞)

1 (−∞,∞).

An attempt to extend the class in the other direction leads to a loss of the result about
uniqueness. We are talking about the determination both the function α(x) and the number
b in (6) with respect to the function ϕ(x) in (9) (that is, from the information measured
on the surface of the medium we are trying to determine the depth of the layer and the
conductivity of the layer).

We indicate in the arguments of the function (19) the value b: K̃(ω, b). Suppose that
two sets (α1(x), b1), (α2(x), b2) from (6) correspond to the function ϕ(x) from (7). Then
(13) can be written as

√
2πK̃(ω, b1)A1(ω) = Φ(ω) =

√
2πK̃(ω, b2)A2(ω). (20)

It follows from the congruence (20), (19) that if 0 < b2 < b1 < 1 and A1(ω) is
the Fourier image of a function α1(x) from the class indicated in Theorem 2, then the
function A2(ω) = A1(ω)K̃(ω, b1)/K̃(ω, b2) is also an image of a function α2(x) from
the specified class.

We give concrete examples of the nonuniqueness of the solution of the inverse prob-
lem for system (7), (6), (9).

Example 1. Suppose that αi(x) ∈ L1(R) and, in (6),

σ0 = 1, b1 =
1

2
, α1(x) =

1

1 + x2
,

b2 =
1

3
, α2(x) =

1

2

∞∫
−∞

sh(0.5) sh(0.5
√
ω2 + 1)

sh(2/3) sh(2
√
ω2 + 1/3)

e−|ω|eiωx dω.

These two sets (b1;α1), (b2;α2) correspond to the same function ϕ(x) from (9):

ϕ(x) = −1

2

∞∫
−∞

sh(0.5) sh(0.5
√
ω2 + 1)

ch(1)
√
ω2 + 1 ch(

√
ω2 + 1)

e−|ω|eiωx dω.

Example 2. Suppose that αi(x) ∈ L̃(∞)
1 (R) and, in (6),

σ0 = 1, b1 =
1

2
, α1(x) = sinx,

b2 =
1

3
, α2(x) = sinx

sh(1/2) sh(
√

2/2)

sh(2/3) sh(2
√

2/3)
≈ 0.5122 sinx.

These two sets (b1;α1), (b2;α2) correspond to the same function ϕ(x) from (9):

ϕ(x) = − sinx
sh(1/2) sh(

√
2/2)

ch(1)
√

2 ch(
√

2)
≈ −0.08414 sinxϕ(x)

= − sinx
sh(1/2) sh(

√
2/2)

ch(1)
√

2 ch(
√

2)
≈ −0.08414 sinx.
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3 Two-layered medium

We assume that in (14), n = 2, N = 2, that is, µ ∈ {−η1,−η2}. Here η1, η2 > 0,
γ(x, y) =

∑2
i=1 αi(x)δ(y − bi), where αi(x) ∈ L̃(∞)

1 (R) , b1, b2 ∈ (0; 1), b1 < b2.
As applied to electrical prospecting, this kind of function γ(x, y) means that, at depths

b1, b2, there are thin conductive layers with total conductivity α1(x), α2(x), respectively.

Definition 6. The inverse problem #1 for system (14), (15) for n = 2, N = 2 is called
the problem of reconstructing the coefficients α1(x), α2(x) from (14) with respect to the
functions ϕ1(x), ϕ2(x) in (15). In this case, the numbers σ0, b1, b2, η1, η2 participating
in (14) are assumed to be known.

The solution of the direct problem for system (14), (15) for n = 2, N = 2, according
to (16), can be written out in explicit form

ϕm(x) =

∞∫
−∞

2∑
j=1

Kmj(x− t)αj(t) dt, m = 1, 2, (21)

where

Kmj(x) = −
sh((1− bj)

√
ηmσ0)

√
ηmσ0 ch

√
ηmσ0

∞∑
n=0

cos(λnbj) exp(−
√
λ2n + ηmσ0|x|)√

λ2n + ηmσ0
.

The following assertion is true for the inverse problem.

Theorem 5. The inverse problem #1 for system (14), (15) for n = 2, N = 2 has no more
than one solution (i.e., a set α1(x), α2(x)) in the class of functions L̃(∞)

1 (−∞,∞).

Proof. We use the fact that the functions are connected by equations (21).
Let Φm(ω), K̃mj(ω), Aj(ω) be the Fourier images of the functions ϕm(x), Kmj(x),

αj(x), respectively. For Fourier transforms, equations (21) go over into equations

√
2π

2∑
j=1

K̃mj(ω)Aj(ω) = Φm(ω), m = 1, 2. (22)

It follows from the calculation (19) that

K̃mj(ω) =
− sh((1− bj)

√
ηmσ0)

√
2π
√
ηmσ0 ch

√
ηmσ0

sh((1− bj)
√
ω2 + ηmσ0)√

ω2 + ηmσ0 ch
√
ω2 + ηmσ0

. (23)

The uniqueness of the solution of (21) this time depends on the determinant [5]

∆(ω) =

∣∣∣∣K̃11K̃12

K̃21K̃22

∣∣∣∣ . (24)

If ∆(ω) 6= 0, ω ∈ (−∞,∞), then system (21) has no more than one solution.
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We show that the determinant (24) is not equal to zero.
Suppose the contrary. Suppose that for some ω, ∆(ω) = 0. Then the columns of the

matrix generating the determinant (24) are proportional:

K̃11(ω)

K̃12(ω)
=
K̃21(ω)

K̃22(ω)
. (25)

Taking (23) into account, we rewrite (25) in the form

sh((1− b1)
√
η1σ0)

sh((1− b2)
√
η1σ0)

sh((1− b1)
√
ω2 + η1σ0)

sh((1− b2)
√
ω2 + η1σ0)

=
sh((1− b1)

√
η2σ0)

sh((1− b2)
√
η2σ0)

sh((1− b1)
√
ω2 + η2σ0)

sh((1− b2)
√
ω2 + η2σ0)

. (26)

We introduce the function

F (η) =
sh((1− b1)

√
ησ0)

sh((1− b2)
√
ησ0)

sh((1− b1)
√
ω2 + ησ0)

sh((1− b2)
√
ω2 + ησ0)

. (27)

Equality (26) means that F (η1) = F (η2), but this cannot be since F (η) from (27)
is a monotone function. This follows from the fact that the function G(x1, x2, t) =
sh(x1t)/sh(x2t) is monotonic for t > 0 (increasing with the condition x1 > x2 > 0
and decreasing with the condition 0 < x1 < x2).

Thus, it is shown that ∆(ω) 6= 0, ω ∈ R. Theorem 5 is proved.

We return to the inverse problem with one layer.
We will try to restore both the depth of the layer b and the “conductivity” α(x).

Since information on one frequency was not enough (Examples 1, 2), we assume that
information is available on two frequencies µ = −η1, µ = −η2. Instead of equations (14),
for n = 2, N = 2, we have equations

∆vk − ηkσ0vk = 0, 0 < y < 1, y 6= b,

vk|y=1 = 0;
∂vk
∂y

∣∣∣∣
y=0

= 0, [vk]|y=b = 0,

[
∂vk
∂y

]∣∣∣∣
y=b

= wk(b)α(x),

wk(y) =
sh(
√
σ0ηk(1− y))

√
σ0ηk ch(

√
σ0ηk)

, k = 1, 2.

(28)

The inverse problem for equations (28) is the problem of reconstructing the coefficient
α(x) and the number b with respect to the functions ϕ1(x), ϕ2(x) from (15). Number σ0
of (28) is assumed to be known. For Fourier images of functions α(x), ϕ1(x), ϕ2(x), we
have a system of equations analogous to system (22)

√
2πK̃1m(ω)A(ω) = Φm(ω), m = 1, 2. (29)

Nonlinear Anal. Model. Control, 24(1):121–137



130 A.S. Barashkov

If Φ1(ω) ≡ 0, then A(ω) ≡ 0, α(x) ≡ 0. At the same time, Φ2(ω) ≡ 0, it is inevitable.
In this case, any value b ∈ (0; 1) can be taken as a value b. Thus, there is no uniqueness
in the definition of a pair (α(x), b).

Suppose that Φ1(ω) is not identically zero, i.e., there is ω0 such that Φ1(ω0) 6= 0.
Then by (29), A(ω0) 6= 0, Φ2(ω0) 6= 0.

Let there be two sets (b1, A1(ω0)), (b2, A2(ω0)) that satisfy system (29) for ω = ω0,
wherein A1(ω0) 6= 0, A2(ω0) 6= 0. Then

K̃1m(ω0)A1(ω0) = K̃1m(ω0)A2(ω0), m = 1, 2,

or
K̃1m(ω0)A1(ω0) + K̃1m(ω0)

(
−A2(ω0)

)
= 0, m = 1, 2. (30)

Relations (30) can be regarded as a homogeneous system of linear equations by
definition A1(ω0), −A2(ω0). The determinant of this system coincides with ∆(ω0) from
(24). Since, by what has been proved, ∆(ω0) 6= 0 for b1 6= b2, then system (30) cannot
have nontrivial solutions.

Thus, it is shown that, according to information at two frequencies, the “depth” of the
layer and the “conductivity” of the layer are uniquely determined.

We now state the exact result.

Definition 7. The inverse problem #2 for system (28) is the problem of reconstructing the
coefficient α(x) and the number b from (28) with respect to the functions ϕ1(x), ϕ2(x)
from (19). The numbers σ0, η1, η2, participating in (28), are assumed to be known.

Theorem 6. The inverse problem #2 for system (28) has no more than one solution
(that is, a set (b, α(x))) if ϕ1(x) is not identically equal to zero, b ∈ (0; 1), α(x) ∈
L̃
(∞)
1 (−∞,∞).

Proof. The proof is given in the neighborhood of formula (30)).

We continue the study of the problem with two layers. We are trying to determine now
the functions α1(x), α2(x) (the conductivity of the layers) and the numbers b1, b2 (the
depth of the layers). It is quite obvious that, according to information on two frequencies
functions ϕ1(x), ϕ2(x) from (15), it is impossible to determine α1(x), α2(x), b1, b2
uniquely.

The result of Theorem 6 allows us to hope that the addition of information at the third
frequency will provide a single-valued recovery α1(x), α2(x), b1, b2. In this case, the
obvious necessary condition for such a recovery: α1(x), α2(x) are not identically zero.

Thus, we formulate the following inverse problem for system (14), (15), where n=2,
N = 3: by functions ϕ1(x), ϕ2(x), ϕ3(x) from (15) we reconstruct the functions α1(x),
α2(x) (conductivity of the layers) and the numbers b1, b2 (the depth of the layers) from (14).
In this case, of course, we assume that the frequencies η1, η2, η3 from (14) do not coincide.

Example 3. In equation (14), we take σ0 = 1, η1 = 1, η2 = 4, η3 = 9. We give an
example of functions ϕi(x), i = 1, 2, 3, in (15), for which the inverse problem of finding
the depths of the layers (numbers b1, b2) and conductivities (functions α1(x), α2(x)) has
a nonunique solution.
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We take the first solution in the following form: (b
(1)
1 , α

(1)
1 (x), b

(1)
2 , α

(1)
2 (x)), where

b
(1)
1 = 1/3, b(1)2 = 2/3,

α
(1)
i (x) = Ai1 sinx+Ai2 sin 2x+ Ci1 cosx+ Ci2 cos 2x, i = 1, 2.

We will indicate the numbers Aij , Cij later.
The second solution is taken in the similar form: (b

(2)
1 , α

(2)
1 (x), b

(2)
2 , α

(2)
2 (x)), where

b
(2)
1 = 1/4, b(2)2 = 1/2,

α
(1)
i (x) = Bi1 sinx+Bi2 sin 2x+Di1 cosx+Di2 cos 2x, i = 1, 2.

We will indicate the numbers Bij , Dij later.
We introduce the numbers d1 = 1−b(1)1 = 2/3, d2 = 1−b(1)2 = 1/3, d3 = 1−b(2)1 =

3/4, d4 = 1− b(2)2 = 1/2. We introduce the numbers fijandgij :

fij = sh(
√
ηidj) sh(

√
1 + ηidj), gij = sh(

√
ηidj) sh(

√
4 + ηidj).

Consider matrices F = {fij}, G = {gij} and vectors M = {fi4}, N = {gi4}, 1 6
i, j 6 3.

Let X = (x1, x2, x3)T, Y = (y1, y2, y3)T be solutions of linear systems FX = M ,
GY = N . Then the numbers Aij , Bij from the record of the two solutions of the inverse
problem are expressed as follows:

A11 = C11 = x1, A21 = C21 = x2, B11 = D11 = −x3, B21 = D21 = 1,

A12 = C12 = y1, A22 = C22 = y2, B12 = D12 = −y3, B22 = D22 = 1.

The corresponding functions ϕi(x) in (19) are given by the formulas

ϕi(x) = Hi sinx+Qi cosx+ Li sin(2x) +Ri cos(2x), 1 6 i 6 3.

To determine the numbers Hi, Li, we introduce the coefficients ui, vi:

ui =

√
ηi√

1 + ηi ch(
√
ηi) ch(

√
1 + ηi)

, vi =

√
ηi√

4 + ηi ch(
√
ηi) ch(

√
4 + ηi)

.

Then

Hi = ui(fi1A11 + fi2A21), Qi = ui(fi1C11 + fi2C21),

Li = vi(gi1B11 + gi2B21), Ri = vi(gi1D11 + gi2D21).

The calculations yield the following result:

x1 = 0.506844122, x2 = 1.049457908, x3 = −0.162736559,

y1 = 0.478780482, y2 = 1.097927044, y3 = 0.148940562,
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H1 = Q1 = 0.119924845, H2 = Q2 = 0.125599487, H3 = Q3 = 0.071750573,

L1 = R1 = 0.062963089, L2 = R2 = 0.079216346, L3 = R3 = 0.051521584.

We rewrite the result more compactly by writing down numbers with four valid significant
digits.

Information for solving the inverse problem (functions (15)):

ϕ1(x) ≈ −0.1199 sinx− 0.1199 cosx− 0.06296 sin(2x)− 0.06296 cos(2x)

for frequency η → 1,

ϕ2(x) ≈ −0.1256 sinx− 0.1256 cosx− 0.07922 sin(2x)− 0.07922 cos(2x)

for frequency η → 4,

ϕ3(x) ≈ −0.07175 sinx− 0.07175 cosx− 0.05152 sin(2x)− 0.05152 cos(2x)

for frequency η → 9.
To these functions there correspond two solutions of the inverse problem:

b1 =
1

3
, b2 =

2

3
,

α1(x) ≈ 0.5068 sinx+ 0.5068 cosx+ 0.4788 sin 2x+ 0.4788 cos 2x,

α2(x) ≈ 1.049 sinx+ 1.049 cosx+ 1.098 sin 2x+ 1.098 cos 2x

and

b1 =
1

4
, b2 =

1

2
,

α1(x) ≈ 0.1627 sinx+ 0.1627 cosx+ 0.1489 sin 2x+ 0.1489 cos 2x,

α2(x) ≈ sinx+ cosx+ sin 2x+ cos 2x.

We note one circumstance that is not obvious to the author. In the given example, the
information for solving the inverse problem – functions ϕi(x) – depends on 12 coeffi-
cients. On these twelve numbers, it is necessary to determine 10 values: 2 depths b1, b2
and 8 coefficients of trigonometric sums for α1(x), α2(x). It was assumed that, in such
situation, the solution of the inverse problem will be uniquely determined. But it turned
out that this is not so.

Therefore, the following definition is reasonable. Suppose that in the formulas (14),
(15) the frequency η takes 4 values: η1, η2, η3, η4.

Definition 8. The inverse problem # 2 for system (14), (15) for n = 2, N = 4 is the
problem of determining the coefficients α1(x), α2(x) and numbers b1, b2 in (14) with
respect to the functions ϕk(x), 1 6 k 6 4, in (15). The coefficient σ0 in (14), (15) is
assumed to be known.

We introduce the matrices

Fm(ω) = {fij}, 1 6 i, j 6 m, m = 2, 3, 4, (31)

where fij = sh(
√
ηiσ0dj) sh(

√
ω2 + ηiσ0dj).
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Theorem 7. Let the frequencies ηi, i = 1, 2, 3, 4, be such that detFm(ω) 6= 0, m =
2, 3, 4, if ω ∈ [0;∞), 1 − bi = di ∈ (0; 1), i = 1, 2, 3, 4, and di 6= dj when i 6= j.
Suppose that at least one function ϕk(x), 1 6 k 6 4, in (15) does not vanish identically.
Then the inverse problem # 2 for system (14), (15) has no more than one solution (that is,
a set α1(x), α2(x), b1, b2), where 0 < b1, b2 < 1, α1(x), α2(x) ∈ L̃(∞)

1 (−∞,∞).

Proof. Suppose the contrary. Let there be two sets b(1)1 , b(1)2 , α(1)
1 (x), α(1)

2 (x), b(2)1 , b(2)2 ,
α
(2)
1 (x), α(2)

2 (x), which, at four frequencies ηi, give the same solutions to the direct
problems (15).

We first consider the case when among the numbers b(1)1 , b(1)2 , b(2)1 , b(2)2 are no equal.
Analogously to (22), for the Fourier images of the corresponding functions, the following
relations hold for m = 1, 2, 3, 4:

√
2π

2∑
j=1

K̃
(1)
mj(ω)A

(1)
j (ω) = Φm(ω) =

√
2π

2∑
j=1

K̃
(2)
mj(ω)A

(2)
j (ω). (32)

The functions K̃(1)
mj(ω), A(1)

j (ω) correspond to the first solution of the inverse problem
b
(1)
1 , b(1)2 , α(1)

1 (x), α(1)
2 (x), and functions K̃(2)

mj(ω), A(2)
j (ω) – to the second. Since by

the hypothesis of the theorem at least one of the functions ϕk(x) does not vanish iden-
tically, it can be found ω0, for which (Φ1(ω0), Φ2(ω0), Φ3(ω0), Φ4(ω0)) 6= (0, 0, 0, 0).
Consequently, (A

(1)
1 (ω0), A

(1)
2 (ω0)) 6= (0, 0); (A

(2)
1 (ω0), A

(2)
2 (ω0)) 6= (0, 0).

From (32) there follow relations that can be regarded as a homogeneous system of
linear equations with respect to A(1)

1 (ω0), A(1)
2 (ω0),−A(2)

1 (ω0),−A(2)
2 (ω0)

2∑
j=1

K̃
(1)
mj(ω)A

(1)
j (ω) +

2∑
j=1

K̃
(2)
mj(ω)

(
−A(2)

j (ω)
)

= 0, m = 1, 2, 3, 4. (33)

The matrix of system (33) is obtained from matrix (31) by multiplying the rows by
non-zero factors. Since by the hypothesis of the theorem detF4(ω0) 6= 0, system (33)
has only a trivial solution, which contradicts the previously obtained relation (A

(1)
1 (ω0),

A
(1)
2 (ω0)) 6= (0, 0). The case when among the numbers b(1)1 , b(1)2 , b(2)1 , b(2)2 are equal

numbers, is treated similarly.
Theorem 7 is proved.

4 Multilayered medium

We return to system (14), (15): the medium contains n thin layers, measurements are
known at N frequencies.

Definition 9. The inverse problem #1 for system (14), (15) is called the problem of
restoring the coefficients αi(x), i = 1, 2, . . . , n, from (14) with respect to the functions
ϕk(x), k = 1, 2, . . . , N , from (15). The numbers σ0, bi, ηk participating in (14) are
assumed to be known.
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Definition 10. The inverse problem #2 for system (14), (15) is called the problem of
determining the coefficients αi(x) and numbers bi (depths of submergence of layers),
i = 1, 2, . . . , n, from (14) with respect to the functions ϕk(x), 1 6 k 6 N , in (15). In
this case, the coefficient σ0 and frequencies ηk are considered known.

We recall that the functions ϕk(x), αi(t) are connected by equations (16).
Let Φm(ω), K̃mj(ω), Aj(ω) be the Fourier images of the functions ϕm(x), Kmj(x),

αj(x), respectively. For Fourier transforms, equations (16) go over into equations

√
2π

n∑
j=1

K̃mj(ω)Aj(ω) = Φm(ω), m = 1, 2, . . . , N. (34)

The functions K̃mj(ω) are defined in (23).
We introduce the matrix

FnN (ω) = {fki}, 1 6 k 6 N, 1 6 i 6 n, (35)

where fki = sh(
√
ηkσ0di) sh(

√
ω2 + ηkσ0di). This matrix is analogous to the matrix

in (31) and differs from it by the number of rows and columns.

Theorem 8. Let n = N , and let the frequencies ηk and di = 1 − bi be such that
detFnn(ω) 6= 0, ω ∈ [0;∞). Suppose that at least one of the functions ϕm(x) in (15)
does not vanish identically. Then the inverse problem #1 for system (14), (15) has no more
than one solution (i.e., a set αi(x), i = 1, 2, . . . , n), where αi(x) ∈ L̃(∞)

1 (−∞,∞).

Proof. In the case under consideration, system (34) has a square matrix of coefficients
{
√

2πK̃mj(ω)}, 1 6 m, j 6 n. If the determinant of this matrix is not equal to zero, then
the inverse problem #1 has a unique solution. But this matrix is obtained from the matrix
Fnn(ω) from (35) by multiplying the rows by nonzero factors. Hence, its determinant is
not equal to zero, just like the determinant detFnn(ω) .

Theorem 8 is proved.

Now we indicate the situation when there is no uniqueness of the solution of the
inverse problem.

Theorem 9. Let N = 2n− 1. Let the frequencies ηk, k = 1, 2, . . . , N , be such that there
are arguments ω1, ω2, . . . , ωl for which detFNN (ωk) 6= 0, k = 1, . . . , l, di = 1− b(2)i−n,
i = n + 1, . . . , N (the matrix FNN is defined in (35)). Then there exists more than one
solution of the inverse problem #2, namely, a solution of this type:

(i) α
(1)
i (x) =

l∑
k=1

Aik sin(ωkx), b
(1)
i , i = 1, . . . , n,

(ii) α
(2)
i (x) =

l∑
k=1

Bik sin(ωkx), b
(2)
i , i = 1, . . . , n,

and among the numbers b(1)i , b(2)i there are no identical.
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Proof. We write system (34) for two supposed solutions:

√
2π

n∑
j=1

K̃
(1)
mj(ωk)Ajk = Φm(ω0) =

√
2π

n∑
j=1

K̃
(2)
mj(ωk)Bjk,

m = 1, 2, . . . , N , k = 1, 2, . . . , l. We rewrite these relations in the form

n∑
j=1

K̃
(1)
mj(ωk)Ajk +

n−1∑
j=1

K̃
(2)
mj(ωk)(−Bjk) = K̃(2)

mn(ωk)Bnk. (36)

Let us put it Bnk = 1. We consider (36) systems of linear equations for the determination
of numbers Ajk, 1 6 j 6 n, Bjk, 1 6 j 6 n− 1, 1 6 k 6 l. The matrix of coefficients
of these systems is obtained from matrices FNN (ωk) by multiplying rows by non-zero
factors. Consequently, systems (36) have a unique solution, which give two solutions of
the inverse problem.

Theorem 9 is proved.

Let us give a concrete example.

Example 4. The actions indicated in Theorem 9 are carried out for n = 3, N = 5, l = 2.
Let σ0 = 1, ω0 = 1, η1 = 1, η2 = 4, η3 = 9, η4 = 16, η5 = 25. We indicate two
solutions of the inverse problem #2:

(i)

b1 = 0.3, α1(x) = A11 sinx+A12 sin 2x,

b2 = 0.5, α2(x) = A21 sinx+A22 sin 2x,

b3 = 0.7, α3(x) = A31 sinx+A32 sin 2x;

(ii)

b1 = 0.2, α1(x) = B11 sinx+B12 sin 2x,

b2 = 0.4, α2(x) = B21 sinx+B22 sin 2x,

b3 = 0.6, α3(x) = B31 sinx+B32 sin 2x,

where (the results are given with four valid significant digits)

A11 ≈ 0.06164, A21 ≈ 0.7440, A31 ≈ 0.5978,

A12 ≈ 0.05742, A22 ≈ 0.7287, A32 ≈ 0.6081,

B11 ≈ 0.005284, B21 ≈ 0.2962, B31 = 1.0000,

B12 ≈ 0.004785, B22 ≈ 0.2832, B32 = 1.0000.

Both these solutions correspond to functions ϕi(x), i = 1, 2, 3, 4, 5, in (14) of the form

ϕi(x) = Ci1 sinx+ Ci2 sin 2x

(for frequencies η = 1, 4, 9, 16, 25, respectively), where

C11 ≈ −0.09075, C21 ≈ −0.02183, C31 ≈ −0.004850,

C41 ≈ −0.001177, C51 ≈ −0.0003194,
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C12 ≈ −0.04606, C22 ≈ −0.01336, C32 ≈ −0.003403,

C42 ≈ −0.0008992, C52 ≈ −0.0002575.

We note an interesting circumstance. In the given example, the information for solving
the inverse problem – functions ϕi(x) – depends on 10 coefficients. For these ten numbers
it is necessary to determine 9 values: 3 depths b1, b2, b3 and 6 coefficients of trigonometric
sums for α1(x), α2(x), α3(x). A priori, it seemed that the information was superfluous,
and the uniqueness of the solution to the reverse problem must be.

Theorem 9 and Example 4 show that this is not so.
Comment. It is possible to give an example of the nonuniqueness of the solution of the
inverse problem #2 when the functions αi(x) ∈ L1(R). But then the functions will be
more difficult to express in quadratures as in the example of nonuniqueness 1, which is
less obvious and more difficult to verify.

Theorem 10. Let N = 2n. Let the frequencies ηi, i = 1, 2, . . . , N , be such that
detFmm(ω) 6= 0, m = 2, 3, . . . , N , if ω ∈ [0;∞), 1− bi = di ∈ (0; 1), i = 1, 2, . . . , N ,
and di 6= dj when i 6= j. Suppose that at least one function ϕk(x), 1 6 k 6 N , in (15)
does not vanish identically. Then the inverse problem #2 for system (14), (15) has no
more than one solution (that is, a set αi(x), bi, i = 1, 2, . . . , n), where 0 < bi < 1,
αi(x) ∈ L̃(∞)

1 (−∞,∞).

Proof. The proof of Theorem 10 repeats word for word the proof of Theorem 7 when the
dimension 2 is replaced by dimension n.

5 Conclusion

To restore the conductivity of layers αi(x), i = 1, 2, . . . , n, at known depths bi, it is
necessary to have measurements at n frequencies – functions ϕi(x), i = 1, 2, . . . , n.

In order to restore the conductivity of the layers αi(x), i = 1, 2, . . . , n, and the depths
of submergence of layers bi (i.e., additionally, to determine n numbers), it is necessary to
have measurements at N = 2n frequencies – functions ϕi(x), i = 1, 2, . . . , N . A smaller
number N − 1 of functions ϕ1(x), ϕ2(x), . . . , ϕN−1(x), even if they are given by
hundreds of parameters, are not enough to determine n depths bi and n conductivities
of the layers αi(x).
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