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Abstract. In this paper, the stability of fractional differential equations (FDEs) with unknown
parameters is studied. Using the graphical based D-decomposition method, the parametric stability
analysis of FDEs is investigated without complicated mathematical analysis. To achieve this,
stability boundaries are obtained firstly by a conformal mapping from s-plane to parameter space
composed by unknown parameters of FDEs, and then the stability region set depending on the
unknown parameters is found. The applicability of the presented method is shown considering
some benchmark equations, which are often used to verify the results of a new method. Simulation
examples show that the method is simple and give reliable stability results.

Keywords: stability, fractional differential equations, fractional derivative, unknown parameters,
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1 Introduction

Fractional differential equations [18, 28] are generalization of classical integer-order dif-
ferential equations through the application of fractional calculus [30], which has been
developed by pure mathematicians firstly since after half of the 19th century, though
engineers and physicists found applications of fractional calculus for various concepts 100
years later [50]. As a field of mathematical analysis, fractional calculus studies the possi-
bility of taking real or complex number powers of differential operators. It may be con-
sidered an old branch of mathematical analysis, but it is a novel topic yet [20]. Especially,
fractional calculus has gained a great deal of popularity in modelling some physical and
engineering systems as well as fractal phenomena in the last few decades [3,12,35,36]. In
fact, many systems in the real world are now better characterized by FDEs and analysed by
numerical techniques developed for solving differential equations involving noninteger-
order derivatives [16]. FDEs are also known as extraordinary differential equations.

Continuing technological developments have required new methods in basic sciences,
especially in mathematics for analysis and design of physical systems and their con-
trol tools. These methods which are easily implemented with the advancement of high
speed computers aimed to better and better characterization, design tools and control
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performance of modern technological products of engineering systems of developing
civilization. These developments, which had covered only static system models involving
geometry and algebra until 1965, had started using dynamical models involving differen-
tial and integral calculus since 1965; and now have been accelerating since the 1960’s with
the fractional-order modelling involving FDEs, which have gained force and dare with
high speed computers. Hence, FDEs have become a powerful tool in studying, designing
and control of physical systems and engineering products of the present world and it still
constitutes a popular research area resulting with new definitions of fractional derivative
and its applications in need.

Atangana and Baleauno have proposed a new fractional derivative with nonlocal and
no singular kernel and applied it to solve fractional heat transfer model [2]; Wang and Liu
have used a different solution procedure for nonlinear fractional porous media equation
based on a new fractional derivative [34]; Sayevand and Pichaghci have analyzed non-
linear fractional KdV equation based on He’s fractional derivative [31]; Yang et al. have
proposed a new numerical technique for solving the local fractional diffusion equation
by using two-dimensional extended differential transform approach [48]; Yang with some
other co-authors has also done a comprehensive study of the methods, which have been
used for the solutions of the problems containing fractional derivatives and integral opera-
tors [39]. In a very recent paper by Ortigueira and Machado, a framework for compatible
integer and fractional calculus is described and how suitable fractional formulations are
really extensions of integer-order definitions; the particular case of fractional linear sys-
tems is considered and the problem of initial conditions are tackled [27].

Continuing to review the recent literature about fractional derivatives, Yang et al. have
addressed in 2017 new general fractional derivatives (GFDs) involving the kernels of
the extended Mittag–Leffler-type functions; with the aid of the GFDs in the mentioned
kernels, they analysed and discussed the mathematical models for the anomalous diffusion
of fractional order; their formulation were also used to describe complex phenomena
occurring in heat transfer [44]. The same year, fractional-order relaxation equations of
constants and variable orders in the sense of Caputo type are modelled from mathematical
view of point for the first time [37]; the comparative results of the anomalous relaxation
among the various fractional derivatives are also given, they are very efficient in descrip-
tion of the complex phenomenon arising in heat transfer.

Further contributions of X.-J. Yang alone and/or with his colleges appear in [40–43]:
in [41], a new fractional derivative without singular kernel is defined and its potential
application for modelling the steady heat-flow conduction problem is shown; in [42],
a new fractional operator of variable order is proposed in sense of Caputo type, and the
results for the anomalous diffusion equations of variable order are discussed; in [43],
the growths of populations by means of local fractional calculus is modelled; in [40],
a family of the special functions by Mittag–Leffler function defined on the Cantor sets is
investigated, and the nonlinear local fractional-order differential equations are presented
by following the rules of local fractional derivative.

Yet, there have been many other recent publications about the local fractional deriva-
tives and fractional derivatives with special functions, some of them are summarized as
follows: in [49], general fractional derivatives with a nonsingular power-law kernel are
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investigated, and the anomalous diffusion models with nonsingular power-law kernel
are discussed; in [47], a new family of the local fractional PDEs is investigated, and
the linear, quasilinear, semilinear and nonlinear local fractional PDEs are presented;
in [46], a nondifferentiable model of the LC-electric circuit described by a local fractional
differential equation of fractal dimensional order is addressed; in [38], the local fractional
Klein–Gordon equation and Helmholtz equation in fractal (1 + 1)-dimensional space are
solved by the local fractional Laplace series expansion method; in [45], based on the
local fractional derivative, a new Boussinesq-type model in a fractional domain is derived;
in [10], problem similar to the anomalous diffusion phenomena in heat transfer [23,44] is
considered, and the general fractional calculus of Liouville–Weyl- and Liouville–Caputo-
type with the nonsingular power-low kernel is suggested to model the problem; finally,
in [11], which is stated as giving an accurate and efficient technique for solving the local
PDEs, a coupling of the variational iteration method with the Sumudu transform by the
local fractional calculus operator is proposed for the first time, and the exact solution for
the local fractional diffusion equation in fractal one-dimensional space is obtained.

Stability is one of the most important objects in the analysis and design of dynamical
systems. If the differential equation of a system has not a stable property, the system
may burn out, disintegrate or saturate when a signal is applied [7]. Therefore an unstable
system is useless in practice and needs a stabilization process via an additional control
element mostly [14]. If a system has unknown parameters, the stability analysis is called
as parametric stability analysis. It is more difficult than the classical stability analysis,
which has simple analysis methods such as Routh–Hurwitz method, Nyquist stability the-
orem, etc. In the literature, there are some methods on the stability of FDEs with uncertain
parameters [8]. The uncertainty in these studies is considered by a certain interval of the
unknown parameters. However, to consider the unknown parameters’ values in a whole
parametric interval from zero to infinity is more useful than a certain little interval, which
is the subject of this paper.

Motivated by the need of stability analysis for FDEs with unknown parameters, we
suggest in this paper an efficient graphical based stability analysis using the D-decom-
position method [21]. The D-decomposition method provides a powerful and simple
stability work environment to the analyst. This method is based on a conformal map-
ping from frequency domain to parametric domain of unknown parameters. With this
mapping, the imaginary axis, which is the stability bound of complex s-plane, converts
to three types of stability boundaries, which are named as real, complex and infinite root
boundaries, in the parametric space. These boundaries give us the stability regions, which
are important tools including useful stability knowledge. The algorithm presented in this
paper has a reliable result, which is illustrated by several examples, and is practically
useful in the computerized analysis of FDEs having unknown parameters.

The paper is organized as follows. The basic principles of FDEs are revisited in the
next section. The stability concept for FDEs is explained in Section 3. A derivation of the
stability boundary formulae for the stability regions of fractional differential equations
with unknown parameters is given in Section 4. The next section illustrates the effective-
ness of the stability analysis proposed with three simulation examples. Finally, Section 6
gives some concluding remarks.

https://www.mii.vu.lt/NA



Stability analysis of fractional differential equations 227

2 Principles of fractional differential equations

In the most general case, FDEs are expressed by the following form [19]:

F
(
t, y(t), ηDt

α1y(t), . . . , ηDt
αny(t)

)
= G

(
t, u(t), ηDt

β1u(t), . . . , ηDt
βmu(t)

)
, (1)

where F and G are fractional differential functions, αi (i = 1 ∼ n) and βk (k = 1 ∼ m)
are positive real numbers such that 0 < α1 < α2 < · · · < αn, 0 < β1 < β2 < · · · < βm
and m < n. ηD

γ
t is fractional-order derivative and integral operator, and it is defined as

follows [8]:

ηDt
γ =


dγ/dtγ , <(γ) > 0,

1, <(γ) = 0,∫ t
η
(dτ)−γ , <(γ) < 0.

Here γ is fractional order, <(γ) is the real part of fractional order and η is a constant
coefficient related with initial conditions. Commonly, t is an independent variable rep-
resenting time, u(t) is input exiting function and y(t) is the output response function
of a dynamical system. There are various definitions for fractional derivative. Riemann–
Liouville, Grünwald–Letnikov, Caputo and Mittag–Leffler are the well-known and com-
mon definitions among them. (For a more detail of these definitions, the reader can
see [4, 28].)

One of the most common types of FDEs is linear time-invariant fractional differential
equation

n∑
i=0

ai0D
αi
t y(t) =

m∑
k=0

bk0D
βk
t u(t), αn 6= 0, α0 = 0, (2)

where ai and bk are real numbers, αi and βk are as defined for Eq. (1), βm 6 αn for
stability reason [27]. Equation (2) is also called as noncommensurate-order FDE. As
a special case, fractional orders ai and bk may be multiple of same real number α like
ai = iα and bk = kα. In this case, Eq. (2) is named by commensurate-order FDE [17,28].

The Laplace transform method is commonly used in engineering systems and their
analysis. According to Grünwald–Letnikov definition, Laplace transform of differential
operator 0D

γ
t is given by

L
{
0D

γf(t)
}
= sγF (s),

where s is the Laplace operator. Hence, for the differential equation in Eq. (2), the transfer
function giving the input-output expression of a system with zero initial conditions is
given by

G(s) =
Y (s)

U(s)
=

∑m
i=0 bis

βi

ao +
∑n
i=1 ais

αi
=
N(s)

D(s)
. (3)

In this equation, U(s) is the Laplace transform of the exciting function u(t); similarly,
Y (s) is that of the response y(t). N(s) and D(s) are the numerator and denominator
polynomials of the transfer function, respectively. Being the stability as a first, the func-
tion given in Eq. (3) contains many important system information and concepts.
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3 Stability analysis of fractional differential equations

There are many ways of testing the stability of a linear time-invariant differential equa-
tion. Stability of the differential equation can be examined by applying Routh–Hurwitz
test on its denominator polynomial, checking the locations of the poles of its transfer
function whether they are on the left half s-plane or not and exploring whether the output
remains bounded with an impulse or step input excitation [26]. If the differential equation
involves time-delay or fractional-order terms, in this case, Routh–Hurwitz’ criteria cannot
be applied.

The denominator seen in Eq. (3) of a FDE is in the form of a quasi-polynomial, and it
is expressed by

D(s) = ans
an + an−1s

an−1 + · · ·+ a1s
a1 + a0. (4)

For the stability analysis, the quasi-polynomial in Eq. (4) is transformed to the following
commensurate-order quasi-polynomial:

Dc(s) = an

n∏
i=0

(
sα + λi

)
=

n∏
i=0

P
(
sα
)
,

where α is the least common multiple of α1, α2, . . . , αn. Stability condition of this frac-
tional-order polynomial was given by Matignon [23] in 1996 as follows:∣∣ arg(−λi)∣∣ > α

π

2
∀i = 1, 2, . . . , n,

where −λi (i = 1, 2, . . . , n) are the zeros of the pseudopolynomial P (sα) (pseudopoles
of the transfer function in Eq. (3)) [29]. Matignon’s stability analysis is applicable for
only linear FDEs whose coefficients are known and invariant. For the FDEs changing
their coefficients/parameters in an interval, Chen et al. [8] proposed a very effective
method for the stability analysis. However, to investigate the stability, it may be more
useful in the case when the parameters of a FDE change between minus and plus infinity.
In this paper, a method is presented for this type of stability analysis. The method is
based on obtaining stability boundaries and it contains a graphical presentation. The most
important property of this method is to construct a conformal mapping from s-plane to
parameter space composed by unknown parameters of the FDE. Therefore, the method is
called as parametric stability analysis and based on theD-decomposition method (see [25]
for more detail).

In the D-decomposition method, there are three stability boundaries of a polynomial
[15, 25]. The first boundary belongs to a real pole, which changes its stability property
when passing through origin and crossing the opposite half of s-plane with the parameter
changes. Therefore, this boundary is called real root boundary. It is obtained by putting
zero instead of s in Eq. (4) with

D(s)|s=0 = 0 =⇒ a0 = 0. (5)
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Second boundary is named by infinite root boundary because of the fact that the
boundary belongs to a pole, which changes stability property at infinity with the parameter
changes. Infinite root boundary is determined by equalizing the coefficient of the greatest-
order term to zero:

an = 0. (6)

In order to obtain the boundaries from Eqs. (5) and (6), the coefficients a0 and an should
contain unknown parameters. Otherwise, these boundaries do not exist for the considered
FDE.

The last boundary results a couple of complex poles passing to one half-plane from
the other half-plane over the imaginary axis of the s-plane with the parameter changes.
This is the main boundary, which determines the stability region of the FDE and is named
by complex root boundary. To obtain this boundary, s in Eq. (4) is replaced by jω as
follows:

D(jw) = an(jω)
an + an−1(jω)

an−1 + · · ·+ a1(jω)
a1 + a0. (7)

Using the expansion jx = cos(0.5πx) + j sin(0.5πx) in Eq. (7) for the fractional-order
powers of the complex number j, we get

D(jw) =

n∑
i=1

{
ai
[
cos(0.5παi) + j sin(0.5παi)

]
ωαi
}
+ a0.

By decomposing D(jw) into real and imaginary parts, we obtain

Dr(w) =

n∑
i=1

ai cos(0.5παi)ω
αi + a0, Di(w) =

n∑
i=1

ai sin(0.5παi)ω
αi . (8)

By equalizing Dr(ω) and Di(ω) to zero separately, two variable equations system whose
variables are the unknown parameters of the FDE are obtained. The complex root bound-
ary is found by solving of this system with respect to ω for 0 < ω < ∞. The stability
region of the FDE is enclosed by these three boundaries in the parameter space. The main
property of this region is that all parameters in this area make the FDE stable.

4 Parametric stability analysis of fractional differential equations

In this section, we consider the FDEs, which are often encountered in the engineering
systems and have the following form:

a0D
α2
t y(t) + b0D

α1
t y(t) + cy(t) = ku(t), (9)

where u(t) and y(t) are forcing and response functions, respectively; a, b, c and k are
real coefficients, α1 and α2 are the fractional-order powers such that 0 < α1 < α2 < 2.
In particular, when α1 = 1, α2 = 2, and u = 0, this equation becomes the describing
equation of, for example, velocity of a mass sliding on a frictional surface and attached
to a wall through a spring and stimulated by its initial kinetic energy (initial velocity),
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or describing equation of capacitor voltage variation in a series RLC resonator circuit
stimulated by the initial condition voltage on the capacitor [26]. For α1 = 0, α2 = 1,
and u = 0, it reduces simply to a first-order linear time-invariant differential equation
describing, for example, discharging process of a capacitor through a resistor in an RC
electrical circuit.

As it is pointed out in the previous section, the transfer function of a FDE encloses
important stability information. By taking the Laplace transform of the FDE in Eq. (9),
the transfer function giving input-output relation is obtained as

G(s) =
Y (s)

U(s)
=

k

asα2 + bsα1 + c
. (10)

If the coefficients a, b, c and the fractional orders α1 and α2 are constant or they change in
a specific interval, the stability of Eq. (10) can be determined by Matignon’s method [23]
and Chen et al.’s method [8] easily as mentioned in Section 3. Here we investigate the
parametric stability for the full variation range of these coefficients using the D-decom-
position method.

For obtaining the stability boundaries, we consider the denominator of Eq. (10)

D(s) = asα2 + bsα1 + c. (11)

The real root boundary for Eq. (11) is determined as

c = 0. (12)

Since α2 > α1, the infinite root boundary is found by applying Eq. (6) to Eq. (11) as
follows:

a = 0. (13)

For the complex root boundary, the real and imaginary parts of Eq. (8) are equalized to
zero and the following system of equations is obtained:

aωα2 cos(0.5πα2) + bωα1 cos(0.5πα1) + c = 0,

aωα2 sin(0.5πα2) + bωα1 sin(0.5πα1) = 0.

By solving this system of equations with respect to b, α1, α2 for the coefficients a and c,
we get the following formulas:

a = −bωα1−α2
sin(0.5πα1)

sin(0.5πα2)
, (14)

c = −bωα1
sin[0.5π(α2 − α1)]

sin(0.5πα2)
. (15)

By changing ω from zero to infinity for different values of b, α1 and α2, the complex root
boundaries are obtained.
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Definition 1. When three boundary conditions defined in Eqs. (12), (13), (14) and (15)
are drawn in (a, c)-plane together, the plane separates to many regions. The most basic
property of these regions is that all points in any region have the same number of stable or
unstable roots [25]. With this reference, the region whose all poles are stable are called as
stability region. Every point in this region makes the FDE in Eq. (9) stable. The stability
of each region can be determined by selecting a test point in the region and checking
the stability of Eq. (11) in every region [23]. Plot of stability boundaries and stability
regions on (a, c)-plane will yield the parametric investigation of the stability of the given
fractional-order system. This provides for example to design a more robust system.

5 Simulation examples

In this section, stability analysis of some fractional differential equations commonly used
in the literature are given for illustration of the validity of the presented method. In the first
example, fractional Basset equation defining the dynamical motion of an object, which
submerged into a fluid, is considered. In the next example, as a more general case, stability
analysis is investigated for a commensurate-order FDE. In the last example, the stability
ranges of the parameters a, b and c for an industrial heating furnace is investigated.

Example 1. The motion dynamic of an object, which is submerged into an incompressible
fluid, is one of the frequently studied topics in engineering literature. Basset [6] proposed
an equation and its solution for a sphere moving in a viscous liquid when the sphere
is moving in a straight line under the action of a constant force, such as gravity, and
also when the sphere is surrounded by viscous liquid and is set in rotation about a fixed
diameter and then left to itself [1]. This equation is named Basset equation, and it is
expressed by the following fractional-order differential equation:

a0D
1
t y(t) + b0D

α
t y(t) + cy(t) = u(t), (16)

where α ∈ (0, 1), and a 6= 0, b, c are arbitrary real coefficients [5]. While Eq. (16) is
called classical Basset equation for α = 0.5, it is named generalized Basset equation for
0 < α < 1 [22].

For the stability analysis of Basset equation, Govindaraj and Balachandran proposed
an analytical method in [13]. Even though they found solutions for the changes in the
coefficients a, b and c separately, they have not presented a general solution with respect
to changing in the coefficients. The goal in this example is to obtain a simple graphical
result giving the stability or instability of the equation according to the changing of the
parameters for the system given in Eq. (16).

Real and infinite root boundaries are the same with in Eqs. (12) and (13), respectively.
For the complex root boundary, putting α2 = 1 and 0 < α1 = α < 1 in Eqs. (14) and
(15), the expressions giving complex root boundary are found by

a = −bωα−1 sinα
π

2
, c = −bωα cosαπ

2
.

For the stability analysis of Eq. (16), we consider the classical Basset equation firstly. For
α = 0.5, the stability boundaries are
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(a) (b)

Figure 1. Stability boundaries (a) and region (b) of the classical Basset equation for b = −2.

(i) real root boundary: c = 0,
(ii) infinite root boundary: a = 0,

(iii) complex root boundary: a = −(
√
2/2)bω−0.5 and c = −(

√
2/2)bω0.5.

For changing ω from 0 to∞, these boundaries decompose the (a, c)-plane into many
number of regions for various values of b. For example, the stability boundaries constitute
five regions in the (a, c)-plane for the value of b = −2 as shown in Fig. 1(a), where
complex root boundary is ac = b2/2 = 2, a, c > 0 from (iii). Since the regions are
unlimited throughout the axes of a and c, the figure is limited for good visibility in the
interval of [−10, 10] for these axes. The most important characteristic of these regions is
that all points in every region have the same number of stable and unstable roots. Because
of this reason, to determine, which regions are stable or not among these five areas, it is
sufficient to select only one testing point from every region and checking the stability of
Eq. (16) according to these points. As shown in Fig. 1(b), it is found that the second and
fourth regions are the stability regions. For verification of these regions, it can be seen
that the results are suitable with the following results:

(i) asymptotically stable for a = −3, b = −2, c = −4,
(ii) periodically stable for a = 1, b = −2, c = 2,

(iii) unstable for a = 1, b = −2, c = −1,

which are given by Govindaraj and Balachandran [13] for the classical Basset equation.
By varying b and repeating the above procedure, different stability regions are obtained
for each b value as shown in Fig. 2. It is seen from this figure that smaller values of |b|
provide bigger stability regions. To illustrate the graphical results more clearly, the overall
stability region can then be visualized in a 3D plot as shown in Fig. 3.

In order to make a more general stability analysis, we consider the generalized Basset
equation for 0 < α < 1 lastly. Figure 4 shows the stability regions of the generalized
Basset equation for different values of the parameter α for b = −2 and b = 4. Notice that
the change of α affects only the curve of complex root boundary but does not influence
the other boundaries. However, the variation of the complex root boundary remains only
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Figure 2. Changing the stability regions of the classical Basset equation for various values of b.

Figure 3. The overall 3D stability region for the classical Basset equation.

Figure 4. Stability regions of the generalized Basset equation for different values of α: (a) b = −2, (b) b = 4.

in a bounded area with the variation of α. To generalize this fact clearly, the change of
complex root boundary is plotted for 100 different values of α in the interval of (0, 1) for
b = −2 in Fig. 5. Robust stability region can be defined for the area taking the shape of
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Figure 5. The variation of stability regions of
generalized Basset equation for b = −2 as
α changes in (0, 1) with the increments of 0.01.

Figure 6. 3D robust stability region independent
of α parameter of the generalized Basset equation.

a rectangle−b = 2 < a, c 6 10, which remains inside the set of complex root boundaries
and also the rectangular area−10 6 a, c < 0 at the left bottom. This robust region always
gives the guaranteed stable results for all values of a, b, c without depending on the values
of α in (0, 1). With reference to this result, three-dimensional robust stability region,
which does not depend on the parameter α of generalized Basset equation, is shown in
Fig. 6. Any (a, b, c) point selected in this region makes the fractional Basset equation in
Eq. (16) absolutely stable for any value of α in (0, 1). One of the other advantages of
obtaining three-dimensional robust stability region is that it gives the limit of how much
any parameter can be changed without affecting the stability of the Basset equation for any
point in the stability region. For example, from Fig. 6 it is clear that the Basset equation
is stable for a = −5, b = 1 and c = −10. As reference to this result, it is possible to say
that the stability of Basset equation is not affected by the change in the values of a and c
parameters in the range of (−∞, 5) and b parameter in the range of (−∞, 5).

Remark 1. It can be observed from Fig. 1(a) that if the complex root boundary curve,
which is derived for any b value of commensurate-order equation obtained for α = 0.5,
passes through any (a, c) point, it also passes from the point (c, a) symmetrically. This
result originates from the powers of Eq. (9) to be commensurate orders of 1 and 0.5.
However, this characteristic is invalid for the general incommensurate orders, i.e. when
the value of α is different from 0.5.

Example 2. Commensurate-order FDEs are commonly used for modelling of physical
systems and industrial processes [33]. In this example, the following equation containing
two fractional terms is considered:

a0D
2α
t y(t) + b0D

α
t y(t) + cy(t) = u(t). (17)

This equation represents a FDEs family for different values of α and it also contains
classical Basset equation for α = 0.5. Members of this family are named multi-term
differential equations if the power of the greatest derivative term is greater than 1 (or
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Figure 7. Stability regions for the values of the parameter b in the interval of [−5,−1] as α changes:
(a) α = 0, 2, (b) α = 0.8.

α > 0.5) and single-term differential equations if the power of the greatest derivative
term is less than 1 (or α < 0.5) [9].

Expressions, which belong to the complex root boundary of commensurate-order
differential equation in Eq. (17) whose real and infinite root boundaries are given by
Eqs. (12) and (13), are obtained for α2 = 2α and α1 = α in Eqs. (14) and (15) as
follows:

a = −bω−α sin(0.5πα)

sin(πα)
, c = −aω2α cos(πα)− bωα cos(0.5πα). (18)

For the various values of α, the stability regions can be easily obtained according to the
values of b. For example, the stability regions for α = 0.2 and α = 0.8 are plotted for
b ∈ [−5,−1] as shown in Fig. 7, where the complex root boundary calculated from (18) is

ac =
b2

2(1 + cosαπ)
, a, c > 0.

Stability regions for the values of b changing in the interval [1, 5] are replacements of the
same regions with respect to origin symmetrically. In Fig. 8, the stability regions for five
different values of α are seen when b = −2 and b = 3. For b = −2, when the values
of α are changed more often for instance, 100 times in the range of (0, 1), the change of
stability region is appeared from Fig. 9. It is seen from this figure that the stability region
fills right upper part of the (a, c)-plane if the value of α approaches to 0 and the stability
region is getting smaller if the value of α approaches to 1. As a result, the stability of
Eq. (17) for any value of α depending on parameter varying can be analyzed from the
figures easily. However, it is seen that obtaining a robust stability region is very difficult
on the contrary of Example 1.

Example 3. In this example, the incommensurate-order FDE

a0D
1.31
t y(t) + b0D

0.97
t y(t) + cy(t) = u(t) (19)

Nonlinear Anal. Model. Control, 24(2):224–240



236 M.E. Koksal

Figure 8. Stability regions for various values of α: (a) b = −2, (b) b = 3.

Figure 9. The variation of stability regions for 100 values of α in (0, 1) when b = −2.

is considered for modelling an industrial heating furnace. In this equation, nominal values
of a, b and c parameters are given as a = 14994, b = 6009.5 and c = 1.69 in [24]. Sondhi
and Hote [32] have shown the stability of the equation for these nominal values. The goal
in this example is to verify this stability result and to determine the stability intervals by
assuming these parameters are varying.

Stability boundaries for Eq. (19) are as follows:

(i) real root boundary: c = 0,
(ii) infinite root boundary: a = 0,

(iii) complex root boundary: a = −1.1303bω−0.34 and c = −0.576bω0.97.

The stability region of the system for b = 6009.5 is shown in Fig. 10, where from (iii) the
lower left stability region is found bounded by the curve

(−a)(−c)0.350515464 = 118190.408. (20)

It is seen from this figure, the nominal values of a and c stay in the stability region. So,
the stability result of Sondhi and Hote’s has been verified easily without any compli-
cated calculations. For a more general case, three-dimensional stability region derived for
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Figure 10. Stability region for industrial heating
furnace.

Figure 11. Three-dimensional overall stability
region as b changes in [−10000, 10000].

various values of b is seen in Fig. 11. From this figure evolution of the stability as contrast
to system parameter changes can be investigated. The stability is conserved at all positive
values of a and c, and at all negative values of a and c staying in the oval part when b is
positive; at all negative values of a and c and at all positive values of a and c staying in
the oval part when b is negative.

6 Conclusions

In this paper, a graphical based stability analysis method is presented for FDEs. The anal-
ysis concept is based on the derivation of stability boundaries and then the determination
of the stability region including the parameter set, which makes the FDE stable. One
of the most important advantages of the method is that the stability analysis is done in
a visual environment without considering complex analytical solutions. This method can
be used not only for the investigation of the stability of a differential equation whose
parameters are not changed but also for observation of the parametric robust stability of
the equation whose parameters are varying in a large interval. From this aspect, having
a large usage perspective of the method in comparison with the other methods is one
of the other advantages of the method. This provides opportunity to engineers in their
analyses about discussion more detail. Simulation examples have been selected from the
benchmark problems encountered in engineering systems. As evidenced by the results
given in these examples, it can be concluded that the proposed graphical based method
is a method reliable not only for stability analysis but also parametric robust stability
analysis according to the parameter changes.

The presented method can be generalized for stability analyses of fractional differ-
ential equations having time delay, which is a very popular subject in the last decade.
Moreover, the differential equations having more fractional terms can be also studied.
Here, when the number of unknown parameters increases, the three-dimensional graphs
will be insufficient. In this case, more than one graphs or four-dimensional graphs with
the fourth dimension assuming by colour can be used.

Nonlinear Anal. Model. Control, 24(2):224–240
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