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Abstract. In this paper, we investigate the stability for reaction systems with stochastic switching.
Two types of switched models are considered: (i) Markov switching and (ii) independent and
identically distributed switching. By means of the ergodic property of Markov chain, Dynkin
formula and Fubini theorem, together with the Lyapunov direct method, some sufficient conditions
are obtained to ensure that the zero solution of reaction–diffusion systems with Markov switching is
almost surely exponential stable or exponentially stable in the mean square. By using Theorem 7.3
in [R. Durrett, Probability: Theory and Examples, Duxbury Press, Belmont, CA, 2005], we also
investigate the stability of reaction–diffusion systems with independent and identically distributed
switching. Meanwhile, an example with simulations is provided to certify that the stochastic
switching plays an essential role in the stability of systems.

Keywords: reaction–diffusion system, Markov switching, ergodic theory, stability.

1 Introduction

Random disturbance exists in the natural world owing to various environmental noise.
Such phenomena can be described by stochastic differential systems, which have been
successfully applied to problems in mechanics, engineering, electronics, automation, eco-
nomics, etc. Therefore, the dynamics of stochastic systems have become a hot topic in
recent years [9, 11, 20–23, 25, 29]. However, a simple color noise is said to be telegraph
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noise, which is demonstrated as a switching between two or more environmental regimes.
If the switching is no memory and the switched times follow an exponential distribution,
the switched regime can be modelled by a finite state Markov chain. If the switched
times are independent random variables and the time intervals have the same expecta-
tions, the switched regime can be modelled by independent and identically distributed
switching. Hajnal [8] investigated the behavior of finite nonhomogenous Markov chain
having regular transition matrices in 1956. Salehi and Jadbabaie [27] provided consen-
sus algorithms under ergodic stationary graph process. In [12], Kim extended Markov
switching model to a more general state space model and proposed a new algorithm.
In [3–5,10,24], the authors studied the stability of a linear systems with Markov switching
or independent and identically distributed process. Gray et al. [7] examined the effects
of telegraph noise on the classic SIS model and proved the extinction and persistence
for a finite state Markov chain. In [17], the authors investigated the synchronization
of complex networks with stochastic switching. In practical application, influence of
diffusion is inevitable. Therefore, we must consider the state variables varying with time
and space variables. With respect to reaction–diffusion systems, there are many reports
of the stability in the literature [6, 14–16, 18, 19, 26, 28, 30]. For instance, Luo and Zhang
[26] investigated the asymptotical stability in probability and almost sure exponential
stability of stochastic reaction–diffusion systems by using the Lyapunov method. In [30],
Zhu et al. proved the stability for stochastic bidirectional associative memory neural
networks with reaction–diffusion term. In [15], Li et al. investigate the synchronization
problem for delayed reaction–diffusion neural networks (RDNNs) with unknown time-
varying coupling strengths by an adaptive learning control strategy. However, to the best
of our knowledge, none of the authors have considered the stability of reaction–diffusion
systems with stochastic switching, which motivates our current research.

The aim of this paper is to study stability for reaction–diffusion systems with stochas-
tic switching of finite state space. Two types of switched models are considered:

(i) Markov switching and
(ii) independent and identically distributed switching.

If the switched sequence is Markov chain, by means of ergodic property for Markov chain
[1] and the Lyapunov method, sufficient condition is obtained to confirm that the zero
solution of switched system can achieve almost sure stability. If the switched sequence
is an independent and identically distributed process, we also derive the stability by the
theorem in Durrent [2]. It is interesting that if some subsystems are not stable, but the other
subsystems are stable, eventually the overall system will reach stability, which means that
Markov switching, as well as independent and identically distributed switching, play an
essential role in the stable behavior of reaction–diffusion systems. In addition, an example
with simulations is provided to demonstrate the applicability of our results. The rest of this
paper is organized as follows. Reaction–diffusion system model with stochastic switching
is presented in Section 2 together with some definitions of stability for the zero solution.
In Section 3, almost surely exponential stability and exponential stability in the mean
square of switching systems are derived. A numerical example is given to demonstrate
our results in Section 4.
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Notations. Let R = (−∞,+∞), Rn denotes the n-dimensional Euclidean space. The
symbol T represents the transpose. In stands for the n×n identity matrix. For v = (v1, v2,
. . . , vn)T ∈ Rn, we define the norm as ‖v‖ = (

∑n
i=1 v

2
i )1/2. Let y = (y1, y2, . . . , ym)T,

Ui = (ui1, ui2, . . . , uim)T, i = 1, 2, . . . , n, and matrix U = (U1, U2, . . . , Un)T, we
denote ∇ · Ui = ∂ui1/∂y1 + ∂ui2/∂y2 + · · · + ∂uim/∂ym, ∇ · U = (∇ · U1,∇ · U2,
. . . ,∇ · Un)T.

2 System description and definitions

Let (Ω,F , {Ft},P) be a probability space related to an increasing right-continuous filtra-
tion {Ft}t>0. E[·] denotes mathematical expectation. We present two types of stochastic
switchings in probability space (Ω,F , {Ft},P).

2.1 Markov switching process

Let r(t) be a right-continuous Markov chain on (Ω,F , {Ft},P) taking values in the state
space S = {1, 2, . . . ,M} with generator Γ = (δij)M×M generated by P{r(t+ ε) = j |
r(t) = i} = δijε + o(ε), where ε > 0, δij is the transition rate from i to j satisfying
δij > 0, i 6= j, and δii = −

∑
16j6M,j 6=i δij . Let {τk}k>0 be a sequence of finite-valued

Ft stopping times satisfying 0 = τ0 < τ1 < τ2 < · · · , and let limk→+∞ τk = +∞.
r(t) =

∑+∞
k=0 r(τk)I[τk,τk+1)(t), where I[τk,τk+1) represents the indicator function of set

[τk, τk+1). Given that r(τk) = i, the exponential distribution of the random variable
τk+1 − τk is defined as P(τk+1 = j | τk = i) = −δij/δii, j 6= i, P(τk+1 − τk > t |
r(τk) = i) = eδiit for all t > 0. Moreover, the Markov chain has a unique stationary
distribution Π = (π1, π2, . . . , πM )T satisfying ΠΓ = 0 and

∑M
i=1 πi = 1.

Let X be a compact set with smooth boundary ∂X and measure µ(X) > 0 in Rm;
L2(R × X) denotes the space of real Lebesgue measurable functions of R × X . It is
a Banach space for the 2-norm ‖u(t)‖2 = (

∫
X
‖u(t, y)‖2 dy)1/2, where ‖·‖ is Euclid

norm.
Consider the following reaction–diffusion with Markovian switching:

∂u(t, y)

∂t
= ∇ ·

(
D(t, y, u(t, y)

)
◦ ∇u(t, y)

)
+ f

(
t, y, u(t, y), r(t)

)
,

(t, y) ∈ [0,+∞)×X,

u(0, y) = φ(y), y ∈ X, ∂u(t, y)

∂N
= 0, (t, y) ∈ [0,+∞)× ∂X,

(1)

where u(t, y) = (u1(t, y), u2(t, y), . . . , un(t, y))T, y = (y1, y2, . . . , ym)T, D(t, y, u)
is a smooth diffusion operator satisfying that D(t, y, u) = (Dik(t, y, u))n×m > 0,
Dik(t, y, u) > 0, ∇u = (∇u1,∇u2, . . . ,∇un)T, ∇ui = (∂ui/∂y1, ∂ui/∂y2, . . . ,
∂ui/∂ym)T, i = 1, 2, . . . , n, D ◦ ∇u = (Dik∂ui/∂yk)n×m is a Hadamard product
of matrix D and ∇u, f : [0,+∞)× Rm × Rn × S→ Rn is Borel measurable function.
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2.2 Independent and identically distributed switching process

Let r(t) be independent and identically distributed sequence on (Ω,F , {Ft},P) taking
value in S = {1, 2, . . . ,M}. Let {τk}k>0 be a sequence of finite-valued Ft stopping time
0 = τ0 < τ1 < τ2 < · · · and limk→+∞ τk = +∞. Denote ∆τk = τk − τk−1. It is
assumed that {∆τk} is the sequence of independent and identically distributed random
variables satisfying E[∆τk] = µ > 0 and E[∆τ2k ] < ∞, which implies that {τk}
forms a renewal process. For t ∈ [τk−1, τk), r(t) = rk is a constance with probability
distribution

P(rk = l) = ρl, l ∈ S,

where ρl > 0 and
∑M
l=1 ρl = 1. Then the reaction diffusion system with independent and

identically distributed switching can be written as

∂u(t, y)

∂t
= ∇ ·

(
D
(
t, y, u(t, y)

)
◦ ∇u(t, y)

)
+ f

(
t, y, u(t, y), rk

)
,

(t, y) ∈ [τk−1, τk)×X,

u(0, y) = φ(y), y ∈ X, ∂u(t, y)

∂N
= 0, (t, y) ∈ [τk−1, τk)× ∂X,

(2)

Throughout this paper, we suppose that there exists a constant L > 0 such that∥∥f(t, y, u1, r(t))− f(t, y, u2, r(t))∥∥ 6 L‖u1 − u2‖.

Only a limited number of switching occurs for each finite time interval, which pre-
cludes the possibility of infinitely fast switching. In view of the Lipschitz condition
of f , we see that there exists a unique solution for (1) or (2). Also we suppose that
f(t, y, 0, r(t)) = 0 for any t > 0, y ∈ X , which implies that u(t, y) ≡ 0 is a trivial
solution.

Definition 1. The zero solution of system (1) or (2) is said to be almost surely exponen-
tially stable if there exists λ > 0 such that for any initial value u0 and t > 0,

lim sup
t→+∞

1

t
log
∥∥u(t, y, u0)

∥∥
2
6 −λ a.s.

Definition 2. The zero solution of system (1) or (2) is said to be exponentially stable in
the mean square if there exist λ > 0, d > 0 such that for any initial value u0 and t > 0,

E
[∥∥u(t, y, u0

)∥∥2
2

]
6 d‖u0‖22e−λt.

3 Almost surely exponential stability and exponential stability in the
mean square

In this section, some criteria on almost surely exponential stability are established. The
following lemma is important for almost surely exponential stability and exponential
stability in the mean square of switched systems (1) or (2).
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Lemma 1. For any given initial value u(0, y) = u0, u0 6= 0, u0 ∈ Rn, there exists
a unique solution u(t, x) on [0,+∞) for (1) or (2) such that

P

(∫
X

u(t, y) dy 6= 0, t > 0

)
= 1. (3)

Proof. Without loss of generality, for the switching of the Markov chain or independent
and identically distributed process, we may suppose that initial switching is r(0) = 1. If
r(0) = 2, . . . ,M , we can prove it in the same way. Then we deduce that r(t) = 1 for
t ∈ [0, τ1). Hence, (1) or (2) can be written as

∂u(t, y)

∂t
= ∇ ·

(
D(t, y, u(t, y)

)
◦ ∇u(t, y)

)
+ f

(
t, y, u(t, y), 1

)
,

(t, y) ∈ [0, τ1)×X,

u(0, y) = φ(y), y ∈ X, ∂u(t, y)

∂N
= 0, (t, y) ∈ [0, τ1)× ∂X.

Obviously, (3) has a unique solution on [0,+∞), which implies that the solution u(t, x)
of (1) or (2) is uniquely determined on [0, τ1). In the following, we shall prove that
P(
∫
X
u(t, y) dy 6= 0, t ∈ [0, τ1)) = 1. If this is not true, for given u0 6= 0, we have

P(ϑ < τ1) > 0, where

ϑ = inf

{
0 6 t < τ1,

∫
X

u(t, y) dy = 0

}
.

Therefore, there exist a pair of constants 0 6 t1 < τ1 and α > max{1, ‖u0‖} such that
P(Λ) > 0, where Λ = {ϑ 6 t1, ‖u(t, y)‖ 6 α ∀t ∈ [0, ϑ)}. It follows from the Lipschitz
condition of f that there exists lα > 0 such that for any t ∈ [0, t1], ‖u(t, y)‖ 6 α,∥∥f(t, y, u(t, y), 1

)∥∥ 6 lα
∥∥u(t, y)

∥∥.
Let V (t, u) = ‖u(t, y)‖−1, we derive that for 0 6 t 6 t1,

d
∫
X
V (t, u) dy

dt
=

∫
X

[
−
∥∥u(t, y)

∥∥−3uT(t, y)∇ ·
(
D
(
t, y, u(t, y)

)
◦ ∇u(t, y)

)
−
∥∥u(t, y)

∥∥−3uT(t, y)f
(
t, y, u(t, y), 1

)]
dy.

By Neumann value condition and integration by parts, we have

−
∫
X

∥∥u(t, y)
∥∥−3uT(t, y)∇ ·

(
D
(
t, y, u(t, y)

)
◦ ∇u(t, y)

)
dy

= −
n∑
i=1

∫
X

‖u‖−3ui∇ ·

(
m∑
k=1

Dik(t, y, u)
∂ui
∂yk

)
dy

Nonlinear Anal. Model. Control, 24(3):315–331
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= −
n∑
i=1

m∑
k=1

‖u‖−3uiDik(t, y, u)
∂ui
∂yk

∣∣∣∣
∂X

+

n∑
i=1

m∑
k=1

∫
X

Dik(t, y, u)
∂(‖u‖−3ui)

∂ui

(
∂ui
∂yk

)2

dy

= −2

m∑
k=1

∫
X

‖u‖−3Dik(t, y, u)

(
∂ui
∂yk

)2

dy 6 0.

Then

d
∫
X
V (t, u) dy

dt
6
∫
X

∥∥u(t, y)
∥∥−2∥∥f(t, y, u(t, y), 1

)∥∥dy 6 1ια

∫
X

V (t, u) dy.

Define stop time ιε , inf{t ∈ [0, τ1), ‖u(t, y)‖ ∈ (ε, α)} for rall ε ∈ (0, ‖u0‖), then

e−lα(ιε∧t1)
∫
X

V
(
ιε ∧ t1, u(ιε ∧ t1, y)

)
dy =

∫
X

V (0, u0) dy.

Noting ‖u(ιε, y)‖ = ε, ιε 6 t1, we get ‖u0‖ 6 εeιαt1 . Letting ε→ 0 causes a contradic-
tion. Therefore, we can conclude that P(

∫
X
u(t, y) dy 6= 0, t ∈ [0, τ1)) = 1. Together

with continuity, for t = τ1, we get u(τ1, y) 6= 0. Repeating this procedure means that
there exists a unique solution u(t, y) on [0,+∞) for (1) or (2) such that (3) holds.

Remark 1. The existence and uniqueness of the solution can guarantee that the zero
solution of system (1) or (2) is almost surely unique equilibrium point, which are the pre-
condition for studying the behavior of solution for the system with stochastic switching.

Let C1([0,+∞)×Rn, [0,+∞)) be the family of all nonnegative continuous functions
V (t, ξ) on [0,+∞)×Rn and Vt(t, ξ), Vξ(t, ξ) are continuous on [0,+∞)×Rn. For each
V ∈C1([0,+∞)×Rn, [0,+∞)), we define an operator LV : [0,+∞)× Rn → [0,+∞)
associated with system (1) or system (2) as follows:

LV (t, u) =
∂V (t, u)

∂t
+

(
∂V (t, u)

∂u

)T

f
(
t, y, u, r(t)

)
.

Theorem 1. Let r(t) be a right-continuous Markov chain taking values in the state
space S = {1, 2, . . . ,M} and V ∈ C1([0,+∞)× Rn, [0,+∞)). Assume that there exist
constants d1, d2 > 0, ηi, i = 1, 2, . . . ,M , such that:

(i) d1‖u(t, y)‖2 6
∫
X
V (t, u(t, y)) dy 6 d2‖u(t, y)‖2;

(ii) V (t, u) is separated as to variables ui, i = 1, 2, . . . , n;
(iii) ∂2V (t, u)/∂u2i > 0, i = 1, 2, . . . , n, (t, u) ∈ [0,+∞)× Rn;
(iv)

∫
X
LV (t, u(t, y)) dy 6 ηr(t)

∫
X
V (t, u(t, y)) dy;

(v)
∑M
i πiηi < 0.

Then the zero solution of system (1) is almost surely exponentially stable.

https://www.mii.vu.lt/NA



Stability of reaction–diffusion systems with stochastic switching 321

Proof. For any u0 6= 0, it follows from Lemma 1 that
∫
X
u(t, y) dy 6= 0 a.s. for t > 0.

Thus,

d[log
∫
X
V (t, u(t, y)) dy]

dt

=
1∫

X
V (t, u(t, y)) dy

[ ∫
X

∂V (t, u)

∂t
+

(
∂V (t, u)

∂u

)T

f
(
t, y, u, r(t)

)
dy

+

∫
X

(
∂V (t, u)

∂u

)T

∇ ·D
(
t, y, u(t, y)

)
◦ ∇u(t, y) dy

]

=
1∫

X
V (t, u(t, y)) dy

[ ∫
X

LV
(
t, u(t, y)

)
dy

+

∫
X

(
∂V (t, u)

∂u

)T

∇ ·D
(
t, y, u(t, y)

)
◦ ∇u(t, y) dy

]
.

By (ii), we see that ∂2V (t, u)/∂ui∂uj = 0, i 6= j, i, j ∈ {1, 2, . . . , n}. From Neumann
value condition and integration by parts, together with (iii), we get∫

X

(
∂V (t, u)

∂u

)T

∇ ·
(
D
(
t, y, u(t, y)

)
◦ ∇u(t, y)

)
dy

=

n∑
i=1

∫
X

(
∂V

∂ui
∇ ·

(
m∑
k=1

Dik(t, y, u)
∂ui
∂yk

))
dy

=

n∑
i=1

m∑
k=1

∂V

∂ui
Dik(t, y, u)

∂ui
∂yk

∣∣∣∣
∂X

−
n∑
i=1

m∑
k=1

∫
X

Dik(t, y, u)
∂2V

∂u2i

(
∂ui
∂yk

)2

dy

= −
n∑
i=1

m∑
k=1

∫
X

Dik(t, y, u)
∂2V

∂u2i

(
∂ui
∂yk

)2

dy 6 0. (4)

By (iv), we have

d[log
∫
X
V (t, u(t, y)) dy]

dt
6

1∫
X
V (t, u(t, y)) dy

∫
X

LV
(
t, u(t, y)

)
dy 6 ηr(t),

which means that for any t > 0,

log
∫
X
V (t, u(t, y)) dy

t
=

log
∫
X
V (t, u(t, y)) dy

t
+

1

t

t∫
0

ηr(s) ds.
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Letting t→∞, we get

lim sup
t→∞

1

t
log

∫
X

V
(
t, u(t, y)

)
dy 6 lim sup

t→∞

1

t

t∫
0

ηr(s) ds. (5)

It follows from the ergodic property of Markov chain [6] that

lim
t→∞

1

t

t∫
0

ηr(s) ds =

M∑
i=1

ηiπi a.s.

Thus, by (5), (i) and (v), we have

lim sup
t→∞

1

t
log
∥∥u(t, y)

∥∥
2
6

M∑
i=1

ηiπi < 0 a.s.

Remark 2. Condition (i) is a general condition for the stability of a reaction–diffusion
system. Conditions (ii)–(iv) are required due to stochastic switching of the system. Fur-
ther, in view of the ergodicity of the Markov process, we can choose condition (v).

Theorem 2. Let r(t) be a right-continuous Markov chain taking values in the state
space S = {1, 2, . . . ,M} and V ∈ C1([0,+∞)× Rn, [0,+∞)). Assume that there exist
constants d1, d2, θi > 0, γi, i = 1, 2, . . . ,M , such that:

(i) d1‖u(t, y)‖2 6
∫
X
V (t, u(t, y)) dy 6 d2‖u(t, y)‖2;

(ii) V (t, u) is separated as to variables ui, i = 1, 2, . . . , n;
(iii) ∂2V (t, u)/∂u2i > 0, i = 1, 2, . . . , n, (t, u) ∈ [0,+∞)× Rn;
(iv)

∫
X
LV (t, u(t, y)) dy 6 γr(t)

∫
X
V (t, u(t, y)) dy;

(v) max16i6M (γi +
∑M
j=1 δijθj/θi) < 0.

Then the zero solution of system (1) is exponentially stable in the mean square.

Proof. For t > 0, we get

d[
∫
X
V (t, u(t, y)) dy]

dt

=

∫
X

[
∂V (t, u)

∂t
+

(
∂V (t, u)

∂u

)T

f
(
t, y, u, r(t)

)
+

(
∂V (t, u)

∂u

)T

∇ ·D
(
t, y, u(t, y)

)
◦ ∇u(t, y)

]
dy

=

∫
X

[
LV
(
t, u(t, y)

)
+

(
∂V (t, u)

∂u

)T

∇ ·D
(
t, y, u(t, y)

)
◦ ∇u(t, y)

]
dy.
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By (4), (ii) and (iv), we deduce

d[
∫
X
V (t, u(t, y)) dy]

dt
6
∫
X

LV
(
t, u(t, y)

)
dy 6 γr(t)

∫
X

V
(
t, u(t, y)

)
dy.

We consider the following switched system:

dΞ(t)

dt
= γr(t)Ξ(t), t > 0, Ξ(0) =

∫
X

V
(
0, u(0, y)

)
dy,

where Ξ(t) = (Ξ1(t), Ξ2(t), . . . , Ξn(t))T. It is obvious that {(Ξ(t), r(t)) | t > 0} is
a Markov process. We define an infinitesimal operator as follows:

L = Γ + diag

{
γ1Ξ

T ∂

∂Ξ
, γ2Ξ

T ∂

∂Ξ
, . . . , γnΞ

T ∂

∂Ξ

}
. (6)

Consider a Lyapunov function V (Ξ(t), i) = θi(Ξ
T(t)Ξ(t))1/2 forΞ(t) = (Ξ1(t), Ξ2(t),

. . . , Ξn(t))T and i ∈ S. Calculating the differential operator along (6), we have

(
LV
)(
Ξ(t), i

)
=

M∑
j=1

δkijθj
(
ΞT(t)Ξ(t)

)1/2
+ θiγiΞ

T(t)
1

2

(
ΞT(t)Ξ(t)

)−1/2(
2Ξ(t)

)
6 max

16i6M

(
γi +

M∑
j=1

δij
θj
θi

)
V
(
Ξ(t), i

)
.

Let−ϑ = max16i6M (γi+
∑M
j=1 δijθj/θi). By (v), we see that ϑ > 0, which means that(

LV
)(
Ξ(t), i

)
6 −ϑV

(
Ξ(t), i

)
.

According to Dynkin formula and Fubini theorem [13], we have

E
{
V
(
Ξ(t), r(t)

) ∣∣ Ξ(0), r(0) = i
}
− V

(
Ξ(0), i

)
= E

{ t∫
0

(LV )
(
Ξ(s), r(s)

)
ds
∣∣∣ Ξ(0), r(0) = i

}

6 −ϑ
t∫

0

E
{
V
(
Ξ(s), r(s)

) ∣∣ Ξ(0), r(0) = i
}

ds.

It follows from Gronwall–Bellman that

E
{
V
(
Ξ(t), r(t)

) ∣∣ Ξ(0), r(0) = i
}
6 V

(
Ξ(0), i

)
exp(−ϑt) ∀t > 0.
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Let θ = min16i6M{θi}. By comparison principle, we have

E

{∫
X

V
(
t, u(t, y)

)
dy
∣∣∣ Y (0), r(0) = i

}
6
V (Ξ(0), i)

θ
exp(−ϑt) ∀t > 0.

This implies that system (1) is exponentially stable in the mean square.

Theorem 3. Let r(t) be independent and identically distributed sequence taking value
in S = {1, 2, . . . ,M} and V ∈ C1([0,+∞) × Rn, [0,+∞)). Assume that there exist
constants d1, d2 > 0, ξi, i = 1, 2, . . . ,M , such that:

(i) d1‖u(t, y)‖2 6
∫
X
V (t, u(t, y)) dy 6 d2‖u(t, y)‖2;

(ii) V (t, u) is separated as to variables ui, i = 1, 2, . . . , n;
(iii) ∂2V (t, u)/∂u2i > 0, i = 1, 2, . . . , n, (t, u) ∈ [0,+∞)× Rn;
(iv)

∫
X
LV (t, u(t, y)) dy 6 ξrk

∫
X
V (t, u(t, y)) dy for all t ∈ [τk−1, τk);

(v)
∑M
i=1 ρiξi < 0.

Then the zero solution of system (2) is almost surely exponentially stable.

Proof. For t ∈ [τk−1, τk), by (ii), we have

d[log
∫
X
V (t, u(t, y)) dy]

dt
6

1∫
X
V (t, u(t, y)) dy

∫
X

LV
(
t, u(t, y)

)
dy 6 ξrk . (7)

Let Lt = sup{n|τn 6 t}. By Theorem 7.3 in Durrett [16], we can obtain

lim
t→+∞

Lt
t

=
1

µ
a.s.,

which implies that

lim
t→+∞

Lt = +∞ a.s.

It follows from (7) that

log

∫
X

V
(
t, u(t, y)

)
dy 6 log

∫
X

V
(
0, u(0, y)

)
dy +

Lt∑
i=1

τi∫
τi−1

ξri ds+

t∫
tLt

ξrLt+1
ds.

Then

1

t
log

∫
X

V
(
t, u(t, y)

)
dy

6
1

t
log

∫
X

V
(
0, u(0, y)

)
dy +

1

t

Lt∑
i=1

τi∫
τi−1

ξri ds+
1

t

t∫
tLt

ξrLt+1
ds.
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Letting t→ +∞, we get

lim sup
t→+∞

1

t
log

∫
X

V
(
t, u(t, y)

)
dy 6 lim sup

t→+∞

1

t

[
Lt∑
i=1

τi∫
τi−1

ξri ds+

t∫
tLt

ξrLt+1
ds

]
. (8)

By the strong law of large numbers for independent and identically distributed sequence,
we have

lim sup
t→+∞

1

t

[
Lt∑
i=1

τi∫
τi−1

ξri ds+

t∫
tLt

ξrLt+1
ds

]

= lim sup
t→+∞

Lt
t

1

Lt

[
Lt∑
i=1

τi∫
τi−1

ξri ds+

t∫
tLt

ξrLt+1
ds

]

= lim sup
t→+∞

Lt
t

1

Lt

Lt∑
i=1

τi∫
tτi−1

ξri ds =
1

µ

M∑
i=1

ρiξi < 0 a.s. (9)

It follows from (8), (9) and (i) that

lim sup
t→+∞

1

t
log
∥∥u(t, y)

∥∥
2
6

1

µ

M∑
i=1

ρiξi < 0 a.s.

This completes the proof.

Remark 3. The reaction–diffusion system (1) or (2) can be considered as the following
subsystems:

∂u(t, y)

∂t
= ∇ ·

(
D
(
t, y, u(t, y)

)
◦ ∇u(t, y)

)
+ f

(
t, y, u(t, y), i

)
,

y ∈ X, i = 1, 2, . . . ,M,

u(0, y) = φ(y), y ∈ X, ∂u(t, y)

∂N
= 0, y ∈ ∂X,

switching from one to the other by the law of Markov chain or independent and identically
distributed process. If some of ηi or ξi are not negative, i.e., the zero solution for some of
subsystem achieve stability, but the zero solution for the other subsystems do not achieve
stability. However, if the rate of stochastic switching from unstable state to stable state is
faster than that from stable state to unstable state, so that

∑M
i=1 πiηi<0 or

∑M
i=1 ρiξi<0,

then the overall system will achieve stability, which means that stochastic switching play
an essential role in the stability of reaction–diffusion system.

Remark 4. Theorems 1–3 establish a general framework for analyzing the stable behav-
iors of reaction diffusion systems with stochastically switching. Sufficient conditions are
derived under which system (1) or (2) can achieve stability in the two kinds of stochastic
switchings sense.
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Remark 5. In Theorem 2, the constants θk, k = 1, 2, . . . ,M , are very important. If all of
γk < 0, all the subsystems are stable. However, if there are some subsystem are unstable,
but the other subsystems are stable, the overall system can eventually achieve stability
under γk +

∑M
j=1 δkjθj/θk < 0.

Corollary 1. Let r(t) be a right-continuous Markov chain taking values in the state space
S = {1, 2, . . . ,M}. Assume that there exist constants βi, i = 1, 2, . . . ,M , such that:

(i) uTf(t, y, u, r(t)) 6 βr(t)‖u‖2;

(ii)
∑M
i=1 πiβi < 0.

Then the zero solution of system (1) is almost surely exponentially stable.

Proof. Let V (t, u(t, y)) = ‖u(t, y)‖2. Then∫
X

LV
(
t, u(t, y)

)
dy = 2

∫
X

uT(t, y)f
(
t, y, u(t, y), r(t)

)
dy

6 2βr(t)

∫
X

∥∥u(t, y)
∥∥2 dy

= 2βr(t)

∫
X

V
(
t, u(t, y)

)
dy.

Consequently, the conclusion follows from Theorem 1.

Corollary 2. Let r(t) be a right-continuous Markov chain taking values in the state space
S = {1, 2, . . . ,M}. Assume that there exist constants βi, θi, i = 1, 2, . . . ,M , such that:

(i) uTf(t, y, u, r(t)) 6 βr(t)‖u‖2;

(ii) max16i6M (2βi +
∑M
j=1 δijθj/θi) < 0.

Then the zero solution of system (1) is exponentially stable in the mean square.

Corollary 3. Let r(t) be independent and identically distributed sequence taking value
in S = {1, 2, . . . ,M}. Assume that there exist constants µi, i = 1, 2, . . . ,M , such that:

(i) uTf(t, y, u, rk) 6 µrk‖u‖2, t ∈ [tk−1, tk);
(ii)

∑M
i=1 ρiµi < 0.

Then the zero solution of system (2) is almost surely exponentially stable.

Corollary 4. Let r(t) be a right-continuous Markov chain taking values in the state space
S = {1, 2, . . . ,M} and f(t, y, u(t, y), r(t)) = Ar(t)u(t, y), Ar(t) ∈ Rn×n. Assume that
there exist positive definite matrix Q and constants νi, i = 1, 2, . . . ,M , such that:

(i) QAi +AT
i Q− νiQ 6 0;

(ii)
∑M
i=1 πiνi < 0.

Then the zero solution of system (1) is almost surely exponentially stable.
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Proof. Let V (t, u(t, y)) = uT(t, y)Qu(t, y). Then for t > 0,∫
X

LV
(
t, u(t, y)

)
dy =

∫
X

[
2uT(t, y)Qf

(
t, y, u(t, y), r(t)

)]
dy

=

∫
X

[
uT(t, y)

(
QAr(t) +AT

r(t)Q
)
u(t, y)

]
dy

6 νr(t)

∫
X

uT(t, y)Qu(t, y) dy.

By Theorem 1, we can see that the conclusion of Corollary 3 holds.

Corollary 5. Let r(t) be a right-continuous Markov chain taking values in the state space
S = {1, 2, . . . ,M} and f(t, y, u(t, y), r(t)) = Ar(t)u(t, y), Ar(t) ∈ Rn×n. Assume that
there exist positive definite matrix Q and constants νi, θi, i = 1, 2, . . . ,M , such that:

(i) QAi +AT
i Q− νiQ 6 0;

(ii) max16i6M (νi +
∑M
j=1 δijθj/θi) < 0.

Then the zero solution of system (1) is exponentially stable in the mean square.

Corollary 6. Let r(t) be independent and identically distributed sequence taking value
in S = {1, 2, . . . ,M} and f(t, y, u(t, y), rk) = Arku(t, y), Ark ∈ Rn×n. Assume that
there exist positive definite matrix U and constants ωi, i = 1, 2, . . . ,M , such that:

(i) UAi +AT
i U − ωiU 6 0;

(ii)
∑M
i=1 ρiωi < 0.

Then the zero solution of system (2) is almost surely exponentially stable.

Remark 6. Let Q = I . We can take value νi = ωi = λmax(Ai +AT
i ).

4 Numerical example

In this section, an example with numerical simulations are presented to demonstrate our
results.

Example 1. Consider the following 2-dimensional reaction–diffusion neural networks
with Markov switching:

∂u1(t, y)

∂t
= ∆u1(t, y) + ar(t)u1(t, y) + br(t)f1

(
u2(t, y)

)
,

∂u2(t, y)

∂t
= ∆u2(t, y) + cr(t)u2(t, y) + dr(t)f2

(
u1(t, y)

)
, t > 0, y ∈ (0, 1),

∂u(t, y)

∂N
= 0, t > 0, y ∈ {0, 1},

where Markov chain r(t) takes values in S = {1, 2} with generator Γ =
[−3 3

1 −1
]
, then

δ12 = 3, δ21 = 1, π1 = 1/4, π2 = 3/4, the parametric coefficients a1 = 1/2, b1 = 1/2,
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Figure 1. Markov chain r(t).

(a) u1(t, y) (b) u2(t, y)

Figure 2. Trajectories of the states of (10).

c1 =1/2, d1 =1/4, a2 =−2, b2 =1/4, c2 =−2, d2 =1/4, the activation function f1(u)=
f2(u)=arctanu. We can easily tain that |f1(u)|6 |u|, |f2(u)|6 |u|. The switching times
of r(t) follow the exponential distribution with r(0) = 1, as shown by Fig. 1.

Construct the Lyapunov function V (t, u) = u21 + u22, then∫
X

LV (t, u) dy =

∫
X

[
2ar(t)u

2
1 + 2cr(t)u

2
2 + 2br(t)u1f1(u2) + 2dr(t)u2f2(u1)

]
dx

6
∫
X

[
2ar(t)u

2
1 + 2cr(t)u

2
2 + 2|br(t)||u1(u2)|+ 2|dr(t)||u2u1|

]
dx

6 ηr(t)

∫
X

V (t, u) dy,

where η1 = 7/4, η2 = −7/2, which implies that
∑2

1 πiηi = 1/4 · 7/4 + 3/4 · (−7/2) =
−35/16 < 0. By Theorem 1, the zero solution of the switched system (10) is almost
surely exponentially stable. Taking the initial conditions u1(0, y) = − cos y/2, u2(0, y) =
−3 cos y. Figure 2(a) shows the trajectory of the state u1(t, y) of system (10). Figure 2(b)
depicts the trajectory of the state u2(t, y) of system (10).
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(a) u1(t, y) (b) u2(t, y)

Figure 3. Trajectories of the states of (10) for r(t) = 1.

Remark 7. Figures 3(a) and 3(b) show the trajectory of state u1(t, y) and u2(t, y) for
r(t) = 1. We can see that the zero solution of the first subsystem is not stable, but the
overall system (10) can achieve stability almost surely. It means that condition (i)–(v) play
an important role in the stability of switched systems.

5 Conclusions

In this paper, stability analysis of reaction diffusion systems with stochastically switched
parameter has been studied. The switched model includes two kinds of stochastic switch-
ings. Switched process takes values in finite state space. By method of stochastic analysis
and Lyapunov function, some new stability criteria have been derived. Finally, a standard
numerical package illustrate that the new results are practical. Our future work will focus
on the stability of delayed reaction diffusion systems with stochastic switching.

Acknowledgment. The authors thank the referee and the associate editor for their very
helpful suggestions.
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9. K. Itǒ, On Stochastic Differential Equations, Mem. Am. Math. Soc., Vol. 4, AMS, Providence,
RI, 1951.

10. Y. Ji, H.J. Chizeck, Controllability, stabilizability and continuous-time Markovian jump linear
quadratic control, IEEE Trans. Autom. Control, 35:777–788, 1990.

11. I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, Berlin,
1991.

12. C. Kim, Dynamic linear models with markov switching, J. Econometrics, 60:1–22, 1994.

13. H. Kushner, Stochastic Stability and Control, Academic Press, New York, 1967.

14. J. Li, C. He, W. Zhang, M. Chen, Adaptive synchronization of delayed reaction–diffusion
neural networks with unknown nonidentical time-varying coupling strengths, Neurocomputing,
219:144–153, 2017.

15. J. Li, W. Zhang, M. Chen, Synchronization of delayed reaction–diffusion neural networks via
adaptive learning control approach, Comput. Math. Appl., 65:1775–1785, 2013.

16. J. Li, W. Zhang, M. Chen, pth moment exponential stability of impulsive stochastic reaction–
diffusion Cohen–Grossberg neural networks with mixed time delays, Neural Process. Lett.,
46:83–111, 2017.

17. B. Liu, W. Lu, T. Chen, Synchronization in complex networks with stochastically switching
coupling structures, IEEE Trans. Autom. Control, 57:754–760, 2012.

18. X. Lou, B.Cui, Boundedness and exponential stability for nonautonomous cellar neural
networks with reaction–diffusion terms, Chaos Solitons Fractals, 33:653–662, 2007.

19. Q. Luo, Y. Zhang, Exponential stability of stochastic reaction diffusion systems, Nonlinear
Anal., Theory Methods Appl., 71:487–493, 2009.

20. X. Mao, Exponential Stability of Stochastic Differential Equations, Marcel Dekker, New York,
1994.

21. X. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differen-
tial equations, Stochastic Processes Appl., 65:233–250, 1996.

22. X. Mao, Stochastic Differential Equations and Applications, Ellis Horwood, Chichester, 2007.

23. X. Mao1, Stability of Stochastic Differential Equations with Respect to Semimartingales,
Longman Scientific and Technical, London, 1991.

24. M. Mariton, Jump Linear Systems in Automatic Control, Marcel Dekker, New York, 1990.

25. L. Pan, J. Cao, Exponential stability of impulsive stochastic functional differential equations,
J. Math. Anal. Appl., 382:672–685, 2011.

26. Q. Song, Z. Zhao, Y. Li, Global exponential stability of BAM neural networks with distributed
delays and reaction–diffusion terms, Phys. Let. A, 335:213–225, 2005.

https://www.mii.vu.lt/NA



Stability of reaction–diffusion systems with stochastic switching 331

27. A. Tahbaz-Salehi, A. Jadbabaie, Consensus over ergodic stationary graph processes, IEEE
Trans. Autom. Control, 55:225–230, 2010.

28. L. Wan, Q. Zhou, Exponential stability of stochastic reaction–diffusion Cohen–Grossberg
neural networks with delays, Appl. Math. Comput., 206:818–824, 2008.

29. E. Xu, X. Yang, Adaptive synchronization of coupled nonidentical chaotic systems with
complex variables and stochastic perturbations, Nonlinear Dyn., 84:261–269, 2016.

30. Q. Zhu, X. Li, X. Yang, Exponential stability of stochastic reaction–diffusion BAM neural
networks with time-varying and distributed delays, Appl. Math. Comput., 217:6078–6091,
2011.

Nonlinear Anal. Model. Control, 24(3):315–331


	Introduction
	System description and definitions
	Markov switching process
	Independent and identically distributed switching process

	Almost surely exponential stability and exponential stability in the mean square
	Numerical example
	Conclusions
	References

