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Abstract

During the past few decades, an explosive development of multiple camera sys-
tems has occurred. For example, a multiple camera system can be used by an
advanced driver-assistance system. For cooperative tasks among robots, a multi-
camera rig can be used to increase the localization accuracy and robustness. In
the logistics industry, a cargo drone mounted with a multi-camera system obtains
a panorama view. In these or other high-demanding tasks that heavily depend
on multi-camera systems, accurate extrinsic calibration of cameras is an abso-
lute prerequisite for precise visual localization. In this dissertation, a weighted
optimization method and a data selection strategy for extrinsic calibration are
proposed that relieve the inherent imbalance between pose estimates existing in
Liu’s setup [39]. Besides, two new extrinsic calibration methods are proposed
to improve the extrinsic calibration accuracy further. Other contributions of the
thesis are two cooperative localization methods MOMA and S-MOMA, which
can be applied to a robot group. These methods aim at overcoming the localiza-
tion challenges in indoor environments where repetitive or lack of features are
usually the case.

The weighted optimization method introduces a quality measure for all the
entries of camera-to-marker pose estimates based on the projection size of the
known planar calibration patterns on the image. The data selection strategy pro-
vides valuable suggestions on the selection of measurements leading to a better
coverage in pose space used for the calibration procedure. By introducing a
highly accurate tracking system, the first proposed calibration method discon-
nects the calibration objects, which are rigidly linked in Liu’s setup. With the
aid of the tracking system, the method improves calibration accuracy further.
The second calibration method uses active calibration patterns realized with two
electronic displays. By regulating the fiducial patterns displayed on the moni-
tors, the approach can actively perceive the best possible measurements for the
calibration estimation. The configuration of the dynamic virtual pattern aims at
maximizing the underlying sensitivity of the objective function, which is based
on the sum of reprojection errors, with regard to the relative pose between the
camera and the fiducial pattern. State-of-the-art calibration methods, together
with different configurations, are conducted and compared in simulation as well
as in real experiments validating that both the optimization method and the two
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new calibration methods improve the calibration results in terms of accuracy and
robustness.

In the second part of the dissertation, two novel, purely vision-based coop-
erative localization approaches MOMA and S-MOMA for a multi-robot system
are introduced. MOMA realizes visual odometry via accurate MObile M Arker-
based positioning. The movement pattern of the robots mimics the movement
of a caterpillar. The introduced fiducial marker board, which is mounted on one
of the robots, serves as a mobile landmark, based on which the relative pose be-
tween the robots is recovered. The absolute positioning of each robot is deduced
from the concatenation of the relative poses of previous phases. The second lo-
calization algorithm S-MOMA (MOMA with a stereo camera) extends the orig-
inal MOMA approach. By fusing absolute pose estimates from static environ-
ment features with relative pose estimates from known mobile fiducial features,
S-MOMA is formulated as an optimization problem combining two different ob-
jectives for these two different feature sources based on the same error measure,
namely the reprojection error. A comparison between the proposed cooperative
localization approaches MOMA, S-MOMA, as well as state-of-the-art localiza-
tion algorithms for different configurations, is given validating the improvement
in accuracy and robustness against various challenging testing environments.
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Kurzfassung

In den letzten Jahren schreitet die Entwicklung neuartiger Multikamerasysteme
rasant voran. Ein Multikamerasystem kann beispielsweise in einem intelli-
genten Fahrerassistenzsystem verwendet werden. Es kann auch fiir koopera-
tive Aufgaben zwischen Robotern eingesetzt werden, um die Lokalisierungsge-
nauigkeit und Robustheit zu erhohen. In der Logistikbranche kann eine Fracht-
drohne iiber ein Mehrkamerasystem eine dreidimensionale Rundumsicht erlan-
gen. Bei diesen oder anderen anspruchsvollen Aufgaben, welche erst durch
Mehrkamerasysteme ermoglicht werden, ist eine genaue extrinsische Kalibrie-
rung der Kameras notwendig, um eine prizise visuelle Lokalisierung zu errei-
chen. In dieser Dissertation werden eine gewichtete Optimierungsmethode und
eine Datenselektionsstrategie vorgeschlagen, welche das inhédrente Ungleich-
gewicht zwischen Posenschitzungen, das in Liu’s Aufbau [39] vorhanden ist,
weitestgehend aufheben. Auflerdem werden zwei neue extrinsische Kalibrierme-
thoden vorgeschlagen, um die Genauigkeit der extrinsischen Kalibrierung weiter
zu verbessern. Weitere Beitrdge der Arbeit sind zwei kooperative Lokalisierungs-
methoden MOMA und S-MOMA, die auf einem mobilen Multi-Roboter-System
angewendet werden konnen. Diese Methoden zielen darauf ab, die erschwer-
ten Bedingungen bei einer visuellen Lokalisierung in Innenraumumgebungen zu
tiberwinden, welche sich durch repetitive oder fehlende Merkmale ergeben.

Die vorgeschlagene Optimierungsmethode fiihrt ein Qualititsmal} fiir alle
Kamera-zu-Marker-Posen-Schitzungen ein, das auf der ProjektionsgréBe be-
kannter planarer Kalibriermuster basiert. Die Datenauswahlstrategie extrahiert
Bildmessungen mit besserer Abdeckung im dazugehorigen Posenraum als Ein-
gangsdatensatz fiir die Kalibrierung. Durch die Einfiihrung eines hochprizisen
Tracking-Systems konnen bei der ersten vorgeschlagenen Kalibriermethode die
Kalibrierobjekte frei im Raum platziert werden und miissen nicht mehr wie in
Liu’s Anordnung fest miteinander verbunden sein. Dies fiihrt zu einer Erh6hung
der Kalibriergenauigkeit. Das zweite Kalibrierverfahren verwendet aktive Kali-
briermuster, die aus zwei elektronischen Anzeigen bestehen. Durch eine Adap-
tation der auf den Monitoren angezeigten Referenzmuster wihrend des Kali-
briervorganges, kann der Ansatz aktiv bestmdgliche Messungen fiir die Kali-
brierung erzeugen. Die Konfiguration des dynamischen Musters zielt darauf
ab, die Empfindlichkeit der nichtkonvexen Zielfunktion, die auf der Summe
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der Reprojektionsfehler basiert, in Bezug auf Poseninderungen zwischen Ka-
mera und Referenzmuster zu maximieren. Desweiteren werden géingige Ka-
libriermethoden in Verbindung mit verschiedenen Konfigurationen sowohl auf
simulierten, als auch realen Messdaten angewendet und verglichen, um zu
bestitigen, dass sowohl die Optimierungsmethode als auch die neuen Kalibrier-
methoden die Kalibrierergebnisse in Bezug auf Genauigkeit und Robustheit ver-
bessern.

Im zweiten Teil der Dissertation werden zwei neuartige, rein bildbasierte ko-
operative Lokalisierungsansitze MOMA und S-MOMA fiir ein Multi-Roboter-
System vorgestellt. MOMA realisiert eine kooperative visuelle Odometrie liber
mobile visuelle Marker. Dazu werden spezielle Bewegungsmuster der Roboter
benotigt, welche die Bewegung einer Raupe imitieren. Die visuellen Referenz-
markierungen werden auf einem der Roboter montiert und dienen als mobile
Landmarke, anhand derer die relative Pose zwischen den Robotern hochgenau
bestimmt werden kann. Die absolute Positionierung jedes Roboters ergibt sich
aus der Verkettung dieser relativen Posen. Der zweite Lokalisierungsalgorith-
mus S-MOMA (MOMA mit Stereokamera) erweitert das Lokalisierungsprinzip
von MOMA. Dazu werden absolute Posenschitzungen einer SLAM Methode
aus statischen Umgebungsmerkmalen mit relativen Posenschitzungen aus be-
kannten mobilen Referenzmerkmalen fusioniert. Die Fusion wird in S-MOMA
tiber ein kombiniertes Optimierungsproblem erreicht, das zwei verschiedene
Ziele fiir diese beiden unterschiedlichen Merkmalsquellen, basierend auf dem-
selben Fehlermal} vereint, nimlich dem Reprojektionsfehler. Die vorgeschla-
genen kooperativen Lokalisierungsansétze werden in verschiedenen Konfigura-
tionen mit aus der Literatur bekannten Lokalisierungsalgorithmen verglichen,
um Verbesserungen in Bezug auf Genauigkeit und Robustheit in verschiedenen
anspruchsvollen Testumgebungen zu bestitigen.
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Figure 1.1: Sketch of a set of a front stereo camera and a bottom camera installed on a
quadrocopter, which can be used for the automatic landing, localization, and mapping.

Due to the decreasing cost of manufacturing cameras, the past few decades
have witnessed the explosive development of them. Cameras are everywhere, and
they are ‘infiltrating’ into every possible aspect of our life. All cell phones are
equipped with cameras. Cameras are installed along the highway for speed de-
tection or within the building for surveillance and security reasons. Cameras with
high resolution are used along production lines to assist quality tests or facilitate
the assembly procedure. In some cases, multiple cameras are needed because one
monocular camera fails to fulfill more and more sophisticated tasks. For exam-
ple, in the robot community, a multi-camera platform provides more flexibility in
sensor placement on a mobile robot for simultaneous localization and mapping
(SLAM) [29]. A multi-camera system can also be used for 3D segmentation
and cooperative localization among multiple mobile robots [42]. The majority of
quadrocopters are equipped with at least two cameras (Figure 1.1) to perform au-
tomatic localization and landing tasks [4]. In the car industry, the multi-camera
infrastructure can be used for computing loop-closure constraints [34], or be in-
tegrated to assist effective parking [63]. In the human-machine interaction area,
a multi-camera system enables people to interact with the environment by build-
ing real-time 3D models [50] or could be applied to people-tracking for virtual
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reality television studios [48].

As we can see, it is becoming more and more ubiquitous in a variety of re-
search fields to have multiple cameras with vastly different fields of view (FOV)
mounted on a rigid object, such as a car, a mobile robot, a drone, etc. However,
all these applications necessitate an accurate extrinsic calibration of the mounted
cameras, which estimates the relative pose between these cameras. Moreover, the
performance of these applications is highly correlated with the accuracy of the
extrinsic calibration. We refer to the extrinsic calibration of cameras with disjoint
FOV as eye-to-eye calibration to analogize the hand-eye calibration [28].

Precise and robust localization is recognized as one of the main fundamen-
tal requirements for mobile robot autonomy. Required tasks such as obstacle
avoidance, path planning, and mapping [24], [65] could only be successfully
conducted after accurate positions or poses of the agents are acquired. Different
kinds of sensors could be equipped for localization: radar, lidar, laser rangefinder,
infrared range sensor, camera, etc. For accuracy and robustness reasons, sen-
sors are usually combined to compensate for the limitations of different sensors.
Compared to other sensors, a camera has many advantages. It is light weighted,
and the cost is lower. Besides, the image contains rich information about the
environment. With the algorithmic development in computer vision and the in-
creasing computing power which could afford the image processing in real time,
the camera is becoming one of the most popular sensors for agents to perform
combined perception and localization tasks. So in this thesis, new cooperative
localization methods are explored, which are purely vision-based.

1.1 Motivation

1.1.1 Eye-to-eye Calibration

Eye-to-eye calibration estimates the relative pose between cameras with disjoint
FOV. It is similar to the stereo camera calibration in the sense that both calibration
procedures are relating the cameras with the same set of 3D features during the
calibration process. Unlike the stereo camera calibration, where one calibration
checkerboard is usually adequate to relate different camera frames, eye-to-eye
calibration is dealing with cameras with non-overlapping FOV. Due to the non-
overlapping FOV, the relating process, in this case, is very challenging since
the introduced features captured by one camera will not appear in the FOV of
the other camera. Borrowing the idea from the stereo camera calibration, one
straightforward solution to get around this limitation is to introduce calibration
targets, which have to be individually designed based on different configurations
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of the cameras.

Large range S
calibration object. .

Camera 1 Camera 2 Camera 3 Camera 4

Figure 1.2: The principle of eye-to-eye calibration using one large calibration object.

The calibration object can be of various shapes or forms. One obvious way
is to manufacture a large calibration object like the calibration item shown in
Figure 1.2 so that each to-be-calibrated camera could detect some parts of it. The
relative pose between the cameras could then be related. Unlike the stereo camera
calibration, the size of the calibration object used for the extrinsic calibration is
highly dependent on the configuration of the cameras. In some cases, the size
of the calibration object can be huge such that all cameras could capture some
features on it at the same time.
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Figure 1.3: Strauss’s calibration setup. The checkerboards are surrounded by the encoded
binary code, which gives each board its unique indexing.

Another way is to construct multiple calibration objects, and the relative pose
between them is kept unchanged during the calibration procedure. One exam-
ple is to introduce multiple checkerboards surrounded by encoded binary codes
so that each checkerboard has its unique board indexing [61]. The robot with
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Calibration
pattern

Calibration
pattern

C1 C2
Camera rig

Figure 1.4: Liu’s calibration setup. Two planar calibration patterns P/, P2 are rigidly
linked and fixed to a moveable frame. The frame is placed in several positions to the
camera rig during the calibration process.

a mounted camera rig moves around the checkerboards, and each camera could
build a map of the checkerboards (Figure 1.3). The unknown pose between the
cameras is estimated after fusing their previously built maps. Another example is
Liu’s method [39]. The method solves the unknown transform between the cam-
era pair by placing a compound target consisting of two rigidly linked planar cal-
ibration boards at several different poses relative to the camera pair (Figure 1.4).
Compared to Liu’s method, the method in [61] reduces the difficulty of establish-
ing the relationship between the calibration targets and the vision sensors using
an encoded binary pattern. In this case, the camera does not necessarily have to
capture the whole planar calibration pattern to recover its pose. However, more
pre-designed calibration objects are needed, which increases the calibration com-
plexity and results in less portability.

In general, the calibration methods that introduce calibration objects with
built-in fiducial features share the following properties. First, these methods are
less prone to failure since features from calibration targets could be extracted
with very high certainty and accuracy. Second, the well-detected features could
be further applied to refine the calibration results, which is one major advan-
tage of introducing calibration objects with prior built-in features. However, the
calibration items generally need to be pre-designed and pre-constructed to fit
the specific configuration of the to-be-calibrated cameras. Moreover, the limited
viewing range resulting from finite-sized calibration targets could, in some cases,
cause unstable results. In contrast, large calibration objects are cumbersome and
even impractical sometimes.

Now we refocus on Liu’s method. The method exhibits high flexibility and
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is very straightforward to implement. Meanwhile, the calibration cost is rela-
tively low. Unfortunately, since both calibration boards have to appear in the
FOV of the corresponding cameras for each pair of measured images, the pose
change space is reduced. What is more, the resulting measurement quality is
imbalanced'. These limitations will have a negative effect on the stability of the
method [71]. From the standpoint of a comprehensive evaluation, Liu’s method
is highly suitable for many eye-to-eye calibration scenarios even though it does
own the above inherent imperfection. The question is: if Liu’s setup is applied,
is there any approach to relieve this underlying instability? The answer lies in
the optimization method and the measurement selection strategy proposed in this
thesis.

As mentioned before, the limitations in Liu’s setup result in the reduced pose
change space and the imbalanced measurement quality, which lead to the in-
stability of Liu’s method. So another related question is: is there any possible
variation on the setup configuration that could be applied such that these inherent
limitations could be relieved?

Two possible solutions are proposed in this thesis.

The first solution is straightforward, which is to disconnect the calibration ob-
jects so that they could be independently placed to each camera. The relative
pose between the calibration objects could be accurately recovered from a track-
ing system. In this case, the tracking system serves as an invisible link between
the calibration objects. However, the disconnection comes at the cost of intro-
ducing a highly accurate tracking system, which is normally expensive. Hence,
the method of using the tracking system is not preferable if the introduction of
the tracking system is only intended to solve the eye-to-eye calibration problem.

Instead of using the printed planar fiducial markers or specifically manufac-
tured calibration objects, the work in [2] [40] introduces a display screen to gen-
erate fiducial patterns. The fiducial patterns could be flexibly controlled to fit
different situations. Inspired by these tempting advantages, the second solution
replaces the fix-sized calibration boards in Liu’s setup with electronic displays.
After proper encoding of the fiducial patterns displayed on the screen, the camera
could still recover its relative pose to the screen even if it a captures only a part of
the screen. Therefore, the pose change space of this new setup is larger compared
to Liu’s setup. Moreover, it is possible to improve the measurement quality by
actively manipulating the fiducial pattern. The question is: if the screen could
actively display fiducial patterns, how to design these fiducial patterns so that the
captured images can generate more accurate camera pose estimation?

A detailed explanation for the term imbalance of the measurement quality is given in Subsection
322.
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1.1.2 Cooperative Robot Localization

Apart from the applications which demand robots to cooperate for some tasks
like in [41], the past few decades have witnessed gradually increased research
on cooperative robot localization (CRL) [55]. Even though particular attention
and costs have to be paid for the disadvantages coming along with multiple robot
systems, such as the increased complexity of the coordination of robots, the in-
volved management of communicating, and the complex resolution of additional
measurements among them [54], the advantages of localizing a robot group are
tempting and multifold. First, by viewing all robot members as one sole entity
and exchanging the relative pose information between them, it is more likely to
prevent every single member from getting lost [54]. Second, the localization is
more accurate because a more massive amount of measurements are gathered,
from which less-noised data would have more influence on the pose estimates.
Another possible benefit is efficiency since each robot participates in the local-
ization task [41].

Figure 1.5: Examples of some challenging indoor environments in which visual local-
ization methods are prone to failure. The environment in the left picture has repetitive
features. In contrast, in the right picture, the room has a deficient number of features,
which is inadequate for the robots to localize themselves successfully.

Compared to outdoor environments, localization methods are more prone to
failure within indoor environments (Figure 1.5). Therefore, it is worth a moderate
discussion on why localization within an indoor environment is more challenging
compared to outdoors under most conditions. First, unlike in indoor GPS-denied
situations, the positioning of outdoor agents equipped with GPS will always be
guaranteed with bounded localization error regardless of which algorithm is ap-
plied [45]. Second, in indoor environments where unevenly distributed features,
ambiguous features from artificial objects, and symmetric structures are usually
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the case, visual localization methods have to be robust enough to tackle all these
potential problems.

On the one hand, simultaneous localization and mapping (SLAM) [18] meth-
ods are usually favored in indoor environments. Such methods estimate the ego-
motion of the agent while at the same time construct a 3D map of the environ-
ment and show significant advantages in reducing the positioning drift, especially
when the agent is moving in a closed space. On the other hand, a visual odom-
etry (VO) [49] based framework is preferable for the outdoor environment since
building a global map is expensive, especially for large-scale areas. However,
both SLAM and VO methods require rich features in the environment. Besides,
they are vulnerable to erroneous feature matching, which would bring irrecover-
able consequences on localization robustness and accuracy.

After combining the advantages of multi-robot cooperative localization meth-
ods and the challenges existing for indoor environment localization, the follow-
ing core and reasonable questions are posed, which also highlight the contribu-
tion of the proposed localization methods in this thesis. How to guarantee the
overall robustness when the environment does not possess a decent number of
features to enable the robot positioning? How to improve the localization accu-
racy when there are unfavorably distributed features or ambiguous features in the
environment? How to refine each robot’s pose once it detects other robots or is
detected by other robots in the circumstances mentioned above?

1.2 Contribution and Dissertation Structure

1.2.1 Contributions of the Dissertation

This thesis contributes to two research fields, namely, extrinsic calibration of
cameras with non-overlapping FOV and cooperative localization of multi-agents.
The contributions are summarized as follows.

o Firstly, an extended optimization method and a proper measurement selec-
tion strategy are proposed that can be integrated into specific calibration
setups to enhance the accuracy as well as the stability of eye-to-eye esti-
mates.

e Secondly, two new eye-to-eye calibration methods for several kinds of
camera setups are presented.

e Lastly, the thesis introduces two new purely vision-based cooperative lo-
calization methods MOMA and S-MOMA, which can be applied to var-
ious challenging environments and show high accuracy and robustness.
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MOMA is shortened for MObile MArker based localization method, and
S-MOMA is developed based on MOMA but with an extra set of one stereo
camera integrated.

1.2.2 Dissertation Outline

The dissertation is structured as follows. Since eye-to-eye calibration and cooper-
ative localization are the two main contribution areas in this thesis, the following
chapter begins with a brief sketch of different eye-to-eye calibration methods.
Then a short but necessary introduction of the methods for solving the equation
AX = YB? is given, based on which all the contributions concerning eye-to-eye
calibration in this thesis are built. The review of the various cooperative localiza-
tion methods is presented at the end of this chapter.

Chapter 3 introduces the weighted optimization method and the measurement
selection strategy that can be integrated into specific calibration setups. Two ap-
plicable setups are introduced: Liu’s setup as well as the one proposed in the
thesis applying a highly accurate tracking system. To avoid the repetitions that
exist in the deduction of these two setups, the optimization method and data se-
lection strategy are explained using Liu’s method. The improvements brought by
the optimization method are validated both in simulation and in the real experi-
ment.

The subsequent chapter 4 presents another new eye-to-eye calibration setup,
which introduces two electronic monitors to display dynamic fiducial features.
The mechanism of the dynamic fiducial feature generation is derived, followed
by the optimization method of this new setup. Then the performance of the pro-
posed method is compared to state-of-the-art methods under different configura-
tions in simulation as well as in a real experiment.

In Chapter 5, the cooperative multi-robot localization method MOMA is first
presented, based on which the localization method S-MOMA is explained and
derived. The implementation of different experiment settings are demonstrated,
and the results obtained from different methods and configurations are compared
and illustrated.

In the last chapter, conclusions from the previous results are drawn, and an
outlook for possible extensions is provided.

The equation AX = YB and its notation is explained in Section 2.2.
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The first section of this chapter reviews the previous work of eye-to-eye calibra-
tion, which is the main content of Chapter 3 and Chapter 4. Then a short introduc-
tion of the methods for solving the equation AX = YB is presented, since both
the optimization method and the new calibration methods proposed in this thesis
depend on the initial value of the relative poses X and Y from solving AX = YB.
In the end, the cooperative localization methods from the past decades are con-
cisely summarized, which provides preparation for Chapter 5.

2.1 Previous Work in Eye-to-eye Calibration

Except for the eye-to-eye calibration methods explained in the last chapter, which
apply larger-scale calibration objects, there are different methods for solving eye-
to-eye calibration. In order to give a big picture of the existing calibration meth-
ods, it is necessary to categorize and compare these methods. There exist dif-
ferent category criteria. The most updated and detailed review could be found
in [71], where the calibration methods are divided into six categories based on
(1) Large-range measuring devices; (2) Large-scale calibration targets; (3) Op-
tical mirrors; (4) Motion models; (5) Laser projection; (6) Visual measuring in-
struments.

In this thesis, the calibration methods/setups are classified into four categories
I-IV shown in Figure 2.1 depending on (1) whether 3D features are mobile or not
and (2) whether the absolute coordinates of the 3D feature points (either from
a calibration pattern or the natural environment) are known or not during the
calibration procedure.

Category I For the calibration of mobile multi-camera rigs using known abso-
lute coordinates of 3D feature points, a 3D map of the environment is needed in
order to localize the cameras within the map. Hence, an accurate 3D map of the
environment [5], [26] must be available, or a reference object has to be placed in
FOV of all cameras so that each camera could detect some parts of it [22], [13].
The methods in this category differentiate from each other in the way of how
the map is constructed before the calibration procedure. The method in [5] ap-
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(a) Prebuilt-map based setup (b) Map building based setup

-« » /—\ « .,
%allbratlon % R | Calibration
i pattern e pattern
. A " <
Q |
'@ Tracking target '
‘ »> Large-range measuring system \

(¢) Large-range measuring device based
setup (d) Liu’s setup

Figure 2.1: Illustration of the calibration setup categories based on whether the features
are mobile or not and whether the absolute position of the feature points is known or not
during the calibration procedure. There are various calibration setups in each category.
In order to emphasize the characteristics of the calibration setups in different categories,
all the demonstrated examples are slightly reconfigured to calibrate a camera pair with
non-overlapping FOV mounted on a car. The red arrows appearing in the figures indi-
cate that the objects (vehicles or 3D features) with red arrows overlaid have to move or
be placed in different locations during the calibration procedure. In the first calibration
category, the car has to move within the previously well-built map to recover its localiza-
tion (Figure 2.1a). In the second category, the car has to move in the natural environment
with rich features in order that each camera could build an online map (Figure 2.1b). A
large-range measuring system is introduced in the third category to detect the position of
the fiducial features, which are used to relate different cameras (Figure 2.1c). Liu’s setup
is taken as an example for the last category. Two rigidly linked planar calibration patterns
are introduced to build the relationship of the cameras (Figure 2.1d).
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plied the RGB-D sensor to construct a global 3D model of the calibration envi-
ronment. Heng et al. [26] used multiple cameras to perform a computationally
expensive SLAM method to build a prior map of a calibration area, which could
then be used for the recovery of the to-be-calibrated camera pose. The work
in [22] constructed a global calibration object with circular calibration patterns
pasted on, which could be detected by the camera. The positions of the circular
targets’ centers were obtained with the help of a hand-held scanner.

Category II. When the camera rig platform is mobile while the absolute coordi-
nates of 3D feature points are unknown, the calibration methods need either the
recovery of each camera’s relative pose between consecutive timestamps [19]
or an online map building for each camera [10], [27], [33], [61]. The former
method uses structure and motion (SAM) to formulate the eye-to-eye calibration
problem, which is similar to the hand-eye calibration problem [28]. In contrast,
the latter optimizes the unknown relative pose by aligning maps built by each
camera, in which the maps could either be generated from a natural scene or a
special calibration environment filled with fiducial landmarks.

The work in [19] formulated the problem similar to that of hand-eye calibra-
tion by matching the relative motion of multiple cameras in order to compute the
extrinsics. The method only focused on the trajectory alignment, and a globally
consistent map is neglected. Meanwhile, the method would degenerate under
certain configurations [19]. In [61], Strauss etc. used multiple checkerboards
surrounded by binary patterns to solve the association problem. The coordinate
frame of different cameras and the boards, which could be partially detected
by the camera due to the binary encoding, become mutually referenced over
time. By additionally matching environment feature points and fusing the recon-
structed maps from each camera, the work presented in [10], [27] addressed the
degeneracy in [19]. In [10], Carrera G. et al. used MonoSLAM on each camera
to build a globally consistent map. SURF descriptors, 3D similarity transform
combined with a RANSAC framework were then applied to find inlier feature
correspondences. In the end, a global bundle adjustment (BA) was run to opti-
mize the camera pose, 3D feature points, and extrinsic parameters. However, the
3D similarity transform step might fail if the majority of the environment fea-
tures are far from the cameras. As a result, the estimated 3D feature positions
would contain substantial noise, which resulted in fewer inliers [27]. In order to
maximize the number of feature correspondences, Heng et al. [27] used not only
the current image but also a set of the most recent images from other cameras.
The method additionally included an external motion sensor to recover the accu-
rate scale of the map. Meanwhile, fiducial landmarks were introduced to refine
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the camera-odometry transform further. Besides, the methods in [10] and [27]
shared one property that both rely on loop closures to maximize the robustness.
However, the identification of the loop closure might fail in some cases.

The illustration of the above two categories is shown in Figure 2.1a and Fig-
ure 2.1b. The 3D features are represented as fiducial markers in Figure 2.1a to
indicate that these features generate the most accurate and robust map compared
to the features detected from the natural environment. For these two categories,
the vehicles with mounted camera rig have to either move to several positions
within the well-built map (Figure 2.1a) or move along in the scene to generate
online maps (Figure 2.1b) for all onboard cameras.

Category III In this category, the camera rig is stationary. In order that the
absolute coordinates of the 3D feature points from calibration patterns are known,
a large-range measuring system as the one in Figure 2.1c is necessary such that
the absolute position of the targets could be accurately tracked [11], [38], [37].
Then the unknown extrinsic could be solved based on (1) the accurately known
absolute pose of the targets with reference to the global coordinate frame (the
tracking system) and (2) their relative pose to the cameras. In a word, the methods
in this category depend on either direct or indirect position information of the
calibration targets.

Liu et al. [38] used a laser range finder to project laser spots on the planar
calibration object and measure their distances. The extrinsics between cameras
could be recovered according to the co-linearity of the laser spots, which have
been captured by all cameras.

Category IV  The last category deals with the configuration where the camera
rig is stationary, and the absolute coordinates of 3D feature points are unknown.
In this case, the 3D features are generally from reference objects and their relative
positions are known. The reference targets are placed in different positions, and
their pose with respect to the corresponding cameras is computed. These poses
are later on used for recovering the extrinsic parameters.

In [39], Liu et al. introduced a moveable calibration rig with two rigidly linked
planar calibration patterns. By changing the pose of the calibration rig relative to
the camera pair, a set of pose pairs {A;,B;}'=" was collected and used for solv-
ing for the unknown extrinsic camera pose (Figure 2.1d). Liu’s method shows
high flexibility, but the task of collecting a proper data set so that high-quality
results could be generated is demanding since the calibration results are greatly
dependent on the data set. The influence of different data sets on the calibration
results will be explained in detail in the next chapter. Another way is to intro-
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Figure 2.2: Kumar’s calibration setup [30]. A mirror is placed in certain appropriate po-
sitions such that the calibration object, which is not originally in the FOV of the cameras,
could be captured by its reflection. The right image gives the recovered camera pose using
the calibration method.

duce a mirror to the calibration environment [30], [32]. The methods in [30]
and [32] placed a mirror to several appropriate positions in order to image the
calibration object that is not originally in the FOV of the camera (Figure 2.2).
The extrinsic parameters of the camera were then calculated based on the mir-
rored views. Other similar methods belonging to this category could be found
in [62] [40] [72], where sphere target, 1-D target, and particular target structure
are constructed instead of planar ones.

There are no perfect setups. Every setup trades off between different opti-
mization criteria and thus has its pros and cons. The methods [5], [26] in the
first category (I) need a pre-built map, and they are advantageous only if many
calibrations are needed within a short time span since the ‘calibrated’ environ-
ment must be kept unchanged afterward. Meanwhile, the multi-camera rig must
be placed in the known map. Though the calibration approaches [10], [27] in the
second category (II) are automatic and do not need a traditional calibration setup,
they share the following problems. First, they have difficulty recovering the true
scale of the environment or need an extra motion sensor. Second, an environ-
ment full of distinct features is implicitly required to guarantee the accuracy and
robust outlier rejection strategies have to be carefully applied. Otherwise, the
map-building process may fail. In addition, the accuracy is greatly dependent on
the accuracy of the map, which inherits all the problems of map building methods
like SLAM. The methods [33], [61] in the same category require moving cam-
eras to capture the pattern boards at different times, which might be challenging
for larger vehicles. The methods [11], [38], [37] applying a large-range measur-
ing system in the third category (III) are generally more accurate, but the setup
complexity and the costs are high. [30], [32] in the last category need to place
the mirrors and grids to certain positions so that cameras could simultaneously
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detect direct or reflected calibration patterns. Though the techniques are easy and
simple, the accuracy degrades as the distance between cameras becomes larger.
Besides, the placement of the mirror is not straightforward to realize. Although
the method [39] in the last category (IV) needs extra infrastructure and additional
interaction is needed to collect measurement data, the calibration patterns could
be detected reliably with sub-pixel accuracy, which provides true scale informa-
tion and could be further included into the optimization process. Meanwhile, the
setup complexity is low, and the costs are much less than buying and setting up a
stationary large-range measuring system. Moreover, the camera rig does not have
to be moved during calibration, which is a considerable advantage, especially for
mobile vehicles. However, the limited pose change space of the calibration tar-
gets could result in low-quality calibration results [71].

Stationary features Mobile features
Known Accuracy: high Accuracy: high
absolute | Robustness: high Robustness: very high
3D Portability: low Portability: low
featgre Automation: low Automation: high
positions | Pprice: medium Price: very high

Setup Complexity: high | Setup Complexity: very high

@ )

Unknown Accuracy: medium Accuracy: medium
absolute | Robustness: low Robustness: high
3D Portability: high Portability: medium
feature Automation: medium Automation: medium
positions | Price: low Price: low
Setup Complexity:low Setup Complexity: medium

Table 2.1: Categorization and rating of different eye-to-eye calibration setups.

At the end of this section, a rating in terms of six practical assessment criteria
that should be normally taken into consideration during the calibration procedure
is included for each category, namely accuracy, robustness, portability, automa-
tion, price, and setup complexity. A summary of all the categories, including the
rating, is given in table 2.1. Since there are various methods/setups in each cat-
egory, the rating is a general, comprehensive evaluation of the category instead
of a specific setup. Several conclusions could be drawn. First, when the accurate
coordinates of the 3D features are known either from a highly accurate tracking
system, a particularly constructed large calibration object, or a well-built map
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using high-quality sensors, the calibration accuracy and robustness are readily
guaranteed at the expense of high costs, poor portability, and increased setup
complexity. Second, when the coordinates of 3D features are not available and
have to be recovered during the calibration procedure, the cost is generally much
lower since no costly device is required. However, the accuracy and robustness
are, in this case, compromised.

2.2 Review of the Methods for Solving AX = YB

In this thesis, the final estimation of the unknown pose transform X and Y is
acquired from a nonlinear refinement, which is conducted after obtaining the ini-
tial estimation of X and Y from solving the equation AX = YB. Therefore, this
section reviews the classical methods for solving AX = YB. All the transforms

. . . R . .
in the above equation are of the matrix form: L)T I] , in which R stands for a

3 x 3 rotation matrix and t a 3 x 1 translation vector.

Q
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Figure 2.3: Hand-eye robot-world calibration.

AX = YB is first proposed for solving the hand-eye robot-world calibration
problem (Figure 2.3), where X represents the unknown transformation from the
robot-base coordinate frame to the world coordinate frame, Y denotes the un-
known transform between the hand frame and the camera frame, A is the trans-
formation from the world system to the camera system, and B describes the trans-
formation of the robot-base frame to the hand frame and is assumed to be known
from the robot controller.

Same as the hand-eye robot-world calibration problem, the setups that are go-
ing to be presented in the following chapters also formulate the eye-to-eye cali-
bration problem as AX = YB. For example, the transformation notations in Liu’s
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Figure 2.4: Eye-to-eye calibration.

setup are described as follows (Figure 2.4). X represents the unknown relative
pose between two planar calibration patterns, Y represents the unknown trans-
form between the camera pairs, A and B are the transformations between the
camera and the corresponding planar calibration pattern, which are obtained after
applying a marker detection algorithm. These transformations might be slightly
different depending on different setups, but all the measurements are generated
from cameras in eye-to-eye calibration setups.

The closed-loop constraint AX = YB could be extended to (2.1), which can
be decomposed into a rotational component (2.2) and a translational compo-
nent (2.3) like follows:

Ry t4| |Rx tx| |Ry ty||Rp tp @1
0 1 0 1| |0 1 0 1 ’

RsRy = RyRgp, (2.2)

Rty +t4 = Rytg+ty. 2.3)

The methods for solving the above equations could be classified into the fol-
lowing three categories: separable solutions, simultaneous solutions, and itera-
tive solutions. As the name suggests, separable solutions estimate X and Y by
separately solving the rotational and translational components. The rotation part
could be directly solved without involving the translation part. Then linear meth-
ods could be applied to solve ty and ty once Ry is known. In [73], the rotations
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were represented as quaternions and solved applying the linear solution, then
the method of linear least squares is used to find the optimal translation part.
Dornaika and Horaud in [17] proposed a closed-form solution for rotation esti-
mation without the normalization process in [73], while the method of estimating
translational components stayed the same. In [56], Shah applied the Kronecker
product and singular value decomposition to find the solution.

The simultaneous solutions calculate X and Y by solving the rotational and
translational components as a whole. Li et al. [36] used dual quaternions and
the Kronecker product to simultaneously search for X and Y in order to limit the
error propagation.

The iterative methods estimate X and Y iteratively. In [68], Wang et al. pro-
posed a linear, approximative, iterative method to solve the rotation part using a
variation of rotation matrices, and the translational component is solved in closed
form.

2.3 Related Work in Cooperative Robot
Localization Methods

This section reviews the related work in cooperative robot localization (CRL)
methods. To simplify and clarify the recent work on cooperative localiza-
tion methods, depending on whether the environment measurements have been
employed to influence and bias the localization results, the cooperative local-
ization methods are categorized into the following two groups: environment-
noninteractive and environment-interactive.

Figure 2.5: The leap-frog localization strategy from Tully et al [66]. The left figure shows
three robots used for the experiment, and the right figure demonstrates the leap-frog path.

As the name suggests, the robots in the first category could only sense the
bearing or positioning of other group members, and no measurements from the
environment are included for localization estimation. An example belonging to
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this category was first introduced in [31] with the name cooperative robot lo-
calization (CRL). In this work, the robots were divided into two groups and
alternated the roles of moving and staying static. The robot group, which re-
mained motionless, acted as portable landmarks. This procedure repeated until
both groups reached their destination.Tully et al. [66] designed a ‘leap-frog’ path
for a team of three robots applying Extended Kalman Filter (EKF). In this case,
two robots act as stationary measurement beacons, while the third moves in a
path that provides bearing-only measurements. Similar to [31], the roles of each
robot are switched, and the path is repeated (Figure 2.5). Luis et al. [45] fused
the vision-based bearing measurements among pairs of robots with the motion
of the vehicles by applying a recursive Bayes estimator. In [57], the authors pre-
sented a similar idea like in [45] while replaced the estimator with a non-linear
counterpart and introduced additional fiducial landmarks to the environment in
order to ensure the observability of the designed system. The drawbacks, how-
ever, reside in the limited exploring range and the inconvenience caused by the
invasion of the fiducial marker. A bunch of similar approaches could be found
in [15], [12], [23].

The environment-noninteractive localization methods are very robust and do
not involve complex control management. However, they share the following
limitations. Either at least one robot should keep stationary during the whole
localization process, or fiducial landmarks must be introduced and appear in the
FOV of the equipped sensors. The former slows down the overall localization
procedure while the latter needs to transplant unfriendly human-made markers
into the environment beforehand. The robot team is ‘blind’ to the environment,
which means either the localization results serve as the input into higher-layer
tasks, or the robot team is controlled by the operator. Since no map is built in
this category, there exists unavoidable drift. Moreover, the longer the trajectory
is, the larger the resulting drift will be.

As for the environment-interactive category, it is acknowledged that including
environment measurements can improve the efficiency and accuracy. In [20],
Fox et al. proposed a probabilistic Markov localization approach for a multi-
robot system. The belief of each robot’s pose uncertainty would be biased when
it was detected by other robots, or it detected other robots depending on the qual-
ity of the sensor for the detection. Though at the cost of the communicational
overheads among robots, the approach showed drastic improvements in local-
ization speed and accuracy. The main drawback is a known-environment map
must be previously provided, which limits its applications in the real environ-
ment. In [54], a centralized estimation approach applying Kalman filter (KF)
was presented using two cycles: the propagation cycle and the update cycle. The
centralized estimator could be decomposed into a decentralized form, which al-
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lowed the measurements collected from a variety of sensors to be fused with
minimal communication and processing requirements. Similar approaches were
explored in [16], [8], [44], [9].

Some shared limitations of the environment-interactive category are as fol-
lows. The methods are less stable since the measurements from the environment
are far less reliable and predictable compared to the relative measurements be-
tween the robot members. Both the communication mechanism and the mea-
surement fusion are much more complex, which introduces increased overheads.
Meanwhile, the management of the uncertainty distribution of each robot pose
becomes complicated. However, all these methods do not need fiducial features,
so there is no invasion of the fiducial landmarks to the environment. Besides, the
map built during the localization process relieves the drift, especially when the
robots are moving within an enclosed space, and the map also allows the robots
to carry out more advanced tasks such as obstacle avoidance, path planning, etc.

The fusion algorithm in the second category could behave in either a central-
ized or decentralized manner during information exchanges. In the early devel-
oped methods, the fusion strategy was mostly filter based by applying filters such
as extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter
(PF). With the drastic improvement in computation power nowadays, the local-
ization algorithms have shown the tendency of developing from the filter-based
framework to the non-linear optimization-based fashion [60], which is computa-
tionally more expensive but exhibits better performance compared to the former.

Despite the countless localization methods that have been developed for var-
ious scenarios, all these methods have problems or imperfections of robustly
and accurately localizing a robot or a robot team within the indoor environment,
where deficient, ambiguous, and repetitive features are usually the case. Though
many methods are tested in the indoor environment or the GPS-denied area, the
testing environment does not explicitly deal with all the above challenging situa-
tions.

In this thesis, two new cooperative localization methods MOMA and S-
MOMA, are proposed. MOMA belongs to the first category and extended the
idea in [31] by using cheap cameras and printed planar fiducial markers instead
of an expensive laser system. Based on MOMA, S-MOMA is developed, which
includes environment-interaction to the cooperative MOMA approach. The
method is a hybrid of the first and the second category. The method retains the
concept of the portable fiducial landmark from the environment-noninteractive
framework for robustness considerations. Meanwhile, the algorithm allows the
system to interact with its surrounding environment and to be further influenced
by it.
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3 Eye-to-eye Calibration

In this chapter, the theoretical foundation is first provided, which is necessary to
understand the succeeding derivations. A thorough explanation of Liu’s method
and the inherent instability existing in the method is provided afterward, based on
which the weighted non-linear optimization method and the measurement selec-
tion strategy are presented. Then a new eye-to-eye calibration method applying a
highly accurate tracking system is introduced. The optimization method and the
data selection strategy are validated on synthetic data as well as in a real experi-
ment. The proposed method applying the tracking system is also implemented in
a real experiment, which serves as the benchmark for other calibration methods
and configurations.

3.1 Preliminaries

This section provides mathematical foundations, namely Lie Group, Lie Algebra,
and bundle adjustment (BA), which will be frequently used for the subsequent
derivations. For simplicity, these definitions introduced in the following subsec-
tions are kept plain and concise. A more detailed and comprehensive explanation
could be found in [43], [6].

3.1.1 Lie Group and Lie Algebra

One of the most common parameterization for rotation is using the 3D rotation
matrix: R = [r,r2,r3]. The rotation matrix has two properties: all of its col-
umn vectors or row vectors are orthogonal, and its determinant equals to 1. The
construction of non-linear optimization problems such as BA or PnP takes the
camera pose as one of their variables. In this case, the derivative of the objective
with respect to the camera pose is required. Due to the above inherent constraints,
it is not possible to directly optimize variables that are in the rotation matrix form

R

0" 1
The way to get around the above limitation is to apply the relationship between

Lie Group and Lie Algebra, which allows the pose estimation to be transformed

. . t L.
R or the transformation matrix form T = } , which includes R.
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into an unconstrained optimization problem.

Lie Group

A group is defined as an algebraic structure that consists of a set of elements
together with a binary operation ®. Any two elements (a, b) in the set S could
be combined by the operator to form a third element c. The operation ® must
meet four group axioms in order to form the group G = (S,®), namely closure,
associativity, identity, and invertibility.

e Closure Va,be S, a®bes.

o Associativity Va,b,c €S, (a®b)@c=a® (bQc).
e Identity dec S, st.Vacs, eRa=a®e=a.

o Invertibility Ya€ S, 3a~' €S, st.a®a ! =e.

Examples of group are: G = (Z,+) that is composed of all the integers with
the addition operation; Special Orthogonal Group denoted as SO(3) that consists
of 3D rotation matrix R with the multiplication operation; Special Euclidean
Group SE(3) consisting of the transformation matrix T under the multiplication
operation.

SO3)={ReR¥? |RRT =1, |R|=1}.

SE(3) = {T: Bﬁ I] 6R4X4|RESO(3),teR3}.

Different from the general groups whose elements could be discrete, Lie group
is a group as well as a differentiable manifold, on which the operation ® is a
smooth map. Since both SO(3) and SE(3) have a natural structure as a manifold
and the group operations are smooth, they are both Lie groups.

Lie Algebra

A Lie algebra consists of a vector space V over some field F and a non-associative
binary operation [,], which is called Lie bracket.
A Lie algebra (V, T, [,]) should satisfy the following axioms:

e Closure VC,DeV, [C,D]eV.

e Bilinearity VC,D,Z €V, abeF
[aC+bD,Z] = a[C,Z] +D[D,Z], [Z,aC+ bD]=a[Z,C]+ b[Z,D].
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e Alternativity VC €V, [C,C]=0.

o The Jacobian identity VC,D,Z €V, [C,[D,Z]]| +[Z,[C,D]]+[D,[Z,C]] =
0.

e Anticommutativity VC,D € V, [C,D]=—[D,C].

Each Lie group has its corresponding Lie algebra. The Lie algebra of SO(3)
is denoted as s0(3) consisting of the vectors ¢ in R?. Each ¢ could generate the
corresponding skew-symmetric matrix @ as follows after applying the operator

N

0 —-¢ ¢
P=¢"=|¢ 0 —¢|ecR¥
¢ O 0

The Lie bracket is defined as [¢,,¢,] = (P, — P,P;)", where the operator
‘v’ transforms a skew-symmetric matrix into its corresponding vector form. So
the 50(3) could then be represented as:

s0(3)={p e R} ®=9¢" cR¥3}.

s¢(3) consisting of the vectors p in R® represents the Lie algebra of SE(3), and
is denoted as follows:

se(3) = {é = [ﬂ ERO pecR3 @ 650(3)}.

The vector p in & represents the translational part, and ¢ describes the rota-
tional part. Similar to so(3), the operator ‘A’ transforms a vector in R® into a
4 x 4 matrix, except that the obtained matrix is no longer skew-symmetric like in
50(3).

A
AN ¢ P 4x4
& = [ oT 0} € R*“.

The Lie bracket of se(3) is defined as:

A g AN g
[é]a&Z] = (gl 52762&1 )\/'

Exponential Mapping

The vector @ of Lie algebra so(3) could be represented as a unit vector a de-
scribing the axis of the rotation about which an angle 0 is rotated according to
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the right-hand rule. Then the rotation matrix R is related to the elements in so(3)
by the following exponential mapping:

R=exp(¢") =exp(6a’)=Y %(OaA)" = cos(01) + (1 —cos0))aa" +sin(0a),
n=0"""

where ([)]A represents the corresponding skew-symmetric matrix, and ‘exp()’ in
the above equation defines the exponential map from s0(3) to the Special Or-
thogonal Group SO(3) [67]. The result is the same as the Rodrigues’ rotation
formula [7].

The following exponential mapping relates the transformation matrix T to the
elements in se(3):

oo 1 A\n o0 1 A\n
o Ay Zn:Oﬂ(¢ ) Zn:O (n+l)!(¢ )p _ R Jp
T*exp(é )* OT 1 - OT 1!
where 6 0 | 0
_sin _sin T —cos6
J= 5 I+(1 5 )aa —5

After the exponential mapping, the operator ‘A’ transforms & to the transfor-
mation matrix T. The translational vector t of T now becomes the product of the
linear transformation J and the vector p in se(3). The transformation J is only
related to rotation. For more details, we refer to [67].

3.1.2 Bundle Adjustment

Perspective-n-Point (PnP) estimates the pose of the camera when the initially es-
timated position of a set of 3D spatial feature points and their 2D projections are
given. In the VO and SLAM framework where a stereo camera or an RGB-D
camera is used, PnP could be directly applied for pose estimation. There are
different solutions to the PnP problem, such as P3P [21], direct linear transfor-
mation (DLT) [25], efficient PnP (EPnP) [35], robust pose estimation by actively
controlling planar point configurations [3], BA, etc. Of all these PnP methods,
BA generates the most accurate estimation.

Different from P3P, DLT, and EP»nP methods, where the camera pose is first
estimated and the 3D feature position is then calculated, BA simultaneously re-
fines all the parameters, including the 3D coordinates of the features and the

camera pose T = [ T} . Given a number of # initially estimated 3D features

0T 1
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P; = [X;,Y;,Z;,1]7, i € [1,n] represented in the world frame, and their correspond-
ing 2D projections on the image p; = [u;,v;,1]T, they are related by the pinhole
camera model:

Aip; = KTP;,

where ; is the depth of the feature point and K € R3*3 is the intrinsic camera
calibration matrix.

Due to the image noise, the above equation does not hold. The objective func-
tion of BA is built on this error item which is formulated as:

2

i=n
= argmin ZHE,H%

=n
(T,P,P,---P,) = argmin Z
2 TPPyPy =]

1
Pi — —K (TP,)
TP, Py Py A

i

The objective function is a typical non-linear least-squares problem. Each
error item (residual) €; in the equation is known as the reprojection error, which
depicts the difference between the real measurement and the predicted projection,
which is based on the currently estimated 3D feature position and the camera
pose. By minimizing the overall projection error, the camera pose, and the 3D
feature position are estimated to their optimum.

3.2 Data Selection Strategy and Weighted
Optimization Method

As mentioned before, the optimization method and the measurement selection
strategy are suitable for the setup that builds its objective function based on the
reprojection error of 3D-2D point correspondences constrained by 3D-3D closed-
loop pose transformation AX = YB. In this section, the weighted non-linear opti-
mization method and the data selection strategy are presented using the example
of Liu’s setup [39].

3.2.1 Liu’s Method

In order to understand the underlying instabilities in Liu’s method, the method is
first explained.

Liu’s method uses a mobile calibration device which rigidly links two planar
calibration patterns P/ and P2 whose relative pose X is unknown (Figure3.1).
The planar calibration pattern could be a fiducial marker or a chessboard. By
changing the pose of the calibration rig relative to the camera, a set of images

{rf I,If 2 ij containing the calibration patterns is collected, based on which



3.2 Data Selection Strategy and Weighted Optimization Method 25

Figure 3.1: The measurement collection process of Liu’s setup.

{A, B,-}ﬁz']’ could be recovered. The initial estimation of X and Y is calculated
by solving AX = YB. In order to further improve the calibration accuracy, the
initial value of X and Y is then applied to minimize the objective function, which
is based on the reprojection error from all measurements.

Since two pattern detection processes coexist in this setup and each recovered
relative pose pair (A;,B;) is restricted by the same constraint A;X = YB;, in what
follows, many dual equations will be derived. For simplicity, the explanation of
the derivation will focus on one side with the calibration pattern P/, while the
conclusions for the other pattern P2 are given without explicit explanation.

The classical minimization of the reprojection error between 3D marker points
and their corresponding projections is first summarized using the notations that
appear in Liu’s calibration setup. Given a 3D-2D point correspondence of j-th
3D marker point with coordinates M#! = [, ¥/, ZP1]T € R? represented in
the fiducial pattern frame P/ and its corresponding projection onto a calibrated
camera' with image coordinates mf = [xf l yf 1T € R?, the relationship between
these points is given by the relative pose g = (Ra4,t4) (Euclidean transformation)
between the pattern frame P/ and the camera frame Cl, MJC-1 = RAMf Uty
followed by a projection @ with mfl = ﬂ(M]C.I) = [XJCI/Z?,YJCI/ZJCI]T. This
leads to the relation:

mfl = j'c(MJCl) = E(RAMil +tA). 3.1)

The projection process of the pattern P2 in the camera frame C2 is expressed

' Assuming the calibration matrix K € R3*3 to be known, the homogeneous image coordinates
in pixel ﬁ; = [x;.,y;, 1]T can be transformed to homogeneous normalized image coordinates in

metric units m; = K’lﬁ/j.
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as follows:
m? = 1(M$?) = T(RpM/? +tp).

In the real experiment, the above projection procedure will be corrupted due
to the undesirable electronic noise. Including additive noise %' = [ef!, (71T
to the error-free image coordinates mf !, the noisy measurements of the image
coordinates could be represented as lilf e mf Ly 81; !, Thus, the reprojection
error || €773 = [[m%” —m"’ |3 of each point could be solved, which is a squared 2-
norm. Minimizing the squared 2-norm of all points for the optimal pose (ﬁA,fA)
leads to the following least-squares estimator:

m
(R4, t4) = argmin Z He’;lﬂ%, m>3. (3.2)
Rats j=1

A similar equation can be drawn for pattern P2:

4
(Rp,t3) = argminz 1€P?3, o>3. (3.3)

Rp.tp =1

The formulation of Liu’s method is similar to the hand-eye robot-world cali-
bration routine, which uses a number of n pose pair measurements {Ai}fi’f and
{B;}=", where A, is the transform from the world frame to the camera frame and
B; denotes the relationship between the robot-base and the robot-hand frame. In
Liu’s method, the above pose pair measurements are replaced by a set of marker-
eye poses {A;, B,-}i'l’. Applying the 3D closed-loop pose constraints for A; gen-
erates the following equations:

A =YBX !
Ry, =RyRp R}, (3.4)
t4y, =Ry (tB,- - RBiR§tX) +ty. 3.5)

The above counterpart for B; applying the same 3D closed-loop pose con-
straints is:
B,=Y 'AX,
Rp, = RYR4,Ry, (3.6)
tp, = RE (R ty +ta. —ty). (3.7)
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Combining all those corresponding 3D pose constraints with the minimization
of the reprojection error (3.2) by including the constraints (3.4) and (3.5) into
(3.1) gives

m/ =7 (Ry (Rg Ry (Mf! —tx) +t5,) +ty), (3.8)

which leads to the optimization similarly formulated in [64]

(RX7tXaRY7tY) - argmln Z Z ||£ ”2
Ry tx Ry ty =1 j=1

Here, the error term extends to ||£ ||2 = ||m m;; H%

In Liu’s setup, each projection mﬁz can also be constrained by all correspond-

ing 3D closed-loop pose equations AX = YB. Solving the constraints for B;
gives the following for each pose pair configuration i, another reprojection error
| €523 = |[ml? —m£?|3 could be obtained. Including constraints (3.6) and (3.7)
into the corresponding projection that is part of (3.3) leads to an equation similar
to (3.8):

m{? =7 (Ry (R, (RYM[? +tx) +t4, — ty)).

Based on the combination of all these additional constrained projections, the
extended optimization problem can be formulated as follows:

(Rx,tx,Ry,ty) = argmin Z ZHS ||2+ZH£ 13). (3.9)
Ry tx Ry ty i=] j=

In general, the number of point correspondences m for the first camera CJ
can differ in the number of point correspondences o for the second camera C2.
This optimization is similar to BA for two cameras. The difference is that the
two different bundles of rays for camera C/ and C2 do not belong to the same
3D points but different 3D points on two different calibration patterns. In this
case, each marker is only visible in the FOV of only one camera. Therefore, an
additional constraint that relates to the 3D points of each bundle is needed, which
is given by AX = YB originally used for hand-eye and robot-world calibration.

So far, the derived objective function (3.9) is the same as the one optimized
in [39]. It is non-convex, so the iterative optimization can only guarantee to
converge to a local minimum, and a proper initialization is needed in order to
reach a good estimation. Typical methods for solving AX = YB could be found
in [17] [36] [56] [68]. In this thesis, the initial value of X and Y is calculated by
applying the method in [68] beforehand.
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3.2.2 Underlying Instabilities in Liu’s Method
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Figure 3.2: An example showing the twisted change in the resulting images after a minor
pose adjustment. Considering that the measurement quality of the pattern P2 in the left
figure is worse, the camera rig moves a little in the neighborhood of the current pose (A,
B)) in order to improve its quality. After the movement, even though the quality of the
pattern P2 gets better, the calibration pattern P/ is no longer entirely in the FOV of the
camera C/, which makes the pose pair (A, B,) in the right figure invalid.

The measurement quality refers to the resolution of the captured calibration
pattern. The measurement space or the pose change space is defined as a collec-
tion of pose pairs A; and B;, which are the relative pose between the camera C1,
C2, and the corresponding calibration pattern PI, P2. All the pose pairs in the
measurement space meet the following conditions. First, for each pose pair, both
planar calibration patterns have to be in the FOV of the corresponding cameras
such that all the coordinates of the projections {ff'}7 | and {i}?}7_, could
be extracted without outliers. Second, the resulting measurement quality from
each pose pair should be above a certain threshold since higher resolution indi-
cates a better estimation of A; and B;. As mentioned in the first chapter, Liu’s
method is not always stable due to the reduced, twisted pose change space and
the imbalanced measurement quality [71].

One primary practical issue to reach accurate calibration results is a proper set
of accurately estimated measurement pairs {A;,B;};Z} covering all six degrees
of freedom of the pose X and Y. However, with the assistance of the customized
calibration device, collecting such a set of measurement pairs is problematic be-
cause of the rigid coupling between the two patterns, whose effect is disastrous.

First and most straightforward, the closed-loop coupling reduces the pose
change space since both of the calibration patterns have to appear within the
FOV of the corresponding camera. The second consequence resulting from the
coupling is the twisted pose change space. Due to the coupling B; = Y 'A;X, a
minor change in pose A; would lead to a compound change in B;. The same hap-
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pens with a minor change in pose B;. The twisted pose change space indicates the
hardness of capturing both calibration patterns with high resolution (Figure 3.2).
After a minor change in the pose of the calibration rig, the calibration pattern P1
is not completely covered by the FOV of the camera C1. Besides, this property
also adds another layer of difficulty to the data collection process making it quite
anti-intuitive. Though some pose pairs with good quality are theoretically valid,
they are challenging to acquire in reality. What is more, the twisted pose change
exists in every pose pair, which means pose pairs that are spatially close to each
other might result in very different images.

C1 Camera rig C2
Resolution: Good Resolution: Bad

Figure 3.3: Relationship between the pose of the calibration rig relative to the camera pair
and the corresponding resolution quality. When the calibration pattern from one side of
the rig is placed near to the camera, an image with high resolution will be captured. In
contrast, the calibration pattern from the other side will be captured with a comparatively
lower resolution and vice versa. Corresponding images containing different fiducial pat-
terns are captured at the same measurement time, which are of different projection sizes.
The projection size is defined as the area surrounded by the red lines on each image. In
this example, the pattern P/ generates a larger projection size on the image, hence higher
resolution than P2. When both images are corrupted by the same level of noise, the pose
estimation using the measurement of P/ will be less sensitive to noise and will produce a
better pose estimation.

Another adverse effect caused by the closed-loop constraint is the imbalanced
measurement quality. Because of the coupling, the placement of one calibration
pattern will influence the placement of the other one. Hence, acquiring a set of
images that are of high resolution for both calibration patterns is very challeng-
ing. Figure 3.3 demonstrates the relationship between the captured measurement
quality and the relative pose between the calibration rig and the camera pair.
Meanwhile, explicit images are presented to explain further this problem, which
gives an imbalanced projection size of different calibration patterns for the same
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pose pair. Here, the projection size is used as the indicator of the measurement
quality. Larger projection size indicates better measurement quality.

From the perspective of robustness, images of the calibration patterns should
be taken from as many different poses as possible. While for accuracy consid-
eration, the calibration objects should be captured with as much resolution as
possible since the high resolution of the pattern results in better pose estimation
between the camera and the calibration object. Generally, during the collection
of the measurements, balances have to be kept between the pose pair variety and

the measurement quality.

F2 Out of FOV

Camera rig

(@] C2

Figure 3.4: The demonstration of the influence of X on the pattern size. In this example,
two different sizes are provided for the calibration pattern P2 with the center points of the
left side overlapping. Compared to the size of the pattern P/, the calibration pattern P2
with a larger size is impossible to generate a decent measurement space.

In the end, a discussion of two variables which influence the measurement
space and the measurement quality is given. These two variables are the size of
the calibration pattern and the relative pose X between the calibration objects.
It is not possible to capture the whole calibration pattern that has a huge size
(Figure 3.4), while the calibration pattern with a tiny size could not be captured
with good quality. Therefore, there must exist at least one optimal calibration
pattern size, which generates a larger measurement space. The same happens
with different choices of X. With some poses X, it is easier to generate larger
measurement space compared to the others. In Figure 3.5, two different values
of X are chosen. In this example, the choice of X is better than X, since the
former allows more valid pose pairs to be collected. The tricky questions is: is
X the most optimal choice? If not, how to find the most optimal X?

Moreover, these two variables are not independent. When the size of the cali-
bration pattern is determined, the relative pose X should be coordinated in order
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X2 P2
P2
‘ﬂ_\
P1 Out of FOV
C1 Camera rig C2

Figure 3.5: Different values of X will create different pose change space. In the example,
the translation of X, is much wider than that of the camera pair, which makes it harder to
generate appropriate pose pairs compared to Xj.

to fit the pattern size better. It is true the other way around. The size of the pattern
should also be accordingly adjusted once the relative pose X is fixed such that a
larger measurement space with better measurement quality could be guaranteed.
In this thesis, the influence of these two variables remains an open question, and
the relevant study is not explored.

The calibration rig used in Liu’s setup has to be particularly manufactured, so
an estimated calibration pattern size, as well as the relative pose X are needed
before the construction of the rig. Based on the above analysis, their values are
not theoretically evident and could be better determined or re-adjusted from the
real experiment. In this case, commonly, roughly estimated values are first tested
and rectified, which brings extra complexity and inconvenience to the calibration
procedure.

Based on the above analysis, it is necessary to stress that although it is simple
to collect pose pairs applying Liu’s setup, particular attention is needed in order
to generate a pose pair set with good quality and comparatively scattered spa-
tial distribution, which are essential for accurate calibration. However, with so
many undecided, intertwined variables and inherent hindrances, it is both theo-
retically and practically impossible to provide a valid paradigm for collecting an
optimal set of pose pair. So instead of excessively focusing on the challenging
data collection procedure, the weighted non-linear optimization method, together
with the data selection strategy that is going to be presented, aims to solve the
following question, which is more meaningful and practical. If provided with a
collected measurement set, how to generate the most possibly accurate and robust
calibration results, which are less sensitive to the gathered measurements?
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3.2.3 Data Selection Strategy

The reprojection error based objective function needs an initial value of X and Y,
which is estimated from solving AX = YB. The methods of solving the equation
demand a set of pose pairs {A;,B; fi’l’ covering the six degrees of freedom.

The methods for solving AX = YB are mostly aimed at the hand-eye, robot-
world calibration problem. The camera mounted on the robot arm is placed at
different poses to capture the calibration pattern. In the hand-eye, robot-world
calibration problem, the measurement space depends on the following factors:
the movement space of the robot arm, the transform X from the robot base to
the calibration pattern (the world frame), the FOV of the camera and the size
of the calibration pattern. The first factor indicates the movable range S1 of the
camera, while the last three factors determine the space range S2, within which
the camera could capture the calibration pattern. Thus, the measurement space
S is the intersection of the space S1 and S2: S = S1NS2. In order to obtain
the possibly largest measurement space, the space S2 should overlap as much as
possible with S1 since the latter is hardware-dependent and could not be changed.
In contrast, the former could be adjusted by regulating the robot-world pose X
and the calibration pattern size. In most cases, the movement space of the robot
arm S1 is large enough, and an abundant number of different pose pairs could be
generated within the resulting measurement space S.

The pose change space in Liu’s setup is complicated. As explained before,
the pose change space in Liu’s setup is reduced due to the closed-loop coupling,
which would decrease the accuracy of solving AX = YB if the spatial distribu-
tion of the collected pose pairs is not scattered enough. Besides, a minor change
in the pose pair results in a compound, twisted change in the resulting images,
which makes it less straightforward to distinguish the spatial difference between
different pose pairs. Pose pairs that are spatially close might result in very differ-
ent images. Thus, collected pose pairs need to be carefully handled. Otherwise,
they would bring potential hazards to calibration stability.

On the other hand, the estimation accuracy of the pose pair is also crucial to
the solution of AX = YB since better estimated pose pairs improve the initial
estimation of X and Y. Therefore, the measurement quality should work in con-
junction with the measurement space in order to generate an optimal initial value
of Xand Y.

Normally, a large number of pose pairs are suggested during the data col-
lection process to cover as much measurement space as possible. An extra
data selection filter is then applied to all the collected pose pairs. The fil-
ter calculates the rotational difference e® and translational difference e’ be-
tween all the pose pairs based on the criteria formulated in (3.16), (3.17), as
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well as the projection size ST of the calibration pattern. The pose pair (A;,B;)
whose rotational difference or translational difference are below certain thresh-
old 6%,y compared to all the rest pose pairs (A;,B;)(j # i) will be excluded:
(eR(AhA ) < oF H ef BHB ) < ok ” eT(AivAj) < YT H eT(Bi7Bj) < YT) Be-
sides, the pose pairs whose resulting projection size of all the captured cali-
bration pattern is smaller than some pre-defined value 7 will not be included:
(SP1 < || P2 < 7).

In the end, a subset of the collected pose pair, which is chosen with more
discretion, is used to solve AX = YB, which provides a better estimated initial
value of X and Y for the following non-linear optimization.

3.2.4 Weighted Non-linear Optimization Method

The underlying measurement imbalance discourages the objective function from
including all the measurements and treating them equally. Considering the un-
pleasant imbalance of the measurement quality which leads to the diversity of
the projection size of different calibration patterns within one measurement pair,
additional weightings A/ and A/? are introduced to the objective (3.9), which
leads to:

o
(Ry,ix,Ry,ty) = argmin Z A”ZHE B+A72 Y el (3.10)
Ry tx Ry ty i=1 j=1 =1

The weighting A/ ! used for the reprojection error related to the pattern P/ is
chosen to be the square root of the projection size S¥2 of the pattern P2 normal-
ized by the full image size Syqx:

AP = \/SP? /Smax.

The other weighting factor A is calculated in a similar way:

A2 =[S /S ax.

The reason for choosing such weighting lies in the replacement of A; with
YB;X~!. The reprojection error produced from the calibration pattern P/ now
depends on its replacement YB,X~! which has the pose estimation B; inside, so
the estimation accuracy of B; influences the reprojection error of PI: B; with
better estimation quality should have more influence on the optimization results,
and this leads to a higher weight ll-P !, In this case, the projection size is regarded
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as an indirect indicator of the measurement quality. The same happens with the
replacement of B;.

Though the method is explained using Liu’s setup, the proposed optimization
method could be applied to different setups. To be more specific, the method
could be applied to the setups, which minimize the sum of reprojection errors
and are constrained by the closed-loop pose transformations AX = YB. The
integration of the method improves calibration accuracy and stability. The in-
troduced weighting factor allows more pose pairs to be safely included in the
calibration procedure since their influence on the estimation is now correlated
with the quality indicator, namely the projection size of the captured calibration
pattern.

3.3 Eye-to-eye Calibration Applying Highly
Accurate Tracking System

One distinct advantage of Liu’s setup is that the introduced fiducial features are
accurately known a prior, which does not contain any error compared to the map-
building based setups. The fiducial features could be included in the non-linear
refinement to improve the estimation accuracy further. However, Liu’s method
is not stable due to the reduced, twisted measurement space, and the imbalanced
measurement quality. Though the integration of the data selection strategy and
the weighted optimization method relieves the instability, the inherent limita-
tions resulting from Liu’s setup still bring a negative effect on the calibration
results. This section introduces new calibration methods applying a highly ac-
curate tracking system. The introduction of the tracking system into Liu’s setup
makes the best use of the tracking system while at the same time keeps the ad-
vantages brought by the fiducial features.

Two different configurations are feasible depending on whether the calibration
objects are linked or not: fixed trackable pattern setup and unfixed trackable
pattern setup.

3.3.1 Fixed Trackable Pattern Setup

The fixed trackable pattern setup demonstrated in Figure 3.6 is similar to Liu’s
setup except that a highly accurate tracking system is integrated, and the tracking
targets are attached to the calibration pattern boards P/ and P2. With the assis-
tance of the tracking system, the relative pose X between the calibration objects,
which is unknown in Liu’s setup, could be accurately recovered after aligning
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Figure 3.6: The fixed trackable pattern setup applying a highly accurate tracking system.

the tracking targets to the calibration pattern boards in this case. Therefore, the
relative pose Y between the camera pair is the only unknown variable that needs
to be estimated.

The data collection procedure is similar to Liu’s setup. The calibration rig is
placed in several different positions with respect to the camera pair, and a set of
images {IP ! IP 2 i1 " with the corresponding calibration patterns as well as the
recovered X from applying the tracking system are gathered. The pose pairs
{A,,B,} are then recovered and used to run a final BA (3.11), in which only

Y is optlmlzed.

(Ry,ty) = arlgminZ(Z lefH 15+ Z &l 113)- (3.11)

vty =1 j=I

Based on the closed-loop pose constraint A;X = YB;, the replacement of A;
and B; becomes:

A, = YBX!
B, = Y 'AX,

in which X is obtained from the tracking system.

Compared to Liu’s setup, the fixed trackable pattern setup reduces the number
of variables by providing an accurately recovered X using the tracking system.
However, the limited, twisted pose change space and the measurement imbalance
have not been eliminated due to the rigid link between the calibration patterns.
Therefore, it is necessary to include the weighting factors A ! and AP 2 similar
to (3.10) in order to relieve the above limitations, which leads to the following
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objective function:

(Ryaty)—argmmz /IP]):,IIE ||z+/1p22||£ 12)-

Ry ty =]
3.3.2 Unfixed Trackable Pattern Setup
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Figure 3.7: The unfixed trackable pattern setup applying a highly accurate tracking sys-
tem.

The fixed trackable pattern setup does not fully take the best advantage of the
tracking system. Since the tracking system could track the position of the cali-
bration boards, these two boards do not have to be rigidly linked anymore. This
flexibility facilitates the improvement of measurement quality since each calibra-
tion pattern could be placed at positions relative to the corresponding cameras,
which generate the best possible estimates. So an upgraded version of the fixed
trackable pattern setup is presented, namely the unfixed trackable pattern setup.
It is similar to the fixed trackable pattern setup, except that the two pattern boards
are no longer linked and could be independently placed to different poses relative
to cameras (Figure 3.7).

The measurement collection procedure is similar to the fixed trackable pat-
tern setup. The two pattern boards P/ and P2 are independently placed to dif-
ferent poses relative to cameras, and a set of pose pairs {A;,B;}/—] with better
measurement quality together with {X,} obtained from the trackmg system is
recorded. In the end, a final BA, including the weighting factors A’ and Af?, is
applied to refine calibration results.

Since the relative pose X; between the calibration patterns for each pose pair
is accurately known from the tracking system, the replacement of A; and B; now
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becomes:

A; YBX; !,
B, = Y 'AX.

Since the above replacement of A; and B; still exists during the final refine-
ment, the weighting factor could also be integrated in the same way as in Liu’s
setup and the fixed trackable pattern setup. However, it will not make much
difference in the unfixed trackable pattern setup since the disconnection of the
calibration patterns allows them to be captured with relatively good quality.

3.4 Validation on Simulated Dataset

In this section, the weighted non-linear optimization method and the data selec-
tion strategy are validated on the synthetic dataset. First, the explanation of how
synthetic data is generated for Liu’s setup is provided. The definition of error
metrics that are going to be used for the evaluation of different algorithms is then
presented. In the end, state-of-the-art methods with different settings are im-
plemented and compared. The method of applying the highly accurate tracking
system is not implemented in the simulation since there is no appropriate noise
model for the tracking system.

3.4.1 Synthetic Dataset

As illustrated before, a customized calibration device is introduced to assist the
calibration procedure, except that all the true transforms are precisely known
in the simulation. Since no concrete research has been investigated on how to
calculate the calibration pattern size and the relative pose X between two patterns,
their values are determined through trial and error.

First, an exhaustive searching program is run based on all the known ground
truth such as the relative pose between the calibration patterns X, the relative pose
between the camera pair Y, the camera intrinsic parameters, etc. to produce a
pose pair bank which consists of over 1,400 pose pairs. All pose pairs in the bank
meet the following requirements. First, each pose pair in the bank is different
from the rest both in translation and rotation so that the pose pairs in the bank
discretely span the whole measurement space, which is continuous. Second, the
projection size of the calibration pattern must exceed a certain threshold, which
guarantees the minimum quality of the measurement. In this experiment, the
threshold is set to 0.2 of the full image plane. The synthetic measurements are
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then generated based on the pose pair bank. The true pose pairs are first randomly
extracted from the bank. The noise-free 2D coordinates obtained through the
projection process are corrupted with Gaussian noise afterward. In the end, the
noise-corrupted 2D coordinates are used as the measurement to recover the noisy
pose pairs A; and B;.

To demonstrate the influence of the spatial distribution of pose pairs on the
calibration results, measurement sets with the following characteristics could be
generated from the pose pair bank: (1) spatially scattered pose pair set with larger
projection size; (2) spatially clustered pose pair set with larger projection size;
(3) scattered distributed pose pair set with smaller projection size; (4) clustered
distributed pose pair set with smaller projection size. The difference between the
scattered distribution and the clustered one is that the former has both larger ro-
tation and translation differences among all the pose pairs. Because all generated
pose pairs are extracted from the bank, each pose pair in the clustered set has
at least the same minimum translational and rotational difference as the ones in
the bank. A similar criterion is used for measurement quality. The pose pairs
that have larger projection sizes are extracted from the pose pair bank based on
a more significant projection size threshold. Though the quality of the pose pair
set with smaller projection size is bad compared to the pose pair set with large
projection size, the former set is still guaranteed the minimum required quality
since they are generated from the bank. The combination of the pose pair dis-
tribution and the projection size gives four extreme measurement sets, namely
scattered large, clustered large, scattered small, and clustered small, where clus-
tered and scattered suggest the pose distribution while large and small means the
projection size of the resulting calibration pattern. The code for the calibration
model, as well as the optimization strategies, is available online?.

3.4.2 Error Metric

X and Y represent the estimated solutions which are calculated by applying dif-
ferent calibration methods. The ground truth of X and Y is known in the simula-
tion environment, so the estimated X and Y could be directly compared based on
the following error metrics. Since the error metric calculation of X and Y is the
same, only X is taken as an example.

Rotation Error

We apply the method of Wunsch et al. in [70] to define the rotation error. qx
denotes the estimated quaternion of X and qx the ground truth quaternion. The

Zhttps://github.com/zaijuan/eye-to-eye-calibration.git
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rotation error e§ is defined as:

X = min{arccos(qx -4x), m — arccos(qx -dx)}, (3.16)

in which ’-* denotes the inner product of two quaternion vectors. Here the ro-
tation error is represented by the angles returned by arccos and then mapped to
[0,90°].

Translation Error

The estimated translation vector is described as fy, and the ground truth is tx.
The translation error is computed as follows,

el = [|tx —tx||. (3.17)

3.4.3 Evaluation Results

In this part, the calibration results of different methods with different settings
are presented. The calibration results of the method in [68], which is named as
Wang’s method after the author’s family name, will be presented since all the
other non-linear methods take its estimation of X and Y as the initial value.

To prove that applying the weighting factor during the optimization process
alleviates the imbalance of the measurement quality, both the unweighted and
weighted methods are implemented. The unweighted method does not utilize
the weighting factor, while the weighted method applies the weighting factor. In
parallel, the method of minimizing the reprojection error from only one calibra-
tion pattern is implemented for two reasons. The first reason is to test whether it
gives better estimation results than Wang’s method, which does not minimize the
reprojection error. By comparing to Liu’s method, the necessity of minimizing
the reprojection error from both calibration patterns is validated.

The above methods are referred to as the unweighted two-side constrained
method (Liu), the weighted two-side constrained method (Wgt-Liu), the un-
weighted one-side constrained method (Unwgt-1), and the weighted one-side
constrained method (Wgt-1).

Besides different methods, it is also significant to show how their calibration
robustness and accuracy correspond to the increase of image noise and various
measurement numbers. In the first setting, the number of pose pairs changes from
5 to 45, with the fixed Gaussian noise of 1.0 pixels. In the second one, the added
Gaussian noise on the image varies from 0.2 to 1.4 pixels, with a fixed number
of 25 measurement pairs. The results shown below are taken the average of 100
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iteration runs. For each iteration, the pose pairs are randomly extracted from the
pose pair bank and processed applying different methods. Since the generation of
each measurement set is random, 100 different measurement sets will be gener-
ated and used for the calibration procedure after repeating 100 times. Therefore,
the demonstrated calibration results are the average of overall calibration error
instead of a specific measurement set, which is objective and reliable.
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Figure 3.9: The translation error of Y of different methods with increased pose pairs.

The rotational and translational error of Y calculated from different methods
with the increase of measurement number is demonstrated in Figure 3.8 and Fig-
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ure 3.9. Since the calibration results of X are similar to Y, both in magnitude and
pattern, it is unnecessary to present repetitive figures.

Several conclusions are drawn as follows. (1) The weighted two-side con-
strained method gives the best results. (2) In general, the methods either weighted
or unweighted applying only one-side constraint result in larger errors than the
methods applying two-side constraints, but smaller errors than the method with-
out minimizing reprojection error. (3) The methods either one-side or two-side
applying the weighting factor always give better results than the methods without
the weighting strategy. (4) The calibration error of the methods minimizing the
reprojection error keeps going down with the increase of the pose pair number.
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Figure 3.10: The rotation error of Y of different methods with increased image noise.
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Figure 3.10 and Figure 3.11 present calibration results of different methods
with the increase of image noise, from which the following conclusions can be
drawn. (1) The weighted two-side constrained method shows the least error under
all noise conditions. (2) The performance of the weighted methods is better
than the unweighted methods. (3) The two-side constrained methods produce
smaller errors than the one-side constrained methods. (4) With the increase of
measurement noise, the benefit of applying the weighting factor becomes more
noticeable.

The above experiment results validate the improvement of the weighting factor
in accuracy and robustness. With different measurement numbers, the Wgt-Liu
method outperforms all other methods, and the calibration error keeps contin-
uously going down with the increase of the measurement number. With the
increase of image noise, the integration of the non-linear optimization method
always generates the least calibration error.

When given a measurement set, the initial value influences the final estimation.
It has also been validated in the simulation that the final estimation has been
improved by choosing a subset, whose pose pairs are comparatively scattered,
and whose measurements are of good quality. These results are not shown in
the above figures because the improvement is not noticeable and would cover the
results from Wgt-Liu. Instead, four extreme types of measurement sets, namely
scattered good quality, clustered good quality, scattered bad quality, and clustered
bad quality, are utilized to emphasize these differences depending on their spatial
distribution and measurement quality. For each configuration, the measurement
number is set to 25, and the noise level is 1.0 pixels.
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The calibration results of these four different configurations of measurement
sets that are applied with different calibration methods are demonstrated in Fig-
ure 3.12 and Figure 3.13. Same as the previous simulation, the calibration error
is taken the average of 100 iteration runs, and the generated pose pair set is differ-
ent for each run. Besides, all the extracted pose pair sets fulfill the corresponding
characteristics of each configuration.

Two particular conclusions concerning these four different configurations are
drawn as follows. First, for all methods, spatially scattered pose pair set with
better measurement quality (larger projection size) generates the most accurate
estimation, while spatially clustered pose pair set with smaller projection sizes
leads to the worst estimation results. Second, spatially scattered pose pair set
with smaller projection size produces better results than spatially clustered pose
pair set with larger projection sizes regardless of different calibration methods.
The first conclusion is evident. The second conclusion implies the calibration
methods are more demanding on the distribution of pose pairs than their mea-
surement quality.

The calibration results bring some insights into the tradeoff between the spatial
distribution of pose pairs and their generated measurement quality. It is crystal
clear that the combination of scattered pose pair distribution and larger projec-
tion size produces the best calibration results. However, these two factors are
somehow mutually restricted. Scattered pose pair distribution implies the di-
versity of the projection size, while the demand for larger projection size limits
the spatial distribution of pose pairs. This further explains why the introduced
weighting factor is crucial during the optimization process. First, it increases the
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pose change space by allowing a larger varying range of the measurement qual-
ity. Second, the increased measurement space helps to provide a more accurate
initial value from solving AX = YB, which is used for the following weighted
non-linear refinement.

3.5 Real Experiment Results

3.5.1 Experiment Setup

In the real experiment, three different calibration setups presented in the previous
sections are implemented: Liu’s setup, the fixed trackable pattern setup, and the
unfixed trackable pattern setup.

e o

e

(a) The real experiment environment. (b) The tracking targets.

Figure 3.14: The left figure demonstrates the real experiment environment. Above are
equipped the high accuracy tracking system ‘OptiTrack’. The camera pair with non-
overlapping FOV is rigidly connected and fixed in the experiment, and the calibration
device with two known planar patterns rigidly linked is placed on the ground. The right
figure shows the calibration board used for detection by both the camera and the tracking
system. The coordinate frame of the tracking targets and the pattern board coordinate
system are aligned.

Figure 3.14a shows the real experiment environment, where a camera rig
mounted with two cameras with non-overlapping FOV, an external calibration
device, and an equipped highly accurate tracking system ‘OptiTrack’ are pro-
vided. The introduced calibration pattern boards used for recovering the relative
pose to the camera pair could be accurately localized within the tracking system
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after aligning their coordinate frames with that of the tracking targets attached to
them (Figure 3.14b).

The experiments are carried out as follows. As analyzed before, due to the un-
derlying reduced and twisted properties of the pose change space in Liu’s setup,
the procedure of collecting a proper pose pair set is tricky. Instead of hesitat-
ing which pose pairs should be included, it is preferable to collect an abundant

amount of pose pairs covering as much measurement space as possible. In the
Pl P2 =
LI

end, a set of images { i:'f containing the planar calibration pattern used

for recovering {A,-7B,-}fj{, and the recovered X in the fixed trackable pattern
setup or X; in the unfixed trackable pattern setup are recorded. All the collected
pose pairs are first filtered applying the data selection strategy, and a subset is
then used to different optimization processes.

When a highly accurate tracking system is available in the calibration envi-
ronment, the unfixed trackable pattern setup is preferred over the fixed trackable
pattern setup since the former generates measurements with better quality than
the latter one. By including the fixed trackable pattern setup in the real experi-
ment, which is a mixed version of Liu’s setup and the unfixed trackable pattern
setup, the subtleties between different calibration setups and optimization meth-
ods could be better revealed.

3.5.2 Experimental Results

Unlike in the simulation, there is no ground truth in the real experiment. In
order to evaluate the calibration results from different setups and verify the im-
provement brought by the weighted optimization method, the unfixed trackable
pattern setup with the integration of the weighting optimization method serves
as the benchmark since this configuration generates the best possible calibration
results.

The same error criteria are used as in the simulation to evaluate the calibration
difference of different methods. The benchmark is set as the weighted estimation
of the unfixed trackable pattern configuration. The term difference is used in the
real experiment instead of the previous term error to indicate that although the
ground truth of Y is unknown, it could be estimated with the highest accuracy
applying the unfixed trackable pattern configuration.

Figure 3.15 shows the calibration differences of different setups and different
methods. Liu’s method with the integrated optimization method generates a little
larger but bearable calibration differences compared to the fixed trackable pattern
configuration. Wang’s method, which does not minimize the reprojection error,
deviates the farthest from the benchmark. The performance of the fixed trackable
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Figure 3.15: The calibration difference of Y concerning different setups and methods.

pattern setup lies between Liu’s setup and the unfixed trackable pattern setup. In
the unfixed trackable pattern setup, the difference between the weighted and the
unweighted estimation is minor since all calibration patterns could be captured
with relatively high resolution in this case. Nevertheless, applying the weighting
factor generates less different results compared to the benchmark regardless of
different setups and methods.

3.6 Conclusions and Discussion

In this chapter, a weighted non-linear optimization method, together with the
data selection strategy, which is applicable to specific calibration setups are de-
veloped. The optimization method introduces the extra quality measure factor to
the objective function, which increases the measurement space and improves the
calibration accuracy. Hence, instability could be alleviated, and robustness could
be safely guaranteed. Besides, by carefully choosing a measurement subset, the
possibility of getting trapped in a worse local minimum is reduced.

During the simulation and the real experiment of Liu’s setup, the appropriate
size of the calibration patterns and the corresponding relative pose X between
them are determined through trial and error. Since these two variables influence
the measurement space and the measurement quality, they also affect the cali-
bration results. In this thesis, how to determine the optimal values of these two
variables is not investigated.
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4 Eye-to-eye Calibration Applying
Dynamic Fiducial Patterns

In this chapter, a new calibration method is proposed by introducing two elec-
tronic monitors for displaying dynamic fiducial patterns. The virtual pattern
could actively regulate its configuration (size, position, structure) on the mon-
itor during the calibration procedure so that measurements of better quality are
generated and used for the calibration estimation. At first, the mechanism of the
virtual pattern is explained, followed by the validation of the calibration method
both in the simulation and in the real experiment.

4.1 Problem Statement

In the last chapter, the proposed weighted optimization method and the data se-
lection strategy that could be integrated into specific setups such as Liu’s setup as
well as the unfixed trackable pattern setup have been investigated. Based on the
data collection procedure and the optimization process, the error source of these
two calibration setups could be summarized as follows: the estimation accuracy
of A; and B;, the pose change space, the method used for solving AX = YB,
the method used for non-linear refinement. After the integration of the weighted
optimization strategy to the specific calibration methods, both accuracy and ro-
bustness have been improved. This optimization method relieves the underlying
reduced pose change space and the imbalance of the measurement quality, es-
pecially in Liu’s setup. However, the optimization method does not create a
larger pose change space; neither does it improve the measurement quality. The
weighted optimization strategy passively puts weighting to all the measurements
based on their quality. In consequence, the measurements with better quality will
have a more significant effect on the estimation results. Considering the inherent
limitations in Liu’s setup, the calibration method applying the tracking system
could accurately recover the relative pose between the calibration objects. Thus
they could be disconnected and be independently placed to the camera rig. The
weighted optimization method could also be applied to this setup, though the
improvement is minor. From the perspective of the error source, the weighted
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optimization method improves the results by refining the final optimization pro-
cess. In contrast, the unfixed trackable pattern setup reduces the first two error
sources.

From the standpoint of accuracy, the method of applying a highly accurate
tracking system is preferred if the laboratory is already equipped with such a
tracking system. However, the cost of introducing a tracking system is high, and
purchasing such a costly tracking system might not be worthy in some cases.
Besides, the installation, calibration, and operation of the tracking system are
complicated and time-consuming, which makes it a less preferable way to solve
the eye-to-eye calibration problem merely. While from the perspective of cal-
ibration cost, Liu’s method is preferred. However, Liu’s method might not be
accurate enough for some applications. This leads to the following inspiring
question: since larger pose change space and good quality measurements bring
better calibration estimation, is there an economical way to increase the measure-
ment space as well as the measurement quality?

Out of FOV E P2
Out of FOV %%E
: L

c1 Camera rig
Figure 4.1: Two failure examples in Liu’s setup. The captured calibration pattern P/ in
the left example lies a bit out of the image. In the right figure, because the calibration

pattern P/ is placed too close to the camera, only a part of it is captured even though the
resolution, in this case, is very high (the whole image plane).

Camera rig C2

During the deduction of the optimization method in the last chapter, the twisted
and compound effect of a minor pose change on the resulting images has been
explained. In Figure 4.1, two failure examples are demonstrated. In both exam-
ples, the calibration patterns failed to be captured by the corresponding camera.
Therefore, the relative pose between the camera and the calibration pattern could
not be recovered, which makes these pose pairs invalid. However, once the rel-
ative pose could be recovered, the resulting measurement quality of these two
pose pairs is quite good. This leads to the second question: considering the good
measurement quality in these pose pairs, is there any way to recover the camera
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pose with regard to the calibration pattern?

Vision Sensor 2

~ Vision Sensor 3
} ;

Figure 4.2: The method of solving the extrinsics of cameras with non-overlapping FOV
using a 1D target imitated by a monitor [40].
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Figure 4.3: The proposed method applying dynamic patterns displayed on monitors.

The work in [40] solves the eye-to-eye problem using a 1D target imitated by a
monitor (Figure 4.2). The rotation matrix between the camera pair is estimated by
applying the co-linearity property of the feature points on the 1D target, and the
translation vector is calculated based on the known distances between the feature
points. In [2], the intrinsic parameters of the camera are calibrated using a curved
display screen, from which dense feature points are generated and used for the
intrinsic calibration. The advantages of introducing a display screen are multiple.
First, the cost is low. Second, the number, the type, and the configuration of the
fiducial features could be actively managed. Inspired by these advantages, a new
calibration setup demonstrated in Figure 4.3 is proposed. The setup replaces the
fix-sized calibration boards in Liu’s setup with corresponding electronic displays.
After proper encoding of the fiducial patterns displayed on the screen, the relative
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pose between the camera frame and the screen frame could still be recovered even
if the camera captures only part of the screen. This advantage leads to a larger
measurement space compared to Liu’s setup.

Besides the increased measurement space, using monitors could also improve
the measurement quality since the configuration of the fiducial patterns displayed
on the monitor could be actively manipulated. The only remaining question is:
how to actively generate these patterns yielding the most accurate estimation of
A,’ and B,’?

4.2 Active Measurement

The measurement, based on which different estimations are calculated, is a set
of sensor data representing the environment. Normally, interfering with the envi-
ronment in order to obtain measurements that are more informative or less noise-
corrupted is not possible. For example, LiDAR (Light Detection And Ranging)
is widely mounted on cars for ADAS (Advanced Driver Assistance Systems).
However, the performance is highly dependent on weather conditions. The emit-
ting energy deteriorates under rainy or foggy conditions. Another example is
the camera. The localization quality of detected features on an image is pro-
foundly affected by the corresponding environmental feature points, which can-
not be changed under most circumstances. This is why implanted fiducial land-
marks are introduced in some applications: to provide measurements with more
accuracy and robustness. The measurements in the above examples are either en-
tirely passive or semi-active (in the case of fiducial landmarks) acquisitions from
different sensors.

Active measurements, on the other hand, are obtained by actively creating a
favorable environment, from which the sensor could better capture the features.
The introduced electronic monitors in the new calibration setup can be used to ac-
tively display the fiducial landmarks, unlike the majority of the scenarios where
the environment can not be modified. Compared to the semi-actively implanted
fiducial landmarks, an active fiducial pattern could adapt its feature number, size,
position, and the configuration in order for the camera to generate the best pro-
jection of the environment.

In the new eye-to-eye calibration setup (Figure 4.3), the aim of the active gen-
eration of predictable, reliable, and accurate fiducial features is to reach the best
estimation of the camera pose, which serves the calibration method. Different
PnP methods could be applied to estimate the camera pose, of which BA is the
most accurate. For a well-calibrated camera, the objective function of estimating



4.2 Active Measurement 51

the camera pose (R, t) using bundle adjustment is formulated as:

i=n 2
(R7t7P],P2"'Pn): argmin Z
Rt P, Py--P, j—1

1
pi— - K(RP; +t)
Ai

2

Since the 3D position of the fiducial features is accurately known, it does not
need to be optimized like in standard BA. Therefore, the above objective could
be reduced to:

1 2
pi— 7 K(RP; +1)
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(R,t) = argmin Z ||€,||§ = argmin Z

Rt =] Rt =]

where €; represents the reprojection error of each 3D-2D correspondence. The
objective function is a 2-norm, non-linear estimator, which comprises the sum of
the reprojection errors resulted from all captured feature points. The to-be opti-
mized camera pose is of six dimensions: three degrees of freedom for translation
t and three degrees of freedom for rotation R. Due to the special orthogonal
property of the rotation matrix, the Lie algebra se(3) is applied to describe the
relative pose so as to transform the originally constrained optimization problem
to an unconstrained one during the optimization process. Then it is feasible to
apply non-linear optimization methods such as Gaussian-Newton [69], Levenber-
Marquardt [46] etc. The camera pose (R, t), when represented by the correspond-

ing Lie algebra &, stands for: se(3) = {é = [ﬂ cRO,pcR3 ¢ 650(3)},

where the translation and the rotation are depicted by p and ¢, and so(3) is
the Lie algebra of Special Orthogonal Group SO(3). The above function could
be transformed to the following applying Lie algebra:

2
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Based on this objective function, the estimation accuracy of the camera pose
& depends on the following factors: the accuracy of 3D feature coordinates
Py,P;---P,, the number of the detected features n, the accuracy of the detected
feature p;, the spatial configuration of 3D features.

Accuracy of the 3D feature coordinates One of the main advantages of intro-
ducing fiducial features is that their 3D coordinates are known a priori and are
noise-free. In this case, the position of the 3D features does not need to be opti-
mized, and the number of unknown variables is reduced. In contrast, the features
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reconstructed from the real environment usually contain unavoidable errors, even
with high-quality sensors. Compared to building a high accuracy map of the en-
vironment using high-quality sensors, which is normally expensive, the inclusion
of fiducial features is much cheaper.

Number of detected features » The number of the 3D-2D correspondences n
will also influence the estimation. Generally, the more features are included, the
more constraints they will bring into the cost function.

Figure 4.4: The left feature has rapid changes in the area, while the right feature has less
image gradient. Thus, the left feature could be located with more accuracy than the right
one regardless of which detector is applied.

Feature detection accuracy Many factors could influence the feature detec-
tion accuracy, such as camera quality, lighting in the environment, detection
method, feature quality, etc. The features involved in this thesis are mainly
interest points, which could be corners or blobs. Typical feature detectors are
Harris [14], Shi-Tomasi [52], SUSAN [58], FAST [53], the Laplacian of Gaus-
sian (LoG), the difference of Gaussians(DoG), etc. All these detectors aim at
finding high curvature in the image gradient, except that the blob detectors could
find features at an appropriate scale. Besides different detectors, the feature it-
self also makes a difference in the detection accuracy. Figure 4.4 provides an
example of different features, of which the left feature has better quality since
the sharper change in two directions allows detectors to localize the feature with
more accuracy.

Spatial configuration of 3D features How 3D features are distributed in space
also influences the estimation results. Figure 4.5 demonstrates two different con-
figurations of four feature points, which will result in different pose estimation
of the camera with respect to the world frame. At this point, the influence intro-
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Camera

Figure 4.5: Two different configurations of four feature points. The configuration of the
feature points in the left figure is scattered and decentralized. In contrast, the configuration
in the right figure is clustered and centralized.

duced by the configuration is skipped. A thorough explanation will be given in
the next section.

The remainder of this section focuses on the factors that are possible to apply
to the new setup.

o Feature quality As analyzed before, interest points with high curvature re-
sult in the most accurate feature detection. Therefore, the fiducial patterns
displayed on the screen will be an analog of the checkerboard. Though
there are different types of artificial features, such as circles or ellipses that
can be applied in this situation, the underlying generation, and configura-
tion of these artificial features are similar. Besides, since all the calibra-
tion methods proposed in the last chapter use checkerboard patterns, the
dynamic pattern will only concentrate on checkerboard-like patterns for
consistency and better comparison.

e Feature number It is evident that the more feature points are generated,
the more constraints they will bring to the cost function. From this stand-
point, it is favorable to generate a fiducial pattern with dense feature points.
However, the generation of dense feature points is not always possible. The
new setup generates the fiducial pattern in an on-line manner, so the encod-
ing of the 3D feature points displayed on the monitor is based on the esti-
mated camera pose, which deviates from the ground truth. In this case, the
robust encoding of dense feature points tolerates less noisy pose estima-
tion, which is anti-causal since the intention of using fiducial patterns is to
improve the estimation accuracy of the camera pose. An example is given
in Figure 4.6. In the example, the feature points marked with red circles
may not be captured by the camera, which will need an extra algorithmic
processing block to create correct 3D-2D correspondences. So from the
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viewpoint of robustness and on-line performance, the fiducial features will
not be densely distributed but constrained to the amount that guarantees
the system’s robustness.

Electronic
display

¢ Camer&

Figure 4.6: Demonstration of the difficulty in encoding dense features. The features
within the circular cone are the ones that could be captured by the camera based on the
estimated camera pose since the true camera pose is not known in the real experiment.
Features that lie in the neighborhood of the cone border are marked with red circles.
When the features are densely distributed, the presence of the noise in the camera pose
estimation makes it challenging to encode those features because they might or might not
be captured by the camera, which requires additional algorithmic tactics to ensure correct,
robust 3D-2D correspondences.

o Spatial configuration of fiducial features How the fiducial pattern is dis-
tributed on the screen also has an effect on the pose estimation. The de-
duction of the dynamic pattern configuration will be explained in the next
section.

4.3 Dynamic Pattern Configuration

As discussed in Section 4.1, one primary error source that exists in many eye-
to-eye calibration methods is the estimation accuracy of the camera pose (R, t).
In the last section, different factors that could influence the estimation accuracy
are analyzed in detail. However, the assumption that different feature pattern
configurations will lead to different camera pose estimates is proposed without
concrete validation. Thus, a specific explanation will be presented in this section
by analyzing the contribution of each error term in the objective function to the
pose estimation.

Same as before, the pose (R,t) between the camera frame C with relative
to the display screen D is estimated using BA. The pose is represented by the
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corresponding Lie vector &, and the objective function is formulated as:

2
5 m>3.

(é) = argmin Z ||£,D’
& j=1

For clarity, the features in the above equation are numbered using j instead
of commonly used i in order to be consistent with the definition of i, which is
referred to as the pose pair number within the calibration context. Since EJD is 2-
dimensional and & is a 6 x 1 vector, the corresponding Jacobian is a 2 x 6 matrix.
For simplicity, only one general term SJD from the overall sum is considered since
all error terms share the same structured Jacobian matrix. Based on the chain
rule, the derivative of the term 8? with respect to the relative pose & is described
as follows:

P L R
4 0& 8PJC. 0&

The first term is the derivative of the reprojection error e? with respect to the
3D feature points Pf represented in the camera frame C, and the second term
represents the derivative of the transformed feature points PJC- with regard to the
change of the relative pose &. These two components will be separately derived
and concatenated afterward.

Applying Lie algebra, the feature point PJC in the camera frame C is related to

the same feature point PJD in the display frame D by the equation:

PS = (exp(§")PP)1s = [x§ vE €] (4.1

After applying the pinhole camera model, the following equation could be
obtained:

X fo 0 o] [X]
Z$ W =KPS =10 f o [Y]]. 4.2)
1 0 0 1][zf

The K appearing in the equation is the camera matrix, which consists of the
intrinsic parameters: fy, f, are the size of unit length in horizontal and vertical
pixels, and c,, ¢, are the coordinates of the principal point in pixels along x and y
axis. All the values of the above variables could be accurately obtained after the
intrinsic camera calibration.

Based on the above equations (4.1) (4.2), the derivative of the first term could
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be formulated as:

Pk 9P e hX§
0e?  |&e e x 0 e ws)
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ox§ avy  9zf z ZJCZ

The derivative of the second term is deduced as follows. A direct derivation
could bring in an additional term, which is used to relate the transform between
Lie algebra and Lie group. Besides, the perturbation model is used instead to
keep the derived Jacobian matrix clean and compact. The perturbation model
first adds a tiny perturbation onto the Lie group, and the derivative is conducted
concerning its corresponding Lie algebra [59]. Therefore, the derivative of the
second term could be transformed into the following:

o EEE)
— = - = lim —————.
8€ (955 S§E—0 5&

The ‘@’ in the equation is the ‘addition’ of the tiny perturbation onto the left
side of &. The derivation could then be deduced as follows. Pf and P? in the
equations are of their homogeneous forms: .
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Same as before, the ‘A’ operator transforms a vector to its corresponding skew-
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symmetric matrix. The first three columns correspond to the translational deriva-
tive, and the rest three columns correspond to the rotational part. Since the last
entry of the homogeneous coordinate always equals 1, the above equation could
be reduced to:
PS¢
_J
&
Concatenating these two derivative terms from Eq. (4.3) and Eq. (4.4), the final
Jacobian matrix is constructed as:

1! —PJC.A} . 4.4)

c CyC c2 c
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Figure 4.7: Demonstration of the sensitivity of the spatial configuration of the feature
points to the reprojection error. In order to reduce the same amount of the reprojection
error, the feature points with larger X€, Y€ |and smaller Z€ bring stronger constraints.
In this example, P, P>, and P; have similar depth coordinates Z€. However, P3 has the
smallest X and Y€, while P; has the largest X€ and YC. Therefore, the intensity level of
the contributed constraints ranging from high to low is: P;, P, Ps.

The absolute value of the entries in the Jacobian matrix indicates the sensitiv-
ity to the change of the objective function with respect to its variables, in this
case, the reprojection error 8? with regard to the relative pose €. The following

consistent conclusion could then be drawn based on the analysis of all entries in
D

Jacobian matrix J & . First, since f, and f, are the intrinsic parameters of the cam-
era, their influence is determinate and could not be changed. Second, the feature
points with comparatively larger ch, ch, and smaller ZJC produce larger gradient
values, which indicates those points are more sensitive to the pose change. The
visualization of this conclusion is shown in Figure 4.7.

In this new calibration setup where two electronic displays are introduced, the



58 4 Eye-to-eye Calibration Applying Dynamic Fiducial Patterns

depth of the fiducial features from each image only varies within a very limited
range, so the variations in X and Y direction will have the dominating influence
on the estimation results. When feature points with larger X¢, YJ-C and similar

Z]C are projected onto the image plane, their corresponding 2D points are the
ones lying on the outer area of the image plane. Another way to interpret this
new calibration setting is: if two images are detected with the same amount of
features that have similar depth, the image whose feature points are more decen-
tralized spread provides stronger constraints when compared to the image whose
features are comparatively clustered towards its image center. Hence, the former
is preferred for more accurate pose estimation.

Figure 4.8: Two different image feature configurations used for the generation of the
dynamic fiducial pattern through back-projection. The amount of the features on both
images is the same, except that the features on the left side image are evenly spread, while
the features on the right side are decentralized distributed.

Despite the improper use of ‘decentralized’, in what follows, two different
image distributions shown in Figure 4.8 are referred to as decentralized and cen-
tralized to be indicative of the characteristics of their image pattern distributions.
Since the features of the decentralized pattern are unevenly distributed on the
image, the uneven pattern and the decentralized pattern are used interchangeably
to refer to the same feature pattern. Similarly, the evenly distributed pattern and
the centralized distributed pattern are the same.

The principle of the dynamic pattern configuration is based on the above de-
duction. First, the prospective configuration of the 2D image features that are
decentralized distributed on the image plane is built, which provides the maxi-
mum constraints for pose estimation as analyzed before. These 2D feature points
are then back-projected onto the monitor plane, and their corresponding 3D coor-
dinates could be acquired. In the end, the dynamic fiducial pattern is constructed
to create the expected 3D feature structure. In other words, actively regulating
the configuration of the fiducial pattern on the monitor is accomplished through
the back-projection of the requested 2D image feature distribution. In situations
where the fiducial pattern on display could not fill up the whole image plane, only
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the part of the pattern that appears within the FOV of the corresponding camera
is applied for pose estimation.

4.4 Calibration Setups Applying Dynamic Fiducial
Patterns

In this section, different calibration setups applying dynamic fiducial patterns are
presented based on the mechanism explained in the last section to reach optimal
dynamic pattern configurations. The fiducial pattern could actively adjust its size,
position as well as the structure on the electronic display based on the estimated
relative pose between the camera and the monitor. Depending on whether the
camera rig is movable or not, two calibration setups are proposed.

4.4.1 Calibration Setup for Movable Camera Rig

When the camera rig is movable, the following setups could be implemented,
applying dynamic fiducial patterns.

Electronic

Electronic
display

7 Image
~plane

Camera rig
C1 C2

Figure 4.9: The calibration setup applying dynamic fiducial patterns. Two electronic dis-
plays are introduced for demonstrating dynamic fiducial patterns. The camera rig needs
to be placed at several different poses (at least four) with regard to the monitors. During
this procedure, the virtual pattern could dynamically regulate its configuration (size, posi-
tion, and structure) on the monitor based on the estimated pose between the monitors and
the corresponding cameras, which provides better-quality measurements and larger pose
change space compared to using fixed-sized calibration patterns like in [39].

The proposed calibration setup necessitates two electronic displays to demon-
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strate the fiducial patterns (Figure 4.9). The camera rig is placed at different
poses with regard to the monitors. For each pose pair, the fiducial pattern ac-
tively changes its configuration on the monitor based on the initial estimation of
the camera pose. Since the calibration procedure is performed in real time, the
estimation of the camera pose from the last time step is taken as the initial esti-
mation of the current time step. As long as the camera is moving at a smooth and
slow motion, the fiducial pattern will be generated with unnoticeable deviations
from the prospective fiducial pattern. This deviation will not introduce any er-
ror. It only indicates that there is a minor difference between the optimal image
feature distribution and the practically obtained one.

In the end, a set of images {I?/,1”?}/_ containing dynamic patterns and the
corresponding fiducial pattern 1nf0rmat10n are collected for estimating the un-
known extrinsic parameters X and Y, where X is the relative pose between the
introduced displays and Y depicts the relative pose between the camera rig. The
initial estimation of X and Y is provided by solving AX = YB, which is used
to minimize the reprojection error based objective function. The deduction of
the optimization process is not repeated since it is similar to Liu’s method. The
final optimization problem is formulated as follows after combining all the con-
strained projections:

n_ mi)
(Rx,tx,Ry,ty) = argmin ) ( Z o+ Z len>113)-
Ry,tx Ry ty i=1 j=1

Compared to Liu’s method, this new setup has the following differences.
Firstly, the 3D position of the fiducial features and the feature numbers m(i),
o(i) vary from pose to pose. Secondly, the increased pose change space will
lead to a more accurate initial estimation of X and Y from solving AX = YB.
Lastly, the camera pose A; and B; are still constrained by the 3D closed-loop
transformation equation, so they will be replaced with X and Y for the non-linear
refinement. Since the estimation accuracy of A; and B; directly influences the
following estimation accuracy of X and Y after this replacement, applying the
dynamic pattern, in this case, reduces the error propagation by providing better
estimated A; and B;.

Due to the replacement of A; and B; for the final refinement, the estimation
accuracy of A; and B; directly influences the estimation accuracy of X and Y. To
reduce the error propagation introduced by the above replacement, the weighted
optimization strategy is integrated to 4.4.1, which leads to the following objec-
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tive:

lnl

(Rx,ix, Ry, ty) = argmin Z (A Z lef 12+ A Z leiI13).
Ry,tx Ry ty j=
where AP! and AP? are the weighting factors used for the reprojection error re-
lated to the dynamic pattern DI and D2 respectively. Their values are calculated
as follows:

AI‘DI = S,'D2/Smaxa
AI'DZ = SD] /Smaxa

in which SP7 and SP? are the projection size of the corresponding dynamic pat-
tern DI, D2, and S, represents the full image size.

When it is possible to fix the camera rig during the calibration procedure,
the estimation accuracy may be improved further. In this case, the camera pose
estimated from the current fiducial pattern could be applied to re-generate a new
fiducial pattern, which is used in turn to update the estimation of the camera pose.
This estimation circle terminates if the difference between the two consecutive
camera pose estimations is less than the predefined threshold.

Compared to Liu’s setup, these calibration setups generate more accurate re-
sults by providing larger movement space and measurement with better quality.
However, since the screen could not be moved during the calibration process, the
methods could not be directly applied to situations where it is not convenient or

possible to move the camera rig.

4.4.2 Calibration Setup for Unmovable Camera Rig

When the camera rig cannot be moved during the calibration procedure, either
additional equipment is introduced in order to fix and assist the movement of the
monitors, or a pre-calibration to estimate the relative pose X between the display
screens needs to be implemented first.

In the first case, the calibration procedure is similar to the setup for mobile
camera rig except that the monitors are movable in this situation. In the second
case, the pre-calibration procedure needs an external assisting device: an external
movable camera rig (Figure 4.10a). The data collection procedure, as well as
the optimization method, is the same as the method proposed for the movable
camera rig. After the pre-calibration, the relative pose X between the displays
could be accurately recovered. Then the to-be-calibrated camera rig is placed in
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(a) Pre-calibration. (b) After the pre-calibration.

Figure 4.10: Eye-to-eye calibration method applying dynamical fiducial patterns for the
camera rig, which is not movable during the calibration. The left figure demonstrates the
pre-calibration procedure in which an external device is introduced to recover the relative
pose X between the screens. After the accurate estimation of the relative pose X, the
camera rig is placed in an appropriate position to the screens, and the relative pose A and
B could be obtained. The unknown relative pose Y could thus be solved.

front of the electronic displays, and the relative pose A; and B; could be obtained
(Figure 4.10b). Since X is known, the initial value of Y could be calculated based
on the closed-loop AX = YB and further refined based on the following objective
function:

n m(i) o(i)
(Ry.fy) =argmin Y} (47" Y 5113 +272 ) € 13),
Ry tr =1 j=1 =1
where X is known from the pre-calibration and does not need to be optimized.
Same as before, AP! and A2 are the weighting factors. During the calibration
procedure, the fiducial patterns are actively generated in order to reach the most
accurate estimation.

4.4.3 Comparison to Weighted Liu’s Method

Since the calibration setups applying dynamic fiducial patterns are upgraded
from Liu’s setup, it is necessary to compare these two setups.

Both Liu’s method and the methods applying dynamic fiducial patterns are
calibration-friendly in terms of cost, simplicity, and convenience. When the labo-
ratory is not equipped with a highly accurate tracking system and the cameras are
not going to be applied to extremely high-demanding tasks, both Liu’s method
and the methods of using dynamic fiducial patterns could be implemented. Fidu-
cial features either introduced statically in Liu’s setup or dynamically in the dy-
namic fiducial pattern setups are error-free and could be further included for final
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refinement.

Compared to Liu’s method that uses fixed-sized planar calibration patterns,
the methods applying dynamic fiducial patterns could create tremendously larger
measurement space and better measurement quality by dynamically adjusting
the size and position of the fiducial patterns based on the estimated pose between
the camera and the corresponding monitor, which in turn improves calibration
accuracy.

In the last chapter, the inconvenience caused by determining the suitable cali-
bration pattern size and the relative pose X between calibration patterns was dis-
cussed. A short summary is as follows. First, these two variables are dependent.
Second, since they influence the measurement space and measurement quality,
they will also affect the calibration result; Lastly, the values are determined from
trial and error since no solid theoretical study has been investigated. In contrast,
the setup of using electronic displays, in this case, does not have to determine the
size of the pattern since the size of the pattern is dynamically changing depend-
ing on the relative pose A; and B;. In order to achieve the optimal performance,
the calibration device in Liu’s setup has to be re-configured and re-manufactured
to solve different eye-to-eye configurations. In contrast, the re-configuration of
the displays could be easily accomplished by adjusting their relative pose.

From the perspective of optimization, the dynamic fiducial pattern is generated
in order to provide maximum constraints for camera pose estimation. Hence,
more accurate A;, B; are estimated in the dynamic fiducial pattern setup com-
pared to Liu’s setup. Better estimated A; and B; would reduce error propaga-
tion into the non-linear optimization after the replacement A; = YB;X~! and
B, = Y 'A;X. The dynamic pattern here serves as a local structural weighting
factor, which automatically influences the underlying optimization process. In
contrast, Liu’s method uses the numerical weighting factors based on the mea-
surement quality to limit the error proposed passively. When it comes to the
global objective function, the dynamic pattern is functioning as a global struc-
tural weighting factor. The varying importance of all fiducial feature points is
delivered based on the contribution or the constraints they provide to the objec-
tive function. The stronger constraints they bring, the more they will be empha-
sized. In other words, the contribution of each fiducial feature is ‘normalized’
from a global point of view, depending on their inherent structure. Therefore, no
specific numerical weighting factors like in Liu’s method are incorporated into
each error item, which facilitates the optimization procedure.

However, the method applying dynamic fiducial patterns also has its limita-
tions. The method is sensitive to the lighting due to the presence of the display
screens, so the calibration is constrained to the indoor environment, where the
lighting could be easily controlled. For the calibration situation where the cam-
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erarig is not able to move, additional equipment is necessary to fix and assist the
movement of the electronic screens. To get around the limitation where the elec-
tronic screens and the camera rig are inconvenient to move during the calibration
process, the relative pose between the screens could be first recovered through
pre-calibration by introducing an external camera rig. Nevertheless, this extra
camera rig decreases the flexibility and increases the calibration complexity.

4.5 Evaluation on Synthetic Dataset

In this section, different calibration setups and configurations are implemented
in the simulation. They are then compared and analyzed.

4.5.1 Experiment Setup and Configuration

The calibration method applying dynamic fiducial patterns is compared with
Wang’s method, Liu’s method with the integration of weighting factors
(weighted Liu’s method). By comparing with the weighted Liu’s method, the
intention is to verify the improvement brought by including the dynamic patterns
during the calibration procedure. Meanwhile, in order to prove the dynamic vir-
tual pattern constructed by back-projecting the deduced decentralized image fea-
ture distribution generates more accurate pose estimation, the centralized image
feature distribution is tested and compared. Besides, the dynamic fiducial pat-
tern method with the weighted optimization strategy integrated is implemented
similar to the method without the weighting strategy with the following two in-
tentions: to prove the necessity of the weighted optimization strategy and to com-
pare with the improvement brought by the other factor, namely different pattern
configurations. Since Wang’s method could be applied to all the above setups
and configurations and provides an initial value of X and Y for the non-linear
refinement, only the result estimated based on the unevenly distributed dynamic
fiducial pattern setup is demonstrated. By comparing Wang’s result with the
weighted Liu’s method, the interesting comparison between the improvement
brought by the dynamic fiducial pattern without non-linear refinement and the
improvement brought by the final refinement based on the fixed-sized calibra-
tion pattern could be revealed. These setups and configurations are referred to as
Wang, Wgt-Liu, Unwgt-Even, Wgt-Even, Unwgt-Uneven, Wgt-Uneven.

In order to impartially compare the calibration accuracy of different calibration
setups and configurations, the same camera rig is used. In the dynamic fiducial
pattern setup, two 24-inch electronic monitors with a resolution of 1900 x 1200
are introduced for displaying the dynamic fiducial patterns. At the same time,
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two fixed-sized checkerboards whose size is the same as the electronic displays
are used for Liu’s setup.

All calibration methods necessitate a set of different pose pairs {A;,B;}{=" for
estimating the unknowns. Two different pose banks, one for Liu’s setup, and the
other for the dynamic fiducial pattern setup, are generated based on all the ground
truth and camera parameters. The generation of the pose pair bank for the dy-
namic fiducial pattern setup is similar to Liu’s setup, except that the fullscreen
does not have to be captured in the former setup. The calibration configuration
for Liu’s setup and the dynamic fiducial pattern setup are slightly different. The
difference lies in the ground truth X"%¢, which is carefully re-adjusted for Liu’s
method considering the limited pose change space caused by the fixed-sized cali-
bration patterns. All the pose pairs in the pose bank are different from each other,
and they all generate images on which the projection size of the fiducial pattern
exceeds 0.2 of the full image. The former reduces the potential instability, and
the latter guarantees the minimum required measurement quality.

Based on the noise-free pose pair bank, the synthetic measurements for
different setups are generated as follows. At first, a set of true pose pairs
{Alrue Biree}ti=n i randomly extracted from the corresponding bank. In Liu’s
case, the 3D coordinates of all fiducial features are fixed and known, so the noise-
free 2D projections of the corresponding fiducial features could be directly ob-
tained. Afterward, Gaussian image noise is added to get noise-corrupted 2D co-
ordinates, which are used to produce the estimated pose pairs {A$", B¢ }fj’l‘ In
contrast, in the dynamic fiducial pattern setup, AY"¢ and B/ are first applied to
find the virtual pattern on the monitor based on the principle described in the last
section, which varies depending on the specific pose between the camera and the
monitor. The obtained 2D error-free image coordinates are corrupted with Gaus-
sian image noise and used for calculating the noisy pose pairs {A¢!, B¢ }=n
which are then applied to re-generate the virtual pattern. The projections of those
fiducial patterns computed from the estimated pose pairs (A§™ L Bf”l) are again
contaminated by Gaussian image noise and used for estimating {A¢?, B¢*/2}i=n,
which are taken as the final estimated pose pairs for the dynamic fiducial pat-
tern setup. In other words, the generated dynamic fiducial pattern is based on
the estimated pose pairs rather than their ground truth, which ensures that the
following calibration results concerning different setups are similar to real-world
calibration conditions and convincing.

4.5.2 Evaluation of Different Methods and Configurations

In this part, the comparison of single pose estimation accuracy after applying
decentralized and centralized image patterns is first presented, followed by the
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comparison of different setups and configurations with regard to the increased
number of pose pairs and different image noise levels.
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Figure 4.11: The average rotation and translation error of two different pattern types:
evenly distributed feature pattern, and unevenly, decentralized distributed feature pattern.

Before demonstrating the benefits of applying the dynamic fiducial pattern to
eye-to-eye calibration, it is essential and necessary to validate the improvement
on single pose estimation. Two different image feature distributions, namely cen-
tralized and decentralized, are applied to 500 different poses, which are randomly
extracted from the bank and processed with 1.0-pixel image noise. Figure 4.11
shows the average rotation error and translation error with respect to different
pattern configurations, from which the pose estimation applying unevenly dis-
tributed pattern generates less error.

The second experiment is implemented as follows. Different sets of pose
pairs {A;,B; E’f with the measurement number changing from 5 to 45 are first
randomly extracted from the corresponding pose pair bank and corrupted with
fixed Gaussian image noise € = 1.0 pixels. Wang’s method, the weighted Liu’s
method, and the dynamic fiducial pattern methods with different pattern config-
urations are applied.

The calibration results shown in Figure 4.12 and Figure 4.13 are taken an av-
erage of 100 runs.

The following conclusions could be drawn. (1) The weighted decentralized
dynamic pattern method shows the best results. (2) The methods applying
weighted optimization always generate better results than unweighted methods.
(3) The decentralized dynamic pattern configuration outperforms the centralized
dynamic pattern configuration since the former produces less deviation from the
ground truth. (4) Wgt-Even method results in less error than Unwgt-Uneven,
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Figure 4.12: The rotation error of Y of different methods and configurations with in-
creased pose pairs.

which indicates that the weighted optimization strategy has a larger contribution
to the improvement of the calibration results compared to the configuration of the
dynamic fiducial pattern. (5) All the methods applying dynamic fiducial patterns
generate better results than the weighted Liu’s method, even the translation er-
ror from Wang’s method, which does not minimize the reprojection error, is less
than the weighted Liu’s method.
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Figure 4.13: The translation error of Y of different methods and configurations with in-
creased pose pairs.

All the setups and configurations in the third experiment are the same as the
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last one except that the measurement number is set to be 25, while the Gaussian
image noise varies from 0.2 to 1.4 pixels. Same as before, the results are taken
an average of 100 iteration runs.
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Figure 4.14: The rotation error of Y of different methods and configurations with in-
creased image noise.
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Figure 4.15: The translation error of Y of different methods and configurations with in-
creased image noise.

Figure 4.14 and Figure 4.15 demonstrate the calibration errors. Several conclu-
sions are derived as follows. Same as before, the weighted unevenly distributed
dynamic pattern generates the most robust results. With the increase of the image
noise, though both applying the weighted strategy and the configuration of the
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unevenly dynamic fiducial pattern generate increasing improvement, the contri-
bution brought by the former is more significant since the imbalance of the mea-
surement quality still exists in the dynamic fiducial pattern setup. The calibration
performance of the weighted Liu’s method and Wang’s method is comparable,
which verifies the improvement brought by the dynamic fiducial pattern without
the final optimization could compete with the non-linear refinement based on the
fixed-sized fiducial pattern.

4.6 Real Experiment Results

4.6.1 Experiment Setup

Figure 4.16: The calibration infrastructure in the real experiment. The checkerboards are
of the same size as the monitors. The former is used for Liu’s setup, and the monitors are
used for the dynamic fiducial pattern setup.

Similar to the simulation, two setups, one for Wang’s method and the dynamic
fiducial pattern method, and the other for Liu’s method, as well as two different
image feature configurations, are performed in the real experiment. A camera rig
with non-overlapping FOV and two 24-inch electronic displays with a resolution
of 1900 x 1200 are introduced. Liu’s setup consists of the same camera-rig and
two rigidly connected fixed-sized calibration objects, which are of similar size as
the electronic monitors (Figure 4.16). Same as before, both the decentralized and
the centralized image feature distributions are implemented and compared. To
validate the calibration results from different setups and configurations, a highly
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accurate tracking system ‘OptiTrack’ equipped in the calibration environment is
used to provide the benchmark.

The implementation of Liu’s method is straightforward. The camera rig is
placed at several different poses relative to the calibration rig, and a set of images

{IP7 12}~ containing the calibration patterns is collected for the relative pose
estimation and the final refinement.

The complexity of the implementation of the dynamic fiducial pattern setup,
when compared to Liu’s setup, is that the calibration pattern on the monitor is dy-
namically changing depending on the estimated relative pose between the camera
and the corresponding monitor. In the simulation, the noise-corrupted pose esti-
mation is applied, while in the real experiment, the estimated pose from the last
timestamp is used to generate the current fiducial patterns. The camera frame
rate in this experiment is set as 30 fps, and the movement of the camera rig is
smooth and moderate, which ensures that applying the estimated pose from the
last timestamp to generate the dynamic patterns for the current timestamp could

be safely qualified. By changing the pose of the camera rig relative to the cali-
| O Eoy

=

bration rig, in this case, two monitors, a set of images { '11 containing
the dynamic fiducial pattern, together with the well known 3D fiducial pattern
information, is recorded.

In the simulation, the pose pair banks are carefully generated so that good-
quality measurements and larger spatial distribution between the pose pairs are
guaranteed, which is not feasible in the practical environment. Instead, a super-
vision program is additionally integrated into both setups in the real experiment.
The program is an on-line implementation of the data selection strategy explained
in the last chapter. The program first calculates the projection size of the fidu-
cial pattern on the image, and only pose pairs that generate acceptable projection
size are included, which guarantees the measurement quality. Meanwhile, the
program examines the rotational and translational difference between the current
pose pair and the gathered ones during the calibration procedure, which excludes
the pose pair that lies in the neighborhood of the previously collected pose pairs.
This helps reduce the potential instability by alleviating the spatial distribution
imbalance of the collected pose pairs. Liu’s setup has to carefully balance the
image quality against the spatial distribution level of the pose pairs since A; and
B; are coupled by the closed-loop constraint A;X = YB;, which adds difficulty to
obtain a proper set of pose pairs {A,-,B,-}E’f. This inconvenience is alleviated in
the dynamic fiducial pattern setup due to the improved measurement quality and
the increased measurement space.

With the assistance of a highly accurate tracking system, the unknown trans-
form X between the monitors could be accurately recovered after aligning the
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frame of the monitor to the frame of the tracking targets, which could be tracked
by the ‘OptiTrack’ system. Two different configurations are applicable, namely
the fixed trackable dynamic pattern setup and the unfixed trackable dynamic pat-
tern setup. The difference lies in that the relative pose between the monitors
is fixed in the former configuration while it could be adjusted in the latter one
during the calibration procedure. The extra flexibility in the unfixed trackable
dynamic pattern setup further improves the measurement quality since each cal-
ibration object could be independently placed to poses relative to the cameras
with closer depth. The dynamic fiducial pattern is applied to both configurations
to generate the most accurate relative pose.

In the fixed trackable dynamic pattern setup, a set of images {I?’ 1?2 i 1
the 3D coordinates of the corresponding dynamic patterns at each pose pair, and
the recovered X using the tracking system are recorded and processed to run the
weighted bundle adjustment formulated as follows:

m(i

)
(Ry, i) = argmin Z (A1 Y e |\2+7LDZZ lei*I12).
Ry,ty =] j=1
where 2! and AP? are weighting factors.

In the unfixed trackable dynamic pattern setup, a set of images {IDI ID2 z '11
the corresponding dynamic pattern coordinates, and the recovered X; applylng
the tracking system are recorded and processed to run the weighted BA simi-
lar to 4.6.1 except that the replacement of A; and B; under this circumstance

becomes:

Ai = YBX !,
B, = YilA,‘Xl‘.

The result of the weighted unfixed trackable dynamic pattern setup is served
as the benchmark of Y since this is the most accurate estimation that could be
generated in the real experiment.

4.6.2 Experimental Results

The results from Wang’s method, Liu’s method, the dynamic fiducial pattern
method with two different image feature distributions, and the fixed trackable
dynamic pattern method are compared against the benchmark, which is calcu-
lated from the weighted unfixed trackable dynamic pattern setup. The same error
criteria are utilized as in the last chapter. Figure 4.17 demonstrates the results of
different setups and configurations.
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Figure 4.17: Calibration results of different setups and configurations. The calibration
result from the weighted unfixed trackable dynamic pattern configuration is defined as the
benchmark, which is located at the origin. The x-axis and y-axis show the corresponding
translational and rotational deviations of different methods and configurations compared
to the benchmark.

Most of the results from the real experiment are consistent with that in the sim-
ulation. The calibration results applying the weighting strategy deviate less from
the ground truth regardless of different setups or configurations. Moreover, the
more imbalanced the measurement quality is, the more improvement the weight-
ing method will bring. All the setups applying either uneven or even dynamic
fiducial patterns produce better results than the weighted Liu’s method validat-
ing the improvement brought by the dynamic fiducial pattern compared to the
fixed-sized calibration pattern. Besides, the uneven dynamic pattern produces
less deviation from the benchmark compared to the even dynamic pattern.

However, the real experiment results show two conflicts compared to the re-
sults in the simulation. Firstly, the weighted evenly distributed dynamic pattern
generates larger translational difference while smaller rotational difference com-
pared to the unweighted unevenly distributed dynamic pattern, unlike in the sim-
ulation where the former always generates less calibration error. Second, the
performance of Wang’s method applying the unevenly distributed dynamic pat-
tern is worse than the weighted Liu’s method. In contrast, its performance is
more or less the same compared to Liu’s method in the simulation.

The above inconsistency may result because of the following reasons. First,
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the coordinate frame of the tracking targets might not be exactly aligned with
the coordinate frame of the electronic screen due to the error introduced during
the attachment of the targets. Second, though the tracking system is of high
accuracy, it is unavoidable that the tracking targets could still be localized with a
minor error, which in turn influences the calibration results.

4.7 Conclusions and Discussion

In this chapter, new eye-to-eye calibration methods applying fiducial dynamic
patterns are proposed. The configuration of the virtual pattern displayed on
the introduced monitors could be actively modified, which leads to larger pose
change space and improved measurement quality. The improvement in the mea-
surement space and the measurement quality helps alleviate the error propaga-
tion and the potential instability during the optimization process. Meanwhile,
in contrast to the weighted Liu’s method where numerical weighting factors are
used, the dynamic fiducial pattern serves as a global non-numerical (structural)
weighting factor, which normalizes the weight of each error item in the final ob-
jective function based on its inherent structure. Besides, the configuration of the
introduced monitors could be easily readjusted for different camera rigs, so no
customized calibration objects are needed. For the application where the camera
rig is not movable, either additional equipment is included to assist the movement
of the monitors, or a mobile camera rig needs to be introduced to pre-calibrate
the relative pose between the monitors.

After applying the dynamic fiducial pattern to the eye-to-eye calibration like
in this thesis, both the accuracy of the single pose estimation (A;,B;) and the
calculation of the unknown extrinsics X, Y have been improved. In the future, the
integration of the dynamic pattern concept to other applicable situations will be
explored, such as multi-robot cooperative localization, active perception-action
for a mobile agent, the assistance of efficient quadrotor landing, etc!.

'In Chapter 6, a specific robot team is presented, which integrates the application of the dynamic
pattern.
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S Cooperative Localization
Methods: MOMA and S-MOMA

Most of the cooperative localization research focuses on the heterogeneous robot
team, where the robots are equipped with different kinds of sensors. The posi-
tioning of the robots is resolved after fusing different sources of measurement
data based on their quality. In the first chapter, the advantages of CRL and the
difficulty of localizing robots within the indoor environment with repetitive fea-
tures and a deficient number of features are explained. Depending on whether
environmental measurements are applied or not to influence the localization re-
sults, CRL methods are classified into two categories, and typical methods in
each category are concisely reviewed. In this chapter, two CRL methods are pre-
sented: MOMA and S-MOMA, which could be applied to a variety of different
situations, including the indoor environment, where the localization methods are
prone to failure. The former could be considered as a particular version of VO,
which uses fiducial features instead of environmental features. The latter is devel-
oped based on MOMA and fits the framework of V-SLAM, where a global map
is built in order to reduce the accumulating drift. Both MOMA and S-MOMA do
not need to transplant artificial markers to the environment, and they are purely
vision-based approaches since cameras are the only sensor used for localization.

Despite different localization methods of VO, BA is always applied for esti-
mating the camera pose (R(#),t(¢)). The objective function of BA is formulated
as:

n 2

N o LA N . 1
(R(), 80 P1, P2 By = argmin Y lpi—
R(7) (1), P ,PyPy i=1 i

K(R(t)P; +1(1))

2

The main error of VO stems from the noise in 2D measurements p;, which in-
troduces unavoidable error to both camera pose and 3D feature landmarks P;.
The error then propagates to the consecutive estimates, which leads to the ac-
cumulating drift. Besides, if only a monocular camera is used, the scale of the
environment will also drift since one camera is not adequate to recover the true
scale of the scene.

There are several ways to reduce the error in the VO framework. First, addi-
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tional sensors such as inertial measurement units (IMUs) or a navigation system,
for instance, a global positioning system (GPS) can be integrated to alleviate the
drift and scale problem. A stereo camera could be used instead to recover the ac-
curate scale of the environment and prevent scale drift. Some of the VO methods
also build a local map. In contrast, it is preferable in V-SLAM to build a glob-
ally consistent map, especially in an enclosed space. The global map is used to
recognize loop closure, where the previous features are re-detected and included
to run a global BA to alleviate the drift. In general, the map-building procedure
is prone to error due to non-static features, ambiguous features, and erroneous
2D-2D correspondence, which are highly dependent on the environment.

In this thesis, MOMA aims at reducing the localization error by providing
unambiguously detectable, error-free fiducial landmarks. In this case, the robust
features P; used to estimate camera pose are known a priori and do not contain
any error. Thus, there is no error in P; propagating to the following estimates,
unlike the methods which use the estimated f’,- which contains unavoidable errors.
S-MOMA improves the map-building process by additionally fusing introduced
fiducial features that help provide robust relative pose and prevent erroneous data
associations.

5.1 MOMA

MOMA extends the work presented in [31] by replacing the expensive laser sen-
sor with a cheap monocular camera.

For simplicity, the cooperative mechanism of MOMA is explained using a
group of two robots, named Apollo (A) and Boreas (B) respectively. How-
ever, the proposed cooperative localization approach could be generalized to any
vision-based multi-robot system that has more than two robot members. In the
two-robot configuration, a planar fiducial marker is attached to the Boreas’s back-
side, based on which the accurate and robust relative pose between Apollo and
the marker board is recovered. The movement pattern of the robot team, which
resembles the movement of the caterpillar, is demonstrated in Figure 5.1. Both
robots are motionless at the starting point, then one robot, for example, Boreas,
moves first while the other robot stays stationary. Then Boreas stops, and Apollo
is driven to the predefined position relative to Boreas. The above procedure re-
peats until both robots reach the target position.

This recursive positioning process is similar to most CRL meth-
ods [31], [1], [15], and the basics of the algorithm are formulated in Table 5.1.

The explanation of some representations in Table 5.1 is given, which helps
to ease the difficulty for understanding what follows. The coordinate frame of
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Phase (n):
Boreas moves, Apollo stays static.

board

Phase (n+1):
Apollo moves, Boreas stays static.

Boreas

7

Figure 5.1: The caterpillar-like movement pattern of MOMA. As shown in the figure,
only a monocular camera is adequate. Apollo is mounted with a monocular camera, and
a fiducial marker is attached to the backside of Boreas. Boreas moves first, and during
this phase Apollo keeps static. Then Boreas stops, and Apollo is driven to the predefined
position relative to Boreas. These phases repeat until both reach the destination.

Apollo is defined as its monocular camera frame, and the coordinate frame of
Boreas is aligned with the system frame of its fiducial board. All the transforma-
tions in the table are denoted in a similar form as W G, (¢)!, which describes the
relationship from frame A to frame W at time ¢. The phase N is defined as the pe-
riod of time during which the state of the robots keeps unchanged. At each phase
N, the robots have two movement states, namely static and mobile. During each
phase, at least one robot needs to be static in order to serve as the beacon for the
rest of the group members. At phase N, the pose of the static robot, for example,
in this case, Apollo, is denoted as W G4 (), where the superscript s indicates the
robot is static. The relative pose between the mobile Boreas and the static Apollo
is described as 4Gy, (rX), where the subscript M indicates marker frame and the
superscript k represents the current timestamp at phase N. At the end of phase
N, Boreas will stop, and both robots are static. The relative pose of Boreas to
Apollo is depicted as 4Gy (£3). Again, the superscript s here has two indications.
First, the previously moving robot Boreas is now static. Second, this is the end
of the phase, when the robots’ state exchange happens.

't is a 4 x 4 matrix in the form of [;{T ﬂ representing the special Euclidean transformation.
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Table 5.1: Recursive localization procedure of MOMA.

Phase 0: starting point.
YGa(to) = Identity

Phase I: Boreas moves, Apollo is static.

WGa(t]) =V Galto) Remains static

Phase II: Apollo moves, Boreas is static.

VGa(13) =" Galt0) Gy (1) ("Gu (13)) !

Even Phase (N = 27,7 € N): Apollo moves, Boreas is static.
YGa(ty) =" Galty_ ) Gu(r;_) (*Gum(ey)) ™!
Odd Phase (N =27+ 1,7 € N): Boreas moves, Apollo is static.

YGa(ts) =" Ga(tS_,) Remains static

Though MOMA does not contain any error in 3D features, the error accumu-
lates in a different way. Expanding the formula at even phase N = 27,7 € N in
Table 5.1 when Apollo moves leads to:

YGalty) =" Gal10) Gu (1)) Gua (153G 1y 2) "G (131 ) ("G (1))~

The camera pose estimate is a cascade of the current relative pose 4 Gy (zX) and
the poses at all exchange states which occur at the end of each phase. All these
poses are estimated using fiducial landmarks and contain an error. However,
compared to VO, MOMA accumulates error at a more discrete timestamp since
only the exchange-state poses are included. Besides, the camera pose estimate is
more robust and accurate due to the introduced fiducial features.

5.2 S-MOMA

In this section, the cooperative localization method S-MOMA is presented. The
method localizes a group of robots by fusing pose estimates from static envi-
ronmental features and mobile fiducial features. The cooperation mechanism
between the robots is first explained, followed by the formulation of the cooper-
ative localization algorithm.
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5.2.1 Cooperative Mechanism

A group of two robots, namely Apollo and Boreas, is used to explain the al-
gorithm. Same as MOMA, Apollo is equipped with a monocular camera for
recovering the relative pose by detecting the fiducial board, which is mounted
on the backside of Boreas. By building a global map, the accumulating drift
could be reduced, especially when the robot returns to previously visited places.
Therefore, the front side of Boreas is installed with a stereo camera in S-MOMA,
which is used to build a global map of the environment. With the above config-
uration, S-MOMA is able to inherit essential characteristics from MOMA while
at the same time evolves by interacting with its surroundings.

(0)

«I—)
world

Boreas

WGy I)AGM

\_/
Apollo Apollo

Figure 5.2: Caterpillar-like movement pattern of S-MOMA. As shown in the first column,
the fixed world reference frame is aligned with the left camera coordinate frame of Boreas
before both robots start to move. Boreas moves first, and during this phase Apollo keeps
static. Then Boreas stops, and Apollo is driven to the predefined relative position of
Boreas. These phases repeat until both reach the destination.

The movement pattern of S-MOMA demonstrated in Figure 5.2 is very simi-
lar to MOMA. However, the role that the robot pair plays in S-MOMA is not the
same as in MOMA [1]. The difference lies in the designed functionalities of the
equipped cameras. Same as MOMA, Apollo’s camera detects the fiducial marker
board rigidly attached to Boreas and generates relative pose measurements. In
this case, a monocular camera is enough. While in S-MOMA, the stereo cam-
era pair mounted on Boreas is used for performing a vision-based localization
algorithm using static landmarks from the environment. Though each robot in
the team may perform both relative pose detection and self-localization during
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the localization procedure, which provides more flexibility to the path planning
of each robot, the functionality of the two-robot group keeps unchanged dur-
ing the deduction of S-MOMA as well as in the following experiment section
for consistency and better comparison, which means: the relative pose detection
is solely performed by the monocular camera mounted on Apollo; only Boreas
could localize itself independently using its onboard stereo camera.

Table 5.2: Recursive localization procedure of S-MOMA.

Phase 0: starting point.
WGp(t9) = Identity
YGa(to) =" Ga(10)5 G Gal10)

Phase I: Boreas moves, Apollo is static.
WG, (r) = WGa(to) Remains static

VG (rf) ="V Ga (1) Gu (1) (PGu) ™!

Phase II: Apollo moves, Boreas is static.
YGy(13) =" Ga(t)AGu () (BGy)™!  Remains static

VGa(15) =" Gp(13)’ GuM G (13)

Even Phase (N = 27,7 € N): Apollo moves, Boreas is static.
WGp () ="V Ga () Gu(t))(BGy)™"  Remains static
YGal(ty) =" Gp(13)PGuMGalry)

Odd Phase (N =27+ 1,7 € N): Boreas moves, Apollo is static.
YGa(ts) =" Gp(r:_)BGMMGa(t:_|)  Remains static

VG (ty) =" Ga(6;) Gu (1) ("G) !

The resulting localization algorithm based on relative pose estimation is pre-
sented in Table 5.2. The representation in S-MOMA follows the tradition of
MOMA. The coordinate frame of Apollo is defined as its monocular camera
frame, which is the same as MOMA, while the coordinate system of Boreas is
defined as its left camera frame. " Gp(rX) describes the transform from Boreas
camera frame to the world reference frame at timestamp k during phase N, and
the superscript W stands for the world coordinate system, which is aligned with
the left camera frame of Boreas at the starting point. Gy, which needs to be
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estimated, is denoted as the transform from Boreas marker board frame to its left
camera system, where the subscript M indicates marker.

Same as MOMA, the localization error also accumulates in S-MOMA. Ex-
panding the formula at odd phases N =274 1,7 € N in Table 5.2 when Boreas
moves leads to:

YGp(ty) =PGuMGa(to) Gu(t}).. " Ga(ty_ ) G (1) (PGur) 1,

in between are concatenated transformations from previous phases, which could
be simplified as follows:

YGp(t) = BGu™ G, (1) (BGu) ',

in which ™Gy, (¢*) depicts the transform from the current marker frame to the
marker frame at the starting point.

The above formulas reveal two important indications when Boreas moves.
First, the transformation 2Gy,, which is a pre-calculated measurement with un-
avoidable calibration error, is always included in the equation. However, the cal-
ibration error does not accumulate with increased state exchanges. Second, with
more state exchanges during the localization process, more noise-corrupted mea-
surements are introduced and become dominant over time, which causes vision-
based CRL error-drift in the long run. However, the benefits that the system could
gain from those methods are high robustness and accuracy of the recovered rel-
ative pose. First, the 3-D coordinates of the fiducial marker are exactly known
compared to the triangulated 3-D feature points in the environment, which con-
tain an error. Second, the 3D-2D feature correspondence is much more robust
when using the fiducial marker, while matching features from the environment
is inherently less reliable. So even though vision-based CRL methods are error-
drift, they could provide more robust and accurate relative pose estimation.

5.2.2 Eye-to-marker Calibration

In vision-based CRL methods where fiducial markers are attached to the robot,
recovering the accurate transformation between the onboard camera and the fidu-
cial board is a prerequisite for executing other tasks. Such a configuration is not
uncommon. For example, in S-MOMA, the transformation BG, between the left
camera and the fiducial board has to be accurately estimated since static environ-
mental features and mobile fiducial features are going to be fused.

When the fiducial marker appears in the FOV of the camera, the transforma-
tion could be directly recovered. Otherwise, an external camera and an external
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Figure 5.3: The demonstration of eye-to-marker calibration. In this configuration, the
onboard marker and the external calibration object are placed within the FOV of the cor-
responding camera.

calibration pattern are introduced, like in Figure 5.3. In order that the unknown Y
could be recovered from solving the closed-loop Y = CB 1A, where C, B, and
A are the relative pose between camera and fiducial marker, the configuration
has to meet the following conditions. First, the external planar pattern and the
onboard marker have to be in the FOV of the external camera. Meanwhile, the
external calibration object has to appear in the FOV of the robot camera.

Y
board A

N

Calibration
pattern

External
camera

Figure 5.4: The demonstration of eye-to-marker calibration. In this configuration, the
calibration device, which is rigidly linked with an external camera and a planar calibration
pattern, is introduced to relate the onboard camera and marker.

However, the above requirements cannot always be fulfilled. When the ex-
ternal camera and the external calibration object could not relate to the onboard
robot camera and marker, the above method could not be applied. This situation
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is similar to eye-to-eye calibration and is defined as eye-to-marker calibration
following the tradition. In this case, a calibration device is constructed by rigidly
linking a planar fiducial pattern and an external camera (Figure 5.4). The cali-
bration device is placed in several different positions to the onboard camera and
marker, where each marker could be captured by the corresponding camera. In
the end, a set of pose pairs {A;, Bi}fi’f is collected, and the initial estimation of X
and Y is calculated by solving {A; X = YB,}E{. Same as eye-to-eye calibration,
the initial value is then applied to minimize the reprojection error based objective
function in order to improve calibration accuracy.

5.2.3 Fusion Strategy and Optimization Method

Roumeliotis et al. validated in [54] that continuous relative pose detection would
bring in more accuracy than intermittent relative observation. As mentioned be-
fore, map building within indoor environments where repetitive localization is
frequently required alleviates drift error, which compensates the weakness of
CRL methods. However, the ambiguity property of environment features and
their diverse distribution grant map construction a desirable but thorny task. For-
tunately, the mapping task could be less challenging when provided with extra
reference to robust and accurate relative pose estimates. The fusing strategy is
based on combining the benefits of indoor map building with continuous relative
pose detection. The caterpillar-like movement pattern described above makes the
best use of the concept.

The on-line frame-by-frame fusion happens only during the movement of the
‘explorer’, which could localize itself using the equipped stereo camera as well
as receive the relative pose from its group member. In this case, the so-called
explorer is Boreas. During the movement of Boreas, two sources of information
are simultaneously generated at each timestamp. First, Boreas localizes itself by
applying V-SLAM based algorithm, which enables localization as well as map
building. Meanwhile, Apollo which now acts as a portable landmark provides re-
liable relative positioning. This localization coupling introduces extra constraints
and could be optimized for further refinement.

The proposed objective function combines two different objectives: (1) sum of
reprojection errors &, of triangulated environment feature points and (2) sum of
reprojection errors &,qker Of the exactly known marker corners. The subscripts
env and marker differentiate the reprojection error generated from environment
and marker. The main difference between &,,, and &4, 1s: due to the discrete-
ness property of vision sensors and unavoidable sensor noise, the triangulated
3-D environment feature points X; from 2-D images contain undesired uncer-
tainty. In contrast, the 3-D coordinates M; of the fiducial markers are noise-free,
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which increases the robustness of the localization system after including them
into the pose-decision process.

In this thesis, the coordinate frame of Boreas is defined as its left camera frame.
At time step ¢, the pose of Boreas represented in world frame W is denoted as
WGp(t), which is going to be estimated. These two objective functions are first
formulated separately.

On the one hand, " Gp(t) could be calculated by minimizing the reprojection
erTors &,,,, defined as:

n(t)

WGB( ) - argmm Z env )2’ (51)
WGp(r) i=1
e (1) = ||xi(t) — (Y Gp(1)Xi(1)) ||, , (5.2)

where X;(¢) = (Xi(r),Yi(r),Zi(t),1) represents the homogeneous coordinates
of triangulated 3-D feature points and x;(r) = (x;(¢),yi(¢),1) the corresponding
2-D homogeneous coordinates at time . The & appeared in equation (5.2) is a
3 X 4 projection matrix, which projects 3-D feature points onto the 2-D image
plane. Equation (5.2) gives the reprojection error of each triangulated feature
point detected at the current frame, and by minimizing the sum, ¥ Gp(t) is esti-
mated.

The way how WGg(t) is estimated by applying equation (5.1) and (5.2) is
analogous to the majority of VO and V-SLAM algorithms.

On the other hand, W G(¢) could also be estimated by minimizing the repro-
jection errors &€yqker, Specified as:

m(t)

AGM = arg min Z marker (53)
AGu (1)
erimrker 1)= Hml l‘)—ﬂ'( M(t j)||2’
and
WGp(r) =" Galt)\Gu (1) (*G) ", (5.4)

where M; = (X;,Y;,Z;,1) represents exactly known 3-D fiducial features that
are time-independent with regard to marker coordinate frame, and m;(r) =
(xj(2),yj(t),1) are the corresponding 2-D image coordinates. Same as before, 7
represents the projection matrix. Since in this phase Boreas is moving, Apollo is
static, s0 ' G4 () is phase-constant and could be deduced from previous measure-
ments (refer to Table 5.2). AGy,(1) denotes the transformation between Apollo
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and the marker board mounted on Boreas, and 2G,; describes the relationship
between Boreas’s marker board and its own frame, which has been well cali-
brated beforehand. The relationship between these transforms is illustrated in
Figure 5.5.

....... Boreas

Emarker

<7/

Figure 5.5: The illustration of the fusion strategy. The proposed objective function con-
sists of the sum of reprojection errors caused by triangulated environment feature points
and the sum of reprojection errors generated from fiducial marker corners, whose 3-D
coordinates are accurately known. The fusion happens during the movement of Boreas.

Minimizing (5.3) results in an estimated 4G, (¢), which creates optimally esti-
mated WGB(t) after applying equation (5.4). Most localization algorithms which
are not environment interactive apply this rule.

As stated before, the robot team should be viewed as an entire entity. So in
order to achieve global optimization of WGB(t), the reprojection errors &, and
Enarker Als0 need to be considered as a whole. They are bonded and fused in one
objective function formulated as follows:

W A . 1 nlt) i 2 A mit) 2
Gp(t) = argmin ) Y (e,(1) W ; g ot . (5.5

WGp(t) i=1

The environment generally has many more feature points compared with the
implanted fiducial features. In order to counteract the imbalance of the num-
ber of different feature sources, the reprojection errors are normalized by their
corresponding feature numbers. Considering the measurement quality difference
mentioned before, an additional influence factor A is introduced to stress the
value of accurate fiducial features. In the end, what the objective function min-
imizes is the sum of weighted-average reprojection errors of those two feature
sources. One reasonable criterion of configuring A is the quality difference be-
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tween the cameras, which are used for V-SLAM and relative pose detection. The
influence of environmental features and fiducial features behaves in an on-line
manner since real-time feature detection is running at each frame.

The non-linear function (5.5) needs a reliable initial value of W Gp(¢) at each
timestamp. For robustness consideration, the localization result based on the
relative pose estimate from the current frame will be applied. This guarantees
the robustness even when the environment has deficient or ambiguous features.
The former would cause the system to crash while the latter introduces disastrous
outliers under the V-SLAM framework.

This fusion scheme described above is illustrated in Figure 5.5. By minimiz-
ing the objective function (5.5), W G(t) is updated using the optimum of the
objective, which can be calculated as fast as the on-line frame rate.

5.3 Experiments and Evaluation

Figure 5.6: The simulation scene constructed in V-REP.

Different experiments are implemented in simulation using V-REP. The simu-
lated environment is an imitated version of a robot laboratory (Figure 5.6), where
dynamic robot models, vision sensors, fiducial markers, and common indoor
items are constructed. The robot model being tested is Robotino from the Festo
company. Same as before, Boreas is equipped with a pair of stereo camera and
a rigidly attached Aruco marker board [47] on its backside for relative pose de-
tection, and Apollo is mounted with an HD camera. The procedure of camera
intrinsic calibration and extrinsic calibration, such as the transformation between
the camera and the marker board, is rigorously conducted in simulation before-
hand.

As explained before, the two robots move in turn. During the movement of
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Boreas, the algorithm estimates its pose by fusing the measurement data from the
stereo camera with the relative measurements provided by Apollo. When Apollo
moves, its pose could be recovered simply by concatenating its relative pose to
the positioning of Boreas. One criterion used in the experiment for deciding
when one robot should stop and the other should move (state exchange) is the
reprojection error of the detected marker. When the reprojection error is larger
than the defined threshold, the moving robot stops, and the other starts to move,
which ensures the accuracy of the vision-based system.

The proposed algorithm S-MOMA has been implemented under the ROS
framework, and the code is available online 2. The SLAM framework that S-
MOMA builds on is S-PTAM 3. S-PTAM, referred to as stereo parallel track-
ing and mapping, is a well-known and highly recognized V-SLAM based algo-
rithm [51].
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Figure 5.7: Trajectories of different localization methods.

MOMA, S-MOMA, as well as S-PTAM, are implemented in three different
testing environments. For each experiment conducted, the same measurement
data are processed, applying those three localization methods.

First, the implementation of those methods is carried out in an environment
filled with rich, distinct, and evenly distributed features. Figure 5.7 demonstrates
four trajectories of the localization results of MOMA, S-MOMA, S-PTAM, and
the recorded ground truth from one test. The trajectories differentiate each other
using different colors. The corresponding localization error compared to ground
truth is shown in Figure 5.8. In this test, S-MOMA generates the least localiza-
tion error of 0.74cm compared to S-PTAM of 1.03cm, and MOMA of 1.45¢m,

Zhttps://github.com/zaijuan/Cooperative-Localization
3https://github.com/Irse/sptam
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Figure 5.8: Localization errors regarding different methods.

and the average error percentages with regard to the trajectory length are 0.24%
for MOMA, 0.12% for S-MOMA, and 0.17% for S-PTAM.

In Figure 5.8, it is noticeable that MOMA shows increasing error accumu-
lation. However, it is worth mentioning that in the beginning, the localization
accuracy of MOMA is very competitive. In most cases, S-PTAM shows less
drift compared to MOMA due to the constructed map, while its localization er-
ror is still larger when compared to S-MOMA. The reason lies in that S-MOMA
generates more accurate and robust positioning along the way due to the fusion
mechanism, which further assists in building a more accurate map of the envi-
ronment. So when the robot returns to its previously visited places, S-MOMA,
which constructs a better map, generates less localization error.
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Figure 5.9: Localization errors of different methods from 9 tests.
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Another nine experiments are conducted with about 6m long trajectory, and the
overall results are shown in Figure 5.9. Except for experiment 5, which shows
slightly worse results, all the other experiments verify that S-MOMA outper-
forms MOMA and S-PTAM with more accurate localization results. The aver-
age errors of MOMA, S-MOMA, and S-PTAM from all experiments are 1.31cm,
0.77c¢m, and 1.10cm, and the corresponding average error percentages with re-
gard to the trajectory length are 0.21%, 0.13%, and 0.18%.

We implement those localization methods in the second environment with a
deficient number of features. It turns out that S-PTAM gets stuck at the initial-
ization step, while S-MOMA behaves the same as MOMA since the number of
environmental features, in this case, is almost none.
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Figure 5.10: Trajectories of different methods with ambiguous features.
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Figure 5.11: Localization errors of different methods with ambiguous features.

In the end, the performance of those localization methods in environments
filled with ambiguous features is investigated. Therefore, another experiment is
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conducted in a simulation scene with deliberately designed ambiguous features
by adding symmetric items such as a chessboard, chair, etc. The testing results
generated from this configuration are illustrated in Figure 5.10 and Figure 5.11.

The trajectory of S-PTAM deviates wildly from the ground truth since ambigu-
ous features unavoidably introduce mismatches even with the help of motion pre-
diction and RANSAC outlier rejection mechanism. In this case, the localization
results from S-MOMA are also influenced. The average errors of MOMA, S-
MOMA, and S-PTAM are 1.34cm, 1.62cm and 14.42cm, and the corresponding
average error percentages with regard to the trajectory length are 0.24%, 0.28%,
2.5%. It shows that S-MOMA could still demonstrate almost the same level of
accuracy compared to MOMA but with much more robustness.

The results from different experiments have verified that S-MOMA generates
the least localization error under various testing environments. The reason be-
hind this deserves a more in-depth analysis. When the environment is full of
rich and good-quality features, S-MOMA is co-biased by measurements from
the environment as well as the mobile fiducial markers, and the pose estimation
is updated to the optimum after frame-rate optimization. Just like in SLAM, ac-
curate localization results lead to an accurate and robust map building, which
further benefits the localization itself when the robot could sense the constructed
map. This is why S-MOMA outperforms the V-SLAM approach due to this
coupled effect of mapping building and positioning. Because of the inherently
increased drift error in MOMA, S-MOMA also demonstrates better results in the
long run. Moreover, the longer the trajectory is, the more advantages S-MOMA
shows. While the environment has fewer or ambiguous features, S-MOMA is
robust enough to prevent the system from getting trapped in unstable estimations
and calculates the positioning by relying more on relative measurements accord-
ingly. This explains the improved performance when compared to a V-SLAM
framework.

S-MOMA behaves like a wise decision-maker. It understands the quality of
different measurements, learns the environment being placed in, and is aware of
how to fuse different feature sources based on that. In the end, S-MOMA man-
ifests satisfactory accuracy and robustness under various testing circumstances.
Based on all experimental results, S-MOMA has been validated to resolve all the
difficulties discussed in the introduction chapter.

5.4 Conclusions and Discussion

In this section, two localization methods, namely MOMA and S-MOMA, are
proposed. MOMA realizes cooperative VO by introducing fiducial markers
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attached to other robots. The localization algorithm concatenates all state-
exchange poses which occur at the end of each phase. By fusing the pose es-
timates from environmental features and relative pose estimates from mobile
fiducial marker features, S-MOMA preserves the essence of MOMA and fur-
ther improves the localization robustness and accuracy under various testing en-
vironments. Both MOMA and S-MOMA are practical, versatile and could be
generalized into any suitable platform, where it is possible to fuse the absolute
pose estimate with the relative pose estimate based on the same error type.

However, the configuration of the robot team and the cooperation mechanism
implemented in this thesis are simplified. To add more ‘vitality’ to the algorithm,
possible improvements are as follows. First, during the localization process, the
‘explorer’ could actively grab preferable measurements from the environment to
potentially improve the accuracy as long as it is in the reliable detection range
of its colleagues. Second, the functionality of the robots could dynamically vary
according to their surroundings or the demands from other team members instead
of being fixed, which enables more flexibility and efficiency to the system. Even
though these variations in configuration and cooperation mechanism introduce
additional overheads and increase management complexity, continuous improve-
ment on localization robustness, accuracy, flexibility as well as efficiency would
be brought to the multi-robot system.
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6 Conclusion

6.1 Summary

This thesis contributes to two research fields: eye-to-eye calibration and cooper-
ative robot localization (CRL).

6.1.1 Eye-to-eye Calibration

In this thesis, a weighted non-linear optimization method and a data selection
strategy are proposed to alleviate the underlying instabilities in Liu’s calibration
method. The optimization method introduces an extra quality measure factor
in the objective function based on the projection size of the calibration object,
which relieves the measurement imbalance, improves calibration accuracy, and
increases robustness against noise. Besides, by carefully choosing a subset from
the collected pose pairs, the possibility of getting trapped in a local minimum is
reduced. The optimization method and the data selection strategy are applicable
to any calibration setup, which minimizes the sum of reprojection errors and is
constrained by the closed-loop pose transformations AX = YB.

The proposed optimization method and the data selection strategy do not in-
crease the measurement space or improve the measurement quality. Instead, they
choose a subset and passively weigh each pose pair based on the measurement
quality. Therefore, a new calibration method applying a highly accurate tracking
system is proposed, which disconnects the rigid link in Liu’s setup. Thus, the
calibration patterns could be independently placed in front of the camera pair.
The method eliminates the instabilities in Liu’s setup and shows high accuracy.

However, the cost of introducing a highly accurate tracking system is usu-
ally expensive. Inspired by the widespread application of electronic displays,
another new calibration method applying the fiducial pattern is introduced. By
a proper encoding of the fiducial patterns on display, the method increases the
pose change space. The configuration of the virtual pattern displayed on the in-
troduced monitors is actively modified to generate better-quality measurements,
which helps to reduce the error propagation and the potential instability during
the optimization process. The dynamic pattern provides a cascade of dual func-
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tionalities: a local non-numerical weighting for each single pose estimation and
a global non-numerical weighting for the overall objective function. Instead of
using numerical weighting factors to evaluate the measurement quality like the
optimization method applied in Liu’s method, the dynamic fiducial pattern serves
as a non-numerical, structural weighting factor, which normalizes the weight of
each error item in the final objective function based on its inherent structure. Be-
sides, the configuration of the introduced monitors is flexible since they could be
easily re-adjusted for different camera rigs, so no customized calibration objects
are needed.

6.1.2 Cooperative Robot Localization

Two CRL methods are proposed: MOMA and S-MOMA.

MOMA is a VO method using the mobile fiducial markers attached to the other
robots. Thus no marker intervention is introduced to the environment. Compared
to typical VO methods where the environmental features and the estimated cam-
era pose are coupled and correlated, MOMA uses fiducial landmarks to recover
the robot pose. Besides, the drift in MOMA occurs at discrete timestamps when
the exchange-state poses are incorporated and concatenated.

In order to further reduce the drift in MOMA, S-MOMA fuses the pose esti-
mates from environmental features and the relative pose estimates from mobile
fiducial marker features. Thus, a robust, accurate, and globally consistent map is
constructed. Compared to V-SLAM methods that are prone to failure when the
environment has ambiguous, repetitive features or a deficient number of features,
S-MOMA demonstrates high accuracy and robustness under various testing en-
vironments due to the fusion of the robust, accurate relative pose estimates. The
algorithm is practical, versatile, and could be generalized into any suitable plat-
form, wherever it is possible to fuse the absolute pose estimate with the relative
pose estimate based on the same error type.

6.2 Outlook

Though extracting measurement sets with good-quality from the pose pair bank
is convenient in the simulation, the generation of pose pair bank based on ground
truth is time-consuming and not practical in real experiments. Without a par-
ticular assistance, the data collection procedure in Liu’s setup is challenging.
Considering the underlying twisted and limited measurement space, an on-line
program that interactively assists the collection of the measurements in real time
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could be developed, such that a better balance between the spatial distribution of
collected pose pairs and their measurement quality could be perceptively kept.

In the dynamic fiducial pattern setup, the generated patterns are corners, which
could be replaced or combined with other feature types to increase the detec-
tion accuracy, such as circles. In the simulation, the intrinsic parameters of
the camera are assumed to be well-calibrated, and in the real experiment, they
are pre-calibrated before the extrinsic camera calibration. The combination of
the intrinsic calibration and the extrinsic calibration makes the whole calibra-
tion procedure more efficient, automatic, and accurate. Besides, the application
of the dynamic fiducial patterns should not be constrained only to eye-to-eye
calibration. The integration of the dynamic pattern concept to other applicable
situations is worth exploring, such as multi-robot cooperative localization, ac-
tive perception-action for a mobile agent, the assistance of efficient quadrotor
landing, etc.

Chione

il WGC World
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marker 2

:marker 1
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A ¥4

Figure 6.1: Demonstration of a cooperative robot localization configuration using a group
of three robots. The top of Apollo and the back of Boreas are equipped with electronic
monitors for actively displaying dynamic fiducial patterns. All the robots could be actively
controlled or passively detected with high accuracy by the dynamic fiducial pattern.

In MOMA and S-MOMA, the configuration of the robot team and the coop-
eration mechanism that they have been applied to are simplified. The prospect
of introducing dynamic fiducial patterns to cooperative robot localization within
the indoor environment is promising. The active measurements generated from
the dynamic fiducial patterns could be applied to assist, and bias the estimation
of relevant states effectively, such as the robot pose or the coordinates of the en-
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vironmental features. For example, in Figure. 6.1, two mobile robots (Apollo,
Boreas) and a quadrotor (Chione) forms a group of three robots. The monitor
screen on the back of Boreas could actively display fiducial patterns to accu-
rately recover the relative pose to Apollo or control its movement. Meanwhile,
the electronic monitor on top of Apollo could be used to actively control Chione
and passively detect its pose relative to Apollo. In this case, all the robots could
be related to each other by different constraints. The activeness in terms of the
generation of dynamic fiducial pattern and control of the robots introduces more
certainty and robustness to the system, while the passiveness allows the system to
perceive and interact with its environment accurately. Even though these varia-
tions in configuration and cooperation mechanism introduce additional overheads
and increase management complexity, continuous improvement on localization
robustness, accuracy, flexibility as well as efficiency would be brought to the
multi-robot system.
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