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 - Fuzzy Sets in Factor Space
(Set Kabur  dalam Ruang Faktor)
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ABSTRACT

Interval-valued fuzzy sets, both-branch fuzzy sets and -Fuzzy sets are three extended forms of ordinary fuzzy sets. 
Compared to traditional fuzzy sets, interval-valued fuzzy sets have a stronger ability to express uncertainty because 
they provide more choices for the descriptions of attributes. Using both-branch fuzzy sets has solved some problems in 
engineering decision and engineering control. For -Fuzzy sets, a new fuzzy system is constructed, with both-branch 
fuzzy sets as a special case. The resulting theorems improve the flexibility of uncertainty system models and expand the 
range of fuzzy system applications as well.

Keywords: Envelope of feedback extension; factor space; feedback extension; representation extension; -Fuzzy set

ABSTRAK

Set kabur nilai selang, kedua-dua cabang set kabur dan set kabur  adalah tiga bentuk lanjutan daripada set kabur 
biasa. Berbanding dengan set kabur tradisi, set kabur nilai selang mempunyai lebih keupayaan untuk menunjukkan 
ketidakpastian kerana ia menyediakan lebih banyak pilihan untuk gambaran atribut. Penggunaan kedua-dua cabang set 
kabur telah menyelesaikan beberapa masalah dalam keputusan kejuruteraan dan kawalan kejuruteraan. Untuk  set kabur

, satu sistem kabur baru dibina, dengan kedua-dua cabang set kabur dijadikan sebagai kes khas. Teorem yang terhasil 
meningkatkan kelenturan model sistem yang tidak menentu dan mengembangkan pelbagai aplikasi sistem kabur juga.

Kata kunci: Perluasan maklum balas; perwakilan maklum balas; ruang faktor; sampul perluasan maklum balas; set 
kabur 

INTRODUCTION

In the early 1980s, Professor Peizhuang Wang introduced 
the concept of factor spaces. In 1982, he published the first 
article on factor spaces (Garg & Arora 2018; Van Hoof et 
al. 2018; Zhou et al. 2017), and subsequently this concept 
was further developed and applied. However, factor spaces 
were introduced based on Zadeh fuzzy sets, whereas the 
fuzzy decision and control of (–∞, 0) and (1, +∞) are also 
important. Professor Kaiquan Shi proposed the concept of 
both-branch fuzzy sets (Verma & Parihar 2017) in 1997, 
and the proposal of the -Fuzzy set in 2008 by Professor 
Hongxing Li accommodated for the shortcomings of Zadeh 
fuzzy sets.

First, several concepts are defined:

Definition 1.1 (Konieczny et al. 2017): For a given left 
matching (U, V], if a factor family F ⊂ V, then the set family 
{X(f )}f ⊂T  is a factor space in U if it satisfies the axioms:

F = F(∧, ∨, c, 1, 0) is a complete Boolean algebra; X(0) = {0}; 
For any T ⊂ F, if factor family T are pairwise independent, 
then .  is herein referred to as the direct 

product of mappings (factors).

	 F is the factor family, f ⊂ F are the factors, and X(f) 
is the state space of f.

Definition 1.2 (Rikka et al. 2018): Zadeh fuzzy set μA:
X →[0,1], x → μA(x). μA is the membership function, and 
μA(x) is the membership degree of x to A.

Definition 1.3 (Neill et al. 2017): Both-branch fuzzy set: 
X → [–1,1], x→S(x). S(x) is the fuzzy kiss function of x 
to S. For the given x0 ⊂ X, S(x0) is the fuzzy kiss degree 
of x0 to S.
	 Professor Hongxing Li expanded the Zadeh fuzzy 
set and, with both-branch fuzzy sets as a special case, 
put forward the concept of   set.

Definition 1.4 (Story et al. 2018):   set: A :  X →° 
and ° represents the generalized set of real numbers, i.e. 

.
	 All  sets on X are written as . When 
A is a bounded function, it is called aset. All bounded 
Fuzzy sets on  X are denoted BF(X). Assuming 
A∈BF(X), then there are c,d∈°, c≤d, making A : X→°. 
It can be represented A : X→[c,d]. IF c ≥ 0, d ≤ 1, 
bounded   sets reduce to Zadeh fuzzy sets.
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	 In fact, mappings can be used to connect Zadeh fuzzy 
sets with   sets, i.e. 

	 	 (1)

	 In Zadeh fuzzy sets, the [0, 1] measure is used to 
represent degree of membership. Likewise, for a bounded 
Fuzzy set A, A(x)∈[0,d] shows the belonging degree of x to 
A. When A(x) = d, x can be supposed to totally belong to A; 
when A(x) = c, x does not belong to A; when c < A(x)< d, 
A(x)∈[0,d] means the degree of membership is some 
degree between c and d. Specifically, when c < 0  and d ≥ 0, 
A(x)∈[0,d] means the degree of  x belonging to A; 
A(x)∈[c,0) refers to the degree of x not belonging to A.
	 The explanation for   sets A : when A is 
unbounded, if sup{A(x)⎥x∈X} = +∞, i.e., ∀d > 0, ∃x ∈ X, 
making A(x) > d, this represents that there are no elements 
totally belonging to A in X, but there are elements that are 
an arbitrarily close approximation to ‘totally belonging’. If 
a concept of totally belonging is needed, it can be achieved 
by a supplementary provision. For example, by the inverse 
transformation of (1), a   set can be turned into an 
ordinary fuzzy.

OPERATION AND EXTENSION OF FUZZY SETS

F = F(∨, ∧, c, 1, 0) in Definition 1.1 1) is a complete 
Boolean algebra. Now we are going to study the algebraic 
structure of F when 0 and 1 are substituted with –∞ and –∞.

Definition 2.1 Two operations “∨” and “∧” are defined 
in a set (–∞, +∞) : ∀α, β, γ∈(–∞,+∞), ∨ @sup, ∧ @inf .

Idempotency: α∨α = α,α∧α = α; Commutativity: α∨β 
= β∨α, α∧β = β∧α; Associativity: (α∨β)∨γ = α∨(β∨γ), 
(α∧β)∧γ = α∧(β∧γ); Absorption law: (α∨β)∧α = α, (α∧β) 
∨ α = α, so that (∨, ∧, –∞, +∞) is a grid.

Definition 2.2 If the grid (∨, ∧, –∞, +∞) satisfies the 
distributive law, (α∨β) ∧γ = (α∧γ)∨(β∧γ), (α∧β)∨γ = (α∨γ) 
∧(β∨γ), then (∨, ∧, –∞, +∞) is a distribution grid. In (∨, ∧, 
c, 1, 0) , there is the maximum element 1 and the minimum 
element 0; likewise, in (∨, ∧, c, +∞, –∞) , the ‘maximal 
element’ and the ‘minimal element’ are defined.

Definition 2.3  In the grid (∨, ∧, –∞, +∞), +∞ is defined 
as the maximal element and –∞ is the minimal element. 
If they satisfy: 

	 , x ∨(–∞) = x, x∧(–∞; x∨(+∞, x∧(+∞) = x;

then there are maximal element +∞ and minimal element  
–∞ in (∨, ∧, –∞, +∞).

Definition 2.4  If a complement c is defined in a distribution 
grid (∨, ∧, –∞, +∞) with maximal element and minimal 

element, i.e. ∀x∈(–∞,+∞), then xc = –x. If it satisfies both
resiliency law: c(cα) = c(–α) = α; and complementarity 
law: α∨(cα) = +∞, α∧(cα) = –∞, then (∨, ∧, –∞, +∞) is a 
Boolean algebra.

Definition 2.5 If the Boolean algebra (∨, ∧, –∞, +∞) 
satisfies: 

∨{α⎥α∈(–∞,+∞)} @sup{α⎥α∈(–∞,+∞)}; 

∧{α⎥α∈(–∞,+∞)} @inf{α⎥α∈(–∞,+∞)};

then (∨, ∧, –∞, +∞) is a complete Boolean algebra. In this 
way, (∨, ∧, c, 1, 0) is extended to (∨, ∧, c, +∞, –∞).

EXTENDED DEFINITION OF FACTOR SPACE

Definition 3.1 For a given left matching (U, V], if factor 
family F⊂V, then {X( f )}(f ∈F) is a factor space in U if it 
satisfies the axioms:

F = F(∨, ∧, c, +∞, –∞) is a complete Boolean algebra; 
X(0) = {0}; For any T⊂F, if factor family T is pairwise 
independent, then .  is herein referred to 

as the direct product of mappings (regarding the factors as 
mappings). F is the factor set, f ∈ F is the factor and X(f)
is the state space of f.

BASIC PROPERTIES AND THEOREMS OF   SETS

In 2008, Professor Hongxing Li introduced the concept of   
 sets, which have a wider range of applications 

compared to the classic fuzzy sets, interval value fuzzy 
sets and both-branch fuzzy sets. For specific applications, 
please refer to reference (Baggen et al. 2017; Jaffe et al. 
2018; Zvika & Guy 2017).

Definition 4.1   For a given domain, A:X → P((–∞, +∞)),
X +(A) = {x∈X⎥A(x)I [0,+∞)≠Ø} is the upper domain of  A;  
X –(A) = {x∈X⎥A(x)I [–∞,0)≠Ø}  is the lower domain of A; 
and  X *(A) = X +(A)I X –(A)  is the domain of A. 

A + is the  set in the upper domain X +, which is 
called the upper  set; A – is the  set in the 
upper domain X –, which is called lower  set; A* 
is the  set in the upper domain X *, which is called 
the domain  set.

Definition 4.2 Assuming, λ∈(–∞,+∞), Aλ,Aλ∈P(X) are 
λ- cut set and λ-strong cut set of , respectively, if they 
satisfy:  . Hence, the 
λ- cut set   and λ-strong cut set  of A in upper domain 
X+ are: , .

	 The λ-  cut set  and λ-strong cut set λ of  A in 
upper domain X – are: . Obviously: 

  .
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Definition 4.3 Assuming  is the λ- cut set of  
in X+∪X* ⊂ X, then (x) is the feature function of x with 
respect to ⊂X+∪X*, and 

	 	.

Definition 4.4 Assuming  is the λ -  cut set of  in 
X–∪X*⊂X, then (x) is the feature function of x with 
respect to ⊂X–∪X*, and 

	 .

Definition 4.5 Assume  , λ∈(–∞, +∞). Let λ ,
with the membership function of λA defined as: λA(x) = 
λ∧A(x).
	 At this point, the preparation has been finished. 
Next, the decomposition theorems of   sets are 
introduced.

Theorem 4.1 (  set-decomposition theorem I) 
Assuming  is an    set in X and  is 
the λ-cut set of , then .

Proof  
If  λ∈(–∞, 0], then ∀x∈X–∪X*, i.e. 

	 ;

		

	

	 If λ∈[0,–∞), it can be proven by the same argument. 
Therefore, . 

Theorem 4.2 (  set-decomposition theorem II) 
Assuming   is an   set in X and   
is the λ-strong cut set of  , then .

Proof  The same as that of Theorem 4.1.

Theorem 4.3 (  set- decomposition theorem III) 
Assume  is an  set in X, while mapping  H 
: (–∞, +∞) → P(X), λ → H(λ) satisfies that if λ∈(–∞, +∞), 
then . Therefore, .

Proof  1) If λ∈(–∞, 0], since , hence 
.

	 From Theorem 4.1 it is known that , and   
 from Theorem 4.2. So  

, and from the squeeze theorem we 
can know .

If  λ∈[0,+∞), the proof is the same as 1).

Therefore, .
	 The representation theorem of  sets is 
introduced herewith. First, several relevant concepts and 
lemmas are introduced.

Definition 4.6 Assume the mapping  H : (–∞,+∞)→P(X)
satisfies 1) ∀λ1, λ2∈(–∞,0], and λ1 ≤ λ2, then H(λ1) ⊇ H(λ2); 
2) ∀λ1, λ2∈[0,+∞), and λ1 ≤ λ2, then H(λ1)⊆H(λ2). H is then 
called the nested set in X. All the nested sets in X is marked 
as R(X). (H is an ordinary set rather than a fuzzy set).

Definition 4.7 Assuming H(λ)∈R(X), if λ∈(–∞,0], H(λ) is 
the feature function of x with respect to H(λ), and 

	 H(λ)(x) = .

Definition 4.8 Assuming H(λ)∈R(X), if λ∈[0,+∞), H(λ) is 
the feature function of x with respect to H(λ), and 

	 H(λ)(x) = .

Definition 4.9 Assuming H(λ)∈R(X) and λ∈(–∞, +∞), 
define (λH(λ))(x) = λ∧H(λ)(x). Obviously, if λ∈(–∞,0], then 

	 (λH(λ))(x) = ; if λ∈[0,+∞), then 

	 .

Lemma 4.1 Let   be an  set on X.

If  λ1, λ2 ∈(–∞,0]  and  λ1 < λ2, then  ; 
2) If  λ1, λ2∈[0, +∞) and λ1 < λ2, then   

.

Proof  It obviously holds.

Lemma 4.2 Assume , t∈T λt∈(–∞,+∞) . Then: 

If λt∈(–∞,0], then ; 2) If 

λt∈[0,+∞), then .

Proof 

1)	 Assuming λt∈(–∞,0], then  
	 ⇔ ∀t∈T, then A(u) ≤ λt 
	 ⇔ ∀t∈T, U∈Aλt,
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	 i.e. 
t T

A
t
= A(

t T t ) 

	
	 ⇔ ∃t0∈T, making A(u) < λt0

		                      ,
	

	 i.e. 

2) 	 The same argument is used.

Theorem 4.4 (Representation theorem of  set) 
Assuming H(λ)∈R(X), then  is a  set 
on X and is marked as A;  is a lower  
set on X and  is an upper    set on X. 
	

In addition, 1) If λ∈(–∞,0], then 

	 a)	 	 (1)
	
	 b)	 	 (2)

2) 	 If λ∈[0, +∞), then 

	 a)	 	 (3)

	 b)	 	 (4)

Proof   set: ∀λ∈(–∞,+∞), that is  ∀λ∈(–∞,+∞) and 
, let . From Definition 

4.9 it follows that , so  is 
a lower  set on X. With the same argument, from 
Definition 4.9 it follows that , so 

 is a upper  set on X.

The four formulas are proven as follows:

To prove these four formulas, ∀λ∈(–∞,+∞),  
has to be proven first.

Proof  If λ∈(–∞,0], assume x∉H(λ), i.e. H(λ) = 0. Since 

, 

i.e. A(x)≥ λ, then  and .
	 Assume x ∉ Aλ, i.e. A(x)>λ. Since , 
then , .

	 Therefore,∃α0∈(–∞,0], making α0 ∧ H(α0)(x) > λ. So 
∃α0∈(–∞,0], making α0 > λ and H(α0)(x) > λ.
	 Since H(α0)(x) can only be –∞ or 0, it follows that 
H(α0)(x) = 0, so it follows that x∉H(α0) from Definition 
4.7.

	 Since α0 > λ, it can be known that H(α0) ⊆ H(λ)  from 
Definition 4.6, hence x ∉ H(λ) and H(λ) ⊆ Aλ.

Therefore, if  ∀λ∈(–∞,0], .

If λ∈[0,+∞), it can be proven by the same argument. 
Therefore, ∀λ∈(–∞,+∞),   holds.

The proof of the four formulas:

Formula (1): For ∀λ∈(–∞,0], k > λ, it can be known that 
  from Lemma 4.1.

	 Since  holds, it follows that   
⊆H(k) ⊆ Ak and ; since H(k) ⊆Ak, it 
follows that H(k) ⊆ Ak. From Lemma 4.2 it is known that 

 and , so . Therefore, 
, that is, Formula (1) holds.

Formula (2): For ∀λ∈(–∞,0], k < λ, it can be known that 
 from Lemma 4.1. Since  ⊆ H(k) ⊆ Ak holds, it 

follows  ⊆ H(k) ⊆ Ak ⊆  and; since H(k) ⊇ , it follows 
that . From Lemma 4.2 it can be known 
that   and , so . 
Therefore, , that is, Formula (1) holds. 
Formula (3) and Formula (4) can be proven by the same 
arguments. In summary, the proof of Theorem 4.4 is 
completed.

EXTENSION PRINCIPLE OF  SET

Let  be a set of   sets on X, and  be a set of  
 sets on Y.

Definition 5.1 (Max-max extension principle) Assume 
mapping f : X → Y, x  f (x). Then f can induce a mapping 
from  to  and a mapping from  to 

	 f ;  → , A  f (A)

	 f –1 ;  → , B  f –1 (B).

	 The fuzzy kiss functions of  f (A) and f  –1(B) are defined 
as:

, respectively, 
(when {x ∈ X | f (x) = y} = ∅, f (A)(y) = 0). f (A) is the 
image of A and f –1(B) is the inverse image of B.

Definition 5.2 (Min-min extension principle) Assume 
mapping f : X → Y, x  f (x). Then f  can induce a mapping 
from   to   and a mapping from  to 

	 f :   → , A  f (A)

	 f –1 :  →  , B  f –1(B).
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	 The fuzzy kiss functions of f (A) and f –1(B) are defined 
as:

f (A)–(y) =  A–(x), f (A)+(y) =  A+(x), respectively, 
(when {x∈X | f (x) = y} = ∅, f (A)(y) = 0).  f (A) is the image 
of A and f –1(B) is the inverse image of B.

Definition 5.3 (Min-max extension principle) Assume 
mapping  f : X → Y, x  f (x). Then f can induce a mapping 
from   to   and a mapping from  to  .

	 f :  →  , A  f (A)

	 f –1 :  →  , B  f –1(B).

	 The fuzzy kiss functions of  f (A) and  f –1(B) are defined 
as:

f (A)–(y) =  A–(x), f (A)+(y) =  A+(x), respectively, 
(when {x∈ X | f (x) = y} = ∅, f (A)(y) = 0).  is the image 
of A and f –1(B) is the inverse image of B.

Definition 5.4 (Max-min extension principle) Assume 
mapping  f : X → Y, x  f (x). Then  f  can induce a mapping 
from   to  and a mapping from   to  .
	
	 f :  → , A  f (A)

	 f –1 :   →  , B  f –1(B)

The fuzzy kiss functions of  f (A) and  f –1(B) are defined as: 

f (A)– (y) =  A– (x), f (A)+ (y) =  A+ (x), respectively, 
(when {x ∈ X | f (x) = y} = ∅, f (A)(y) = 0). f (A) is the 
image of A and f –1 (B) is the inverse image of B.
	 To distinguish them, the various  f (A) obtained by 
the four extension principles are referred to as fmax-max (A), 
fmin-min (A), fmin-max (A), fmax-min (A).
	 The rationality of the discussed definitions can be 
proven by the representation theorem of   sets. The 
rationality of the max-max extension principle is proven 
herewith.

Theorem 5.1 Assume Mapping f : X → Y, x   f (x)
1) 	 If A ∈ F(X), then

	 fmax-max (A)– (y) = (  λf (Aλ))(y), fmax-max(A)+ (y) =

	 ( λf(Aλ))(y);

If B ∈ F(Y), then 
	
	 (f –2(B))– (x) = B– (f (x)) = (  λf –1(Bλ))(x);

	 (f –1(B))+(x) = B+(f (x)) = ( λf –1(Bλ))(x)

Proof 1) If {x ∈X | f (x) = y} = ∅, i.e. f (A)(y) = 0, then 
the theorem holds obviously. For {x ∈ X | f (x) = y} ≠ ∅, 
if λ ∈ (–∞, 0], then

	

	 It can also be proven by the same argument if λ ∈[0, 
+∞). Therefore, 

	 fmax-max(A)– (y) = (  λf(Aλ))(y), 

	 fmax-max(A)+(y) = (  λf (Aλ))(y).	

2)	 If λ ∈(–∞,0], then

	

	 It can also be proven by the same argument if λ ∈[0, 
+∞). Therefore,

	 (f –1(B))–(x) = B–(f (x)) = (  λf –1(Bλ))(x).

	 The rationality of the min-min extension principle is 
proven herewith.

Theorem 5.2 Assume mapping f : X → Y, x  f (x)

1)	 If A ∈ F(X), then

	 fmin-min(A)– (y) = (  λf (Aλ))(y),

	 fmin-min(A)+(y) = (  λf (Aλ))(y); 

2)	 If B ∈ F(Y), then

	 (f – (B))– (x) = B– (f (x)) = (  λf –1 (Bλ))(x);
	
	 (f –1(B))+ (x) = B+ (f (x)) = ( λf –1 (Bλ))(x).

Proof 1) If {x ∈ X | f (x) = y} = ∅, i.e. f (A)(y) = 0, then 
the theorem holds obviously.

For {x ∈ X | f (x) = y} ≠ ∅, if λ ∈ (–∞, 0], then

	 .

	 Obviously λ∧(  Aλ(x)) ≤ λ∧Aλ(x) s o  (λ∧ Aλ(x))) 

≤  (λ ∧ Aλ(x))).  
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Therefore,  (λ∧(  Aλ(x))) ≤  (  (λ∧Aλ(x))).

	 The proof of the establishment of the ‘equal sign’ is 
presented herewith. A proof by contradiction is used: if 
there is α∈(–∞, 0], then  (λ ∧ (  Aλ(x))) ≤ α <  
(  (λ ∧ Aλ(x))), but   Aα(x) can only be –∞ or 0.

a)	 If  Aα(x) = 0, then 

	 α > (λ∧(  Aλ(x))) ≥ α∧(  Aα(x)) = α∧0 = α. 

	 Therefore, it is a contradiction.

b)	 If  Aα(x) = –∞, then x0 ∈ (–∞,0], and then f (x0) = y 
	 and Aα(x0) = –1. So, for any λ ≥ α, Aλ(x0) = –1.

	

Therefore, it is a contradiction.
	 Therefore, the ‘equal sign’ holds. That is, (λ∧

(  Aλ(x))) = ( (λ ∧ Aλ(x))).

	 Therefore, (  λf (Aλ))(y) =  (  (λ∧Aλ(x))) 

=  A– (x) = fmin-min(A)– (y). That is, if, λ ∈(–∞,0], (  

λf (Aλ))(y) = fmin-min(A)– (y), and it can also be proven by the 
same argument if λ ∈ [0,+∞).
	 Therefore, fmin-min(A)– (y) = (  λf (Aλ))(y), fmin-min(A)+ 
(y) = (  λf (Aλ))(y).

2) 	 If λ ∈(–∞, 0], then 
	

	 . 

	 It can also be proven by the same argument if 
λ∈[0,+∞). So 

	 (f –1 (B))– (x) = B– (f (x)) = (  λf –1 (Bλ))(x);

	 (f –1 (B))+ (x) = B+ (f (x)) = (  λf –1 (Bλ))(x).

	 The rationality of the min-max extension principle is 
stated herewith.

Theorem 5.3 Assume mapping f : X → Y, x  f (x) 
1) 	 If A ∈ F(X), then
	
	

	

2) 	 If B ∈ F(Y), then

	

	 The rationality of the max-min extension principle is 
stated herewith.

Theorem 5.4 Assume mapping f : X → Y, x  f (x)  
1) 	 If A ∈ F(Y) , then 
	
	
	 .

2)	 If, then

	 ;

	 . 
	
	 The proofs of the two theorems are the same as those 
of Theorem 5.1 and 5.2, therefore, they are omitted.
	 Although we can study some properties of these 
extension principles, they are not further described here 
since they are not the focus of this article.

FOUR TYPES OF REPRESENTATION EXTENSIONS AND 
FEEDBACK EXTENSIONS OF THE  CONCEPT

With the extension principle mentioned before,  every type 
of representation extension of   can be defined. 
With representation extensions, the feedback extension of 
a concept can be constructed and the feedback extension 
envelope can be defined as an approximation of the concept 
(Sefusatti et al. 2018; Siwak et al. 2017; Zhang et al. 2017).

Definition 6.1 For a given description frame (U, C, F), if 
α ∈ C, assume the extension of concept α in U is the  

 set A. For all f ∈ F, mark 

	 f (A) : X(f ) → [0,1], x  f (A)(x).

	 f (A) is a  set of representation domain X( f ) i.e.
f (A) ∈ .

1)	 If f (A) = fmax-max(A), and , then f (A)  is the max-
max type representation extension of concept α in 
representation domain X( f ) ;

2) 	 If f (A) = fmin-min(A), and fmin-min(A)– (y) =  A– (x), 
	 fmin-min (A)+ (y) =  A+(x), then f (A) is the min-

min type representation extension of concept α in 
representation domain X( f );

3) 	 If f (A) = fmin-max(A), and fmin-max(A)– (y) =  A– (x), 
fmin-max (A)+(y)  A+ (x), then f (A) is the min-max type 
representation extension of concept α in representation 
domain X(f );

4) 	 If f (A) = fmax-min(A), and fmax-min(A)– (y) =  A– (x),
	  fmax-min(A)+ (y) =  A+ (x), then f (A) is the max-
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min type representation extension of concept α in 
representation domain X(f );

Definition 6.2 For a given description frame (U, C, F], 
if, assuming the representation extension of concept α in 
representation domain X( f ) is B(f ) ∈ , then f –1 (B(f )) is 
a max-max (min-min, min-max, max-min) type feedback 
extension if B(f ) is a max-max (min-min, min-max, max-
min) type representation extension (Anderson et al. 2018; 
Burkert et al. 2018; Francoenzástiga et al. 2017).

Theorem 6.1 For a given description frame (U, C, F], 
if  α∈C, assuming the extension of concept α in U is an 

 set A, then the following conclusions hold:

	 ; 

2)  ∀f ∈ F, f –1 (fmax-max(A)) ⊇ A, the equation holds if f is 
an injective function; ∀f; g ∈ F; f ≥ g ⇒ f –1 (fmax-max(A)) ⊆ 
g–1; ∞–1(∞max-max(A)) = A; ∀u ∈ U, 0–1 (0max-max(A)– ((u) =  
A– (u'),0–1(0max-max (A)+)u =  A+(u'); Assuming G ⊆ F, 
h =  f, if the elements in G are independent, then  f–1 

(fmax-max(A)) = h–1( (  fmax-max(A))).

Proof 
1) 	 If (x, y) ∈ X(f) = X(g)×X(f – g), then

	

	
	
	 It follows from f ≥ g that for ∀u∈U, f (u) = (x, y) 

⇒ g(u) = x. Therefore, , i.e. 
 (A) ⊇ fmax-max(A).

2) 	 For any u∈U, there is 

	 , 

	 therefore, f –1(fmax-max(A)) ⊇ A holds. Obviously, 
the equation holds when f is an injective function 
(Bernardo et al. 2017; Hayatsu et al. 2017; Huang et 
al. 2017).

3) 	 For any u∈U, there are

	

	 .

	 From f ≥ g it follows that 

	 ∀u´∈U, f (u´) = f (u) ⇒g(u). Therefore, ∀u∈U, there 

	 is f –1(fmax-max(A))(u) ≤ g–1(gmax-max(A))(u), so 

	 f –1(fmax-max(A))⊆g–1 (gmax-max(A)).

4) 	 Since f : ([0,2],∨,∧)→( ,∨,∧), x a f(x)

	
	 @   is an 

	 isomorphic mapping and 1 is an injective function, 
so ∞ is an injective function, and therefore it can 
be proven by 2) (Hidaka et al. 2017; Li et al. 2017; 
Milione et al. 2017; Ross et al. 2017; Tatler et al. 
2017).

5) 	 For any u∈U, there is 

	 . 

6) 	 To prove the conclusion when there are only two 
factors f, g in G:

For any u ∈U, there is

	

therefore

	

To generalize the results, we can get 

	 .

	 The conclusions for min-min type representation 
extension and feedback extension are presented herewith 
(Datta 2018; Jog 2018; Martin et al. 2017; Shaffrey et al. 
2017):

Theorem 6.2 For a given description frame (U, C, F], if 
α ∈ C, assuming the extension of concept α in U is an  

 set A, then the following conclusions hold: 

1)	 ; 
2)	 , the equation holds if f is 

an injective function; 
3)	 ;
4) 	 ;
5)	
                                                ;
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6) 	 Assuming , if the elements in G are 
independent, then 

	 . 

	 The proof is omitted since it is the same as that of 
Theorem 6.1.
	 The conclusions for max-min type representation 
extension and feedback extension are presented herewith:

Theorem 6.3 For a given description frame (U, C, F], 
if  α∈C, assuming the extension of concept α in U is an  

 set A, then the following conclusions hold: 

1)  	
	 ; 

2) 	 , 
	 the equation holds if f is an injective function; 

3)	  
	 ;

4) 	 ; 

5) 	

	 ; 

6) 	 Assuming , if the elements in G are 
independent, then 

	 , 

	 .

	 The proof is omitted since it is the same as that of 
Theorem 6.1.
	 The conclusions for min-max type representation 
extension and feedback extension are presented herewith:

Theorem 6.4 For a given description frame (U, C, F], if 
α∈C , assuming the extension of concept α in U is an  

 set A, then the following conclusions hold:

1)	
	 ;

2)	 , the 
equation holds if f is an injective function;

3) 	
	 ;

4) 	 ;

5)	

	 ;

6) 	 Assuming , if the elements in G are 
independent, then

	 , 

	 .

	 The proof is omitted since it is the same as that of 
Theorem 6.1.
	 Additionally, collective forces of simple factors can 
be utilized to approximate the extension of an   
concept. Here are four types of feedback extension 
envelopes.

Definition 6.3 For a given description frame (U, C, F], 
let concept  α ∈ C, and let the extension of concept α  in 
U be an  set A. If G⊆F, the elements in G are 
independent, thus
	

. 

 and  are the max type feedback 
extension lower envelope and max type feedback extension 
upper envelope of A, respectively (Huang et al. 2017; 
Sefusatti et al. 2018; Travin et al. 2017; Yan et al. 2018).

Definition 6.4 For a given description frame (U, C, F], let 
concept α∈C, and let the extension of concept α in U be an  

 set A. If G⊆F, the elements in G are independent. 
Therefore:
	

. 

 and  are the min type feedback 
extension lower envelope and min type feedback extension 
upper envelope of A, respectively.

Definition 6.5 For a given description frame (U, C, F], 
let concept α∈C, and let the extension of concept α in 
U be an   set A. If  G⊆F, the elements in G are 
independent. Therefore:

. 

 and  are the max type feedback 
extension lower envelope and min type feedback extension 
upper envelope of A, respectively.

Definition 6.6 For a given description frame (U, C, F], let 
concept α ∈ C, and let the extension of concept α  in U 
be an   set A. Take G ⊆ F, the elements in G are 
independent. Therefore:

.
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 and  are the min type feedback 
extension lower envelope and max type feedback extension 
upper envelope of A, respectively.
	 In summary, four approximation approaches for  

 concepts extension have been presented.

CONCLUSION

The four approaches discussed are suitable for different 
situations: For the max type feedback extension lower 
envelope and max type feedback extension upper envelope, 
it tends to be more helpful when approximating the 
extension of concept. However, the result will be very 
conservative when the min type feedback extension lower 
envelope and min type feedback extension upper envelope 
are applied to approximate the concept extension. In 
contrast, the max type feedback extension lower envelope 
with min type feedback extension upper envelope, and 
the min type feedback extension lower envelope with 
max type feedback extension upper envelope, are both 
closer to the extension of concept when approximating, 
but their approximation processes are more complicated. 
Therefore, these envelopes should be applied appropriately 
considering specific conditions when approximating the 
extension of concepts.
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