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Abstract

We extend risk-value models for valuing streams of risky cash flows by establishing the
well-known concept of terminal value in this context. For a constant growth assumption we
are able to derive upper and lower bounds for the terminal value in the case of a translation-
invariant and in the case of a position-invariant risk measure. For both cases we also obtain
an exact formula under a special growth assumption for the future cash flows. Furthermore,
we provide results on the applicability of the general findings for the case that the log-return
of the risky investment follows a Brownian motion.

Keywords New approach - Business valuation - Project valuation - Terminal value - Risk
measure

1 Introduction

The terminal value concept has a long-standing tradition in equity valuation (see e.g. Penman
1998; Courteau et al. 2001) and in the DCF methods used for company or project valuation
(Massari et al. 2016, ch. 11). The general idea of utilizing a terminal value is that in a setting
with an infinite time horizon and periodically accruing cash flows (or dividends or profits), one
first assumes constant (or no) growth after a certain period. Second, the perpetuity formula
is applied to find a finite present value of all those cash flows (dividends, profits) that lie
after the certain period. In practical set-ups, the terminal value is used frequently (Friedl and
Schwetzler 2011).

As in the traditional methods the risk of the cash flows is accounted for by the level of
capital costs, i.e. as part of the discount factor, it is relatively easy to obtain terminal values
of the form
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where CF represents the (annual) expected cash flow, ¢ the cost-of-capital rate and g the
(yearly) growth factor of the cash flows.

Recently, Dorfleitner and Gleifiner (2018) have introduced a new valuation concept, called
the risk-value-model valuation'. This concept is based on certainty equivalents derived from
risk measures and accounts for the risk by subtracting a (time dependent) risk premium
from the expected cash flow in the numerator. In a second step, the certainty equivalent is
discounted with the riskless interest rate. The concept is an appealing alternative to traditional
DCEF valuation methods, which are still based on the empirically falsified capital asset pricing
model. However, due to the special form of the valuation formula of a single cash flow

CF; —r1isk(CFy) - A
d+nrt
where A, represents the risk premium of period ¢ and r the riskless interest rate, the formula
(1) obviously cannot be applied straight forward.

This article answers the research question under which assumptions it is possible to make
use of the popular terminal value concept in the risk-value-model framework. It needs to be
stated very clearly that this article is the answer to the search for suitable assumptions for
upper or lower bounds or even a closed-form for the terminal value. This answer is given
from a mathematical point of view. Thus, the various (and mutually exclusive) assumptions
are not generally economically justified by our research, which is impossible as they are
properties of the expected values and risk measures of the cash flows to be valued and their
validity therefore depends on the concrete valuation problem. Thus, a potential user needs
to make sure whether the required assumption for the result he or she wishes to apply can
be regarded sensible for the valuation problem in which he or she wants to use the terminal
value. Our research implies a large step forward for valuation practitioners, who prefer to
model some periods explicitly and then make some simplifying assumptions for the rest. In
this regard the model is very useful as it brings the terminal value concept into risk-value
models. The (relatively new) valuation concept of risk-value models as such is useful as
it enables valuation resting only upon a risk measure and the expected value, i.e. reduces
informational prerequisites.

In this paper, we derive upper and lower bounds for the terminal value under a constant
growth assumption. Additionally, we formulate the assumption of a special development
of risk over time, which even allows us to derive an exact formula for the terminal value.
Dorfleitner and Gleifiner (2018) present two ways of accounting for multi-periodicity, namely
separate valuation and cumulation. We restrict ourselves to the first variant as the camulation
approach of carrying the risk to a final period appears neither to be feasible nor economically
sensible for an infinite number of cash flows. The separate valuation decomposes a stream
of cash flows into single cash flows, each of which is valued on a one-period basis (over
a varying time interval). Those findings of Dorfleitner and Gleiiner (2018) on which our
considerations are based are comprehensively displayed in the* Appendix”.

The remainder of the paper is structured as follows: In the next section, we derive general
results on upper and lower bounds for the terminal value if the cash flows and their risk are
expected to grow constantly. We also give an exact formula for the terminal value if the cash
flows follow a special growth assumption. Sect. 3 then presents implications of the general
results in the case of a Geometric Brownian motion as a model for the price dynamics of the

’

1 While the term goes back to the work of Sarin and Weber (1993), the concept itself is different as no utility
functions are needed to establish the risk-value-models valuation. Newer contributions on the topic of project
selection such as Dixit and Tiwari (2020) can be seen as evidence that risk measures are indeed more and
more used in project decisions.
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market portfolio. In Sect. 4, we analyze the applicability of our results for the risk measures
value-at-risk and standard deviation. The final section concludes with a general discussion.

2 General solutions to the terminal-value problem

To commence our considerations, let us first formulate the very problem that is to be solved.
Consider the infinite stream of cash flows X1, X», .... If N is the period in which we wish
to place the terminal value TV, then the following consideration of equal present values of
the original stream of cash flows and of the first N cash flows plus a terminal value implicitly
defines T'Vy through

00 N 00 N
SV =S e+ 3 Vo) = 3 V(X)) +

TVy
N b
=1 =1 1=N+1 =1 (d+7)

where Vj(.) denotes the valuation of a cash flow at time t+ = 0. Then we have TVy =
(1+nrN. ZfiNH Vo(X;). Note that the terminal value is not a present value, but a future
value at + = N. Accordingly, throughout this paper we call N the valuation period of the
terminal value and N + 1 the starting period, as X y41 is the first cash flow that maps into
the terminal value.

As pointed out above, we next formulate different (and mutually exclusive) assumptions
under which we are able to derive results for upper and lower bounds and even a for closed-
form solution for the terminal value. These assumptions on the cash flows to be valued are
simply stated and not economically justified here. This is because they cannot generally be
justified but only in concrete application contexts, dependent on what is known about the
expected value and the risk of the cash flows to be valued.

2.1 Output-oriented view with Tl risk measure

Let p now be a TI risk measure, such as the VaR or the CVaR. In order to be able to find
terminal values or at least bounds for it, it is necessary to make assumptions about the behavior
of X; if # goes to infinity.

Assumption 1 (Constant growth assumption) LetE (X;11) = (1+¢)E (X;) and p (X;41) =
I+g9pX)fort >N+ 1with—-1<g<r.

Note that if we define X;y; to be equal in distribution to (1 4+ g)X;, the constant
growth assumption naturally emerges.? As all relevant risk measures are law invariant (see
“Appendix”), the constant growth assumption is uncritical from the viewpoint of the risk
measure. However, in every application it needs to be clarified whether it is an acceptable
model for the stream of cash flows to be valued. With this assumption a first theorem can be
stated.

Theorem 1 If the risk premia (\;); are an increasing function in t with ,; < 1 for all
t > N + 1 and the cash flows follow the constant growth assumption from N + 1 on with
0 (XN+1 — E(Xn+1)) > O, then the terminal value at time t = N has the upper bound

2 This condition is a generalization of the usual growth condition CFy4) = (1 + g)CF; for riskless cash
flows or E (CF,_H) = (1 + ¢)E (C Fy) for risky cash flows whose risk is accounted for in the discount factor.
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E(Xy+1) (1 —=An+1) — p (Xn+1) AN+l

2
r—g
and the lower bound
—p (X
o (Xn+1) . 3)
r—g

Proof To commence, we note the following two properties, which we need for our further
reasoning.

() EXni) =1+ "BXyt), pXn) =1 +0""p (Xn41)

and

(i) EXnt41) —pXnt1 —EXny1) Avts <
<EXn+1) — o (Xn+1 —EXN+1)) AN+l

Formally, property (i) can be proven to be a direct consequence of the constant growth
assumption with complete induction, while (ii) follows from the monotonicity of (A;); in ¢
and the positivity of the centered risk measure.

Now, let us consider the upper bound. We have:

o0

E(Xnt) — 0o (XNt —EXNie) AN
TVy = Z d+r) d

t=1

0 i 14+ "B Xnt1) — p Xn41 —EXn+1)) Anr)
a pt (1 +r)

(i) o~ (14 8)' ™ E(Xy11) = p (Xys1 = BE(Xn41)) An1)
- (1 +r)

t=1

S 1+ —1
= (E(Xn41) = p (Xy41 = E(Xy11) Avs1) ; %
_ E&XN4+D) A = AN+ = p (XN+1) AN+

r—g ’

which proves the upper bound claim. To prove the lower bound, we follow a similar reasoning:

TV — i E(Xn+41) = p XN+t = E(Xn40) hnae

p 147y
oo [e.¢]
Z EXn4t) — p XNyt —E(XN41)) _ Z —p (XN41)

T e (1+4+7r) —  (1+7r)
=1 =1

o0 —1
0) (1+g)f —p (Xn+1)
P N+l); atr .
This proves the lower bound claim. O

Next, we formulate an assumption under which the terminal value can be determined
exactly.
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Assumption 2 (Special growth assumption I) Let E (X,41) = (1 + g¢)E(X;) fort > N + 1
with —1 < g < r and let the risk follow special growth according to:

pXiy1) =p (X)) (1 +8)

)\4 A’t
—EX)(A+g(1-
t+1 A

) fort >N+1. (4)
i+1

A

This assumption, which presumably hardly can be justified literally, is purely technical.
Note that the risk now scales differently to the expected value, hence there is no equality in
distribution between X,_1 and a multiple of X; anymore. Still, the assumption may serve as
an approximation to reality in some cases. In any case, under this assumption a closed-form
terminal value can be found.

Theorem 2 [f the cash flows X i1, XN+2, - . . follow the special growth assumption I then
the terminal value at timet = N is

_ E&XNyD) (I =Ang) —p (XNg1) AN
r—_g

TVy 5)

Proof We start by noting some properties, which follow from the special growth assump-
tion I by complete induction. As in the proof of Theorem 1, we have E (Xn4;) =
(1 + g)"'E (Xn41). For the risk measure, things are more complicated. We can rearrange
Eq. (4) and write fort > N + 1:

A A
p XD +EXD)(I+ ) =pX) (1 +g—— +EX)(1+g——,
Artl Art
which is equivalent to
A
p(Xip1 —EXi41)) =1 +g)/\ tlp (X: —E(X:)) -
-+
Therefore for an arbitrary > 1 we receive:
AN+1

() p (XNt —EXny)) =0+ g)’*l?p (XN+1 —EXn41) -
N+t

Now we can calculate the terminal value as:

o0
E(XNt1) — o0 (XNt — BE(XN+41)) AN+e
TVy =) asry

t=1

o I+ TEXy) — (149 555 p (Xt — E (Xv1)) v

t
p— 1+r)
[e.¢]
(1+g)!
=(EX —p X —EX A _—
EXn+1) —p Xnt1 —EXn41)) N+1)§ d1r)
_ EXv+D) A =2Av+1) = p (Xn+1) AN
r—g ’
which proves the claim. O

Note that the exact value under the special growth assumption equals the upper bound
under the constant growth assumption, which can be explained by a less aggressive risk
development under this assumption.
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2.2 Output-oriented view with Pl risk measure

Considering a PI risk measure, we begin our considerations with the constant growth assump-
tion (Assumption 1 from above), in which case we can prove a slightly different theorem
when compared with the case of a TI risk measure.

Theorem 3 Ifthe risk premia (\;); are a decreasing function int withA; > Oforallt > N+1
and the cash flows follow the constant growth assumption from N + 1 onwith p (Xn+1) > 0,
then the terminal value at time t = N has the upper bound

E(Xn+1) ©)
r—g
and the lower bound
EXN+1) — p (XN+1) AN+1 o

r—g

Proof The terminal value can be written as

ee}

E(XN+41) = 0 (XN+41) ANt
V=3 t
pr 1+r)
_ i (1+8) " "EXn+1) = (1 +8)" p (Xnv+1) v

d+r)

t=1

From this the upper bound directly follows because we have p (Xny+1) > 0 and A, > 0 for
all z.

To derive the lower bound, we use the fact that (1;), is a decreasing function in ¢ and thus
AN+1 > Ay for all z. From this we obtain:

o0

vy =3 U &' EXn1) = (40" p (Xnt1) Av s
"L (1 +r)
. i (14 "BEXn+1) = A+ 'p (Xn41) Anr
- pr a1+nr?
00 -1
(1+9)f
=(EX - p (X A —_—
(EXn+D) = p (Xns) Avi) Y g
=1
_E@XNy) —p XNy ANs
= — )
This proves the lower bound claim. O

Again, we formulate a special growth assumption in this context.
Assumption 3 (Special growth assumption II) Let the cash flows for t > N + 1 fulfill
E(Xi41) = (1 +9E(Xy)

but the risk follows p (X;4+1) = p (Xy) (1 + g) Ai‘i] .

Under this, again rather technical assumption, for which the above remarks apply analo-
gously, a terminal value can be found.
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Theorem 4 [fthe cash flows X n+1, XN+2, - .. follow the special growth assumption II, then
the terminal value at timet = N is

E(Xn+1) — o (XN+1) AN+l
r—g

(®)

Proof The proof is completely analogous to that of Theorem 2, but with the utilization of the
property p (Xy4:) = (1 4+ g)'~! )}\’["V—::p (XN+1), which follows directly through complete
induction from the special growth assumption II. O

2.3 Input-oriented view

Practically, in the specification of Dorfleitner and Gleifiner (2018), k,’ exceeds every bound

for t+ — oo. Therefore it is sensible to assume that there is some latest period #*, after which

x(()t) = 0 so that xo = 25*:1 xél). Note that the problem does not occur in the work of

Dorfleitner and Gleifiner (2018) as there the number of cash flows to be valued is finite.
The general valuation formula then is

i E (X)) —xOn _ ’Z E(X) — x{"2! i E(X,) ©

1+r) a1+r)t (14"

t=1 t=1 t=t*+1

Letnow E (X;+1) = (14+g)-E(X;) fort > N+ 1 > t*+ 1 with —1 < g < r (constant
growth assumption). Then a terminal can be determined in a straightforward manner.

As x(()t) =O0forallt > N + 1, the term E (X;) — x(()t)AtI equals E (X;) forr > N + 1.
Then the terminal value at time t = N can be written as

o0

3 E(X)  E(Xyt1)
TVy _t:%;l T = r—g - (10)

Note that the formula is a direct application of (1) with ¢ = r.

3 A concrete specification

In order to specify a concrete valuation mechanism, we need to choose a model for the
market portfolio return dynamics. To this end, we adhere to Dorfleitner and Gleif3ner (2018)
and model the log-return of the market portfolio as a Brownian Motion, which implies a
simple scaling of the moments along the time axis. Let «’ and o be the expected value
and the standard deviation of the market portfolio’s one-year log-return R}, and let r’ be
the continuously compounded interest with ' = In(1 + r) and ¢, be the p-quantile of the
standard normal distribution. Note that we abstain from using the subindex M for the ease
of notation. Let us further assume that u’ > r’, which is the common assumption for the
return of a risky investment. Then ¢/, /to and t7’ are the corresponding values for a ¢-year
period.

We restrict the following analysis to the value-at-risk as TI risk measure and the standard
deviation as the PI risk measure. Although these risk measures have their limitations and
shortcomings, they still can be regarded as very popular in practice as well as in theoretical
modeling. Furthermore, a similar analysis as carried out below could of course be done for
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Table 1 Overview of employed mathematical notation for the concrete specification

continuously compounded interest rate r’
p-quantile of the standard normal distribution qp
one-year log-return of the market portfolio R}VI
expected value of R}, w
standard deviation of R}, o
expected excess return of the market (over the riskless interest rate) T

other risk measures such as the conditional value-at-risk. In this regard, the following is just
a first step of what is possible.
Table 1 contains a brief overview of the special notation employed in this subsection.

3.1 Risk premium sequences

The formula for A, with p being the (TI) value-at-risk at confidence level 1 — p (with p < 0.5)
then is:

2
etu’+t% _ etr’
AyaR = . an

2
etu’th% — et +ap Jio

The proof has already been provided by Dorfleitner and Gleiiner (2018).
If we specify the risk measure p to be the (PI) standard deviation, then X;, according to
(24), can be expressed as:

2
’ o ’
etu +t 5 etr

3 .
WS fota? _

The numerator is derived identically to that of (11), while the denominator emerges from the
variance formula for log-normal distributions ( Johnson et al. 1994, ch. 14).

AP = (12)

Example To illustrate the properties of the two risk premium sequences ()LZV aR ) . and (AfD ) o
we analyze the behavior over time for a concrete very realistic parameter set, namely u' =
0.06,7" =0.02,0 =0.22and p = 0.5%, i.e. q, = —2.576. The parameters ;" and o can be
considered typical for a broad stock index (see e.g. Berk and DeMarzo 2016, ch. 10), while
r’ = 0.02 represents a rather low long-run interest rate, which is however realistic for recent
years. Figure 1 provides the graph of the continuous functions over time (¢ > 0).

3.2 General results

In order to shorten the notation in the remainder of this section, we introduce the expected
excess return (over the riskless interest rate) of the market w := ' — r’, which is positive
according to the above assumption. Additionally, we drop the sub-index of g, and simply
write ¢. Note that ¢ < 0 because of p < 0.5.

Theorem 5 The continuous function t — At‘/ aR defined on (0, 00) starts with a value of zero
2.2

int = 0+, then rises and has a value of one at t* = %, is larger than one beyond this

point and finally converges to 1 from above for t — oc.
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Fig. 1 Graphs of the continuous functions according to Atv @R (plack line) and AfD (gray line)

Proof We commence with rewriting the risk premium )»tv 4R in the following way:

em’+t§ _ et 1 — e—t(n+§)
= (13)

)\VaR _
t T T T2 , o2
WG ot apio | _ paNTo—1%

2 2 . . .
As all of the three terms — (7 + %-), ¢ and —%- are negative, both exponential terms in the

numerator and the denominator vanish with ¢t — oo. Thus At‘/ ak _, 1,
We will use the representation (13) for the rest of this proof. From (13) we see that the
value of the quotient is equal to one if and only if

o? o?
—t(]‘[-i-?) =q\[to—17 <~ tﬂ=—q«/fa.

2.2
Ast > 0, this is equivalent to t = ‘1?3 =: t*. If t < t*, then the numerator of (13) is

smaller than the numerator and thus the value of the fraction is less than one (and vice versa
for t > t*).

To determine the starting point of the function at + = 04, we need to determine the limit
of the fraction according to L’Hospitale’s rule as both the numerator and the denominator
are equal to zero in t = 0. Define u(¢) = 1 — e_t(’”'#) and v(¢) = 1 — eq‘ﬁ"_’%. Then
(13) equals u(t)/v(t). With

0'2 o2
W)= (n+—=)e'"tT)
2
and

2 2
V() = — £_1>emf—z%,
0) (M 5
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we have:
2 o2
u@ d0 (T + G)e ")
m
0 v(r) =0 V() =0+ _ (g0 _ o2\ qvio—1%
PN
2 o2
1+ % )e ') 0
R 2 - =o.

t—0+ qo o2 q\/;o'—lﬁ -4z
- (7 — Vi )e ? 2
O

Note that a mathematical treatment of the location and the uniqueness of the maximum and
the exact slope behaviour of (13) on (0, 00) is, on the one hand, not trivial and would require
a lot of space. On the other hand, though, it is not really necessary as in the application
the function ¢+ > A)“R is only evaluated for t € {1,2,...}. Therefore, it appears more
appropriate to merely prove the rough development over time, as is done in Theorem 5, and
leave a more detailed analysis, which will be required as a preparatory step when tackling a
real valuation problem, to numerics. We will add more considerations in the next subsection.
Note that in any case, Theorem 1 cannot be applied in a straightforward manner because
kl‘/ @R js not generally smaller than 1 (nor strictly increasing in 7) as after 7* it takes values
above 1. However, as we will see in the next subsection, Theorem 1 can still be used as a
suitable approximation to the problem.

Next, we clarify the rough development over time of A57.

Theorem 6 The continuous function according to t + )LZSD defined on (0, 00) is strictly
positive, it starts at a value of 0 with positively infinite slope in t = 0+, has a negative slope
for every

2

o

—1n T

o L o241
t>1 = 762
7"‘7‘[

and converges to 0 for t — 0o from above.

Proof We commence with rewriting the risk premium (12) in the following way:
0'2 ’ (72
oM ptr 1 — et +5%)

25D = < - . (14)

2 2
et Joto? _ velom —1
2
—t(m+%

7) is less that one for ¢ > 0 and converges to 0 for t — oo, while

Now, obviously, e

e"’z — 1 > 0. Thus, (14) has a positive value. Concerning the limit behavior, we observe
that for + — oo the numerator converges to 1, while the denominator exceeds every bound.
Therefore, A; — 0.

To determine the starting point of the function at + = 04, we need to determine the limit
of the fraction according to L’Hospitale’s rule as both the numerator and the denominator

are equal to zero in r = 0. We define u(z) = 1 — el ' =n="7 ) and v(t) = \/ 1. Then

(14) equals u(1)/v(r). With u'(1) = (x + % )e ™7 *) and (1) = Jdizi , we have:
elo”—1
02
W) W)+ e )
m 7 = lim o
t*>0+ U(t) t‘>0+ v/ (1) t—0+ &
elo? 1
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2 + e T (et —1)

= lim =—=0
=0+ o? o?

To investigate the slope claims, we consider the first derivative according to the quotient
rule. First we calculate u/(1)v(t) — u(t)v'(t) as
2 42

2 toco”
(71 + %) e_t(”+§)\/ elo? —1— (1 - e_’(”‘”'%)) i - 2. (15)

elo” — 1

Next, we multiply (15) with v/e/*> — 1, which corresponds to expanding the first derivative
of u(t)/v(t) with this term. This yields:

2 2
T+ 9 e—t(ﬂ-ﬁ-%) (eta2 _ 1) (11— e_t(ﬂ+§) emzi _
2 2
o2 2 2 2
= (72' + 02) e 1T ="7) _ (71’ + %) e—t(ﬂ+7) _ %etaz (16)

To determine the limit of the first derivative at t = 0+, we observe that the numerator
32
(16) and the denominator (e"’2 — l) both vanish at zero and therefore apply L’Hospital’s
rule. We have

(72 ”2
du) (e o?) T g ) el

m — = lm 3/
=0+ dt v(t) >0+ (7 — 1) /

T j.2 T a2 71(717—"2) a2 a2 7t(n+—"2) ot to?
( ) ( 2 )é 2 ( 2 )( 2 )é 2 2 ¢
= lim

r—0+ 3072 o102 _ | pt0>
i (1 + %)
lim +o00. (17)

120+ 3, /et0% _ -

Now let us assume that ¢ > ¢°. This is equivalent to

o2 sl o2 [ o2 o2
4+ —) <ln—2 & lEtT) o 2 & <7r +02) et o T
2 o2+ o2+ 2

With this, (16) can be written as ¢/® <(71 +07?) et +7) _ %)—(7‘[ + "72) el

which is obviously less than zero. Therefore, the sign of the derivative of # — A, is negative
for all 7 above the positive figure 7°. O

Note that after starting with a positive slope, the function necessarily possesses a local
maximum somewhere between 0 and 7°. Again, we abstain from searching the exact locations
of the maxima as this has to be done numerically as a preparatory step of the valuation
procedure.

3.3 Application, numerical examples and results

Let us now apply the general results for the specific interpretations of A; introduced in
this section. We start with the TI risk measure, i.e. the VaR, and a cash flow Xy with
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E(Xn4+1) =2and p (Xy+1) = —1. Note that the latter implies p (Xy4+1 —E (Xny41)) =1
and therefore still guarantees a value reduction due to risk. Let us further assume that the
growth factor is g = 0.01.

Theorem 1 Now reverting to Theorem I, we have to state that the behavior of 1, “¥ over
time is such that the assumptions of the theorem are not valid. However, knowing that kt‘/ ak
converges to 1, the result on the upper bound can be used from a certain N* onwards. The
result on the lower bound is, strictly speaking, not applicable. However, in reality, for many
parameter values the maximum value above 1 is so extremely close to 1 that it still makes no
difference numerically.

Example Let us continue the example from above with 7 = 0.04, r = 0.0202, 0 = 0.22
and p = 0.5%, i.e. g, = —2.576. For these values, the function kt‘/“R strictly increases on
t € {1,2,...,220} and reaches its maximum at 220 with a value of 1.000000356, which is
a relative error of less that one millionth and therefore surely negligible.

Thus we have an (approximate) lower bound of

-0 Xny) 1
0.0202 — 0.01 ~— 0.0102
The upper bound according to Theorem 1 for the starting period N + 1 = 11 is

21_)\'VL1R _1.AVaR
(1= An5) N+l — 139.83,
0.0202 — 0.01

while for N = 20 (50) it takes a value of 120.08 (101.25). A rough approximation of the
real terminal value could then be to take the arithmetic mean of both bounds yielding the
estimates 118.93 (N = 10), 109.05 (N = 20) and 99.64 (N = 50). The real terminal values,
according to deeper numerical analysis3, are 103.88 (N = 10), 101.11 (N = 20) and 98.47
(N = 50). While in the latter case the approximate value is already relatively close, the upper
bound is generally not as close to the real value as the lower bound.

=98.03.

Theorem 2 Theorem 2 can of course simply be applied and yields the value of the upper
bound of the above example. The question of interest is, which implications follow for the
modelling of the cash flows and whether these are realistic. Starting int = N + 1, the model
for the risk of the future cash flows is

VaR

A
p(Xni) =101 55 (p (Xya1) + E(Xn41))
N+t
| (R
—1.01""" - E(Xy41) = 1.01°7 -<m~1—2).
N+t

Figure 2 illustrates the development of the risk over time under the special growth assumption
for different starting periods. It surely will be hard to find application cases in which the risk
of the cash flows exactly evolves like that. However, it is not completely impossible and
may be justifiable as an approximation to reality in some settings, especially for late starting
periods (cf. the gray solid line).

Next, we consider the standard deviation as risk measure and Theorem 3 and Theorem 4.
Here, we again assume g = 0.01, E (Xy41) = 2, butnow p (Xn+1) = 1.

3 This analysis is based on the numerical calculation of the sum (1 + r)N . ZtL:N-H Vo (X;) for a value of

L that is so high that increasing L at most changes the numerical value by less than 10~7. Here, a value of
L = 3000 is sufficient and, thus, practically the proxy for infinity.
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Fig.2 Graphs of the VaR development according to the special growth assumption dependent on the number of
periods after valuation period N for N = 10 (gray dotted line), N = 20 (black dotted line) and N = 50 (gray
solid line). For comparison, the black solid line displays the exponential growth development with g = 0.01,
i.e. the constant growth assumption

Theorem 3 We can state that the behavior of )\.;g D over time is such that the assumptions of
Theorem 3 are fulfilled, at least in any case in which the starting period of the terminal value
N + 1 lies right of t°.

Example Let us continue the example from above with the same parameter values. For these
values the function A>P strictly increases on t € {1,2,..., 12} and reaches its maximum
at 12 with a value of 0.6053. After this instant of time, A;” decreases against 0. From
the fact that #° is 22.18, we can derive the information that + > 23 is a sufficient but not
necessary condition for a decreasing kf D function. The upper bound according to Theorem 3
is goag = 196.05.

The lower bound for N + 1 = 12 is

E(Xn+1) = p (Xn+1) 237,
0.0202
while for N = 20 and N = 50 it takes the values 140.58 and 166.66, respectively. A rough
approximation of the real terminal value could then be to take the arithmetic mean of both
bounds yielding the estimates 166.38 (N = 12), 168.32 (N = 20) and 181.36 (N = 50).
The real terminal values are 175.66 (N = 12), 178.78 (N = 20) and 187.54 (N = 50). In
these cases, the rough estimates are relatively close to the real values.

= 136.71.

Theorem 4 Again, the Theorem 4 can be applied without any problems and yields the lower
bound of the above example. However, the special growth assumption Il implies a risk struc-
ture over time as follows. Starting att = N + 1, the model for the risk of the futures cash
Sflows must follow

SD SD

p (X )—101“-“’*1 (X )—101H.M
N+r) = L. ssp PLANTD) =1 sD -
N+t N+t

Dependent on the starting period of the terminal value N + 1, this can have severe conse-
quences. Figure 3 depicts the development of the risk over time implied by the special growth
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10 20 30 40 50
t

Fig.3 Graphs of the standard deviation development according to the special growth assumption II dependent
on number of periods after valuation period N for N = 5 (gray dotted line), N = 12 (black dotted line),
N =20 (gray solid line) and N = 50 (black solid line)

assumption II for several starting periods. Note that risk increases over time much faster than
with growth rate g = 0.01.# Thus, such a risk development may be regarded realistic only in
rare cases. Additionally, a risk evolution as displayed by the gray dotted line (first decreasing,
then increasing risk) appears to be extremely specific.

4 Further numerical results and practical considerations

In order to abstract from the concrete example, we conduct a more detailed analysis on the
location of the maxima of both risk premium sequences. It is necessary to know about these
maxima to be able to apply Theorem 1 and Theorem 3, which build on monotonicity beyond
a certain instant of time. We present the results of a systematic numerical investigation in
Tables 2 and 3. To this end, we vary the market risk premium 7 from 0.02 to 0.06 and the
volatility of the market from at least 0.14 to at most 0.30 to represent the range of realistic
values that could result from statistical estimations or future scenario analysis. In the case of
)LZV aR e also vary p from 0.1% to 1%. Note that in the case of a real valuation problem,
we also need to specify the interest rate . However, for a calculation of the lambdas, the
mentioned parameter settings are sufficient. Building on the general curve sketching results
of Theorem 5 and 6, we only need to calculate the values of A, for discrete instants of time
t =1,2,... and stop as soon as the slope changes.

The most important findings of this analysis are as follows. In Table 2 one can observe the
fact that the deviation from 1 at the maximum of ¢ + X, is rather negligible. Only in some
rather implausible combinations of high market risk premia and low volatility is the deviation
larger than 1% (marked by bold digits). The worst case is the parameter setting of = = 0.06,
o = 0.14, p = 0.01 with a deviation of approximately 3.26%. Altogether, the maximum

4 Indeed, 1.01°0 = 1.64, while even for N = 5 we have a factor of more than three after 50 periods.
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Table 2 Discrete instants of time where )\,V @R js maximal dependent on a broad variety of realistic values of
oand .

o b4
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

Panel A: p = 0.001

0.14 510 337 241 183 145 118 99 84 73
0.16 648 424 301 227 178 144 120 101 87
0.18 805 525 371 2717 216 174 144 121 104
0.2 909 637 449 334 260 208 171 144 123
0.22 847 761 535 398 308 246 202 169 144
0.24 767 696 618 467 361 288 236 197 167
0.26 696 637 587 545 418 334 273 227 192
0.28 633 584 541 505 473 381 313 260 220
0.3 576 535 500 468 441 404 354 296 250
Panel B: p = 0.005

0.14 368 246 178 137 110 90 76 66 57
0.16 462 305 219 166 132 108 90 71 67
0.18 570 374 266 201 158 128 106 90 78
0.2 693 451 319 239 187 151 125 105 91
0.22 811 538 379 283 220 177 146 122 105
0.24 767 625 445 331 256 205 169 141 121
0.26 696 637 511 383 296 237 194 162 138
0.28 633 584 526 438 340 271 222 185 157
0.3 576 535 500 455 383 308 251 209 177
Panel C: p = 0.01

0.14 308 208 152 118 95 79 67 58 51
0.16 384 255 184 141 112 93 78 67 58
0.18 471 310 222 168 133 109 91 77 67
0.2 570 373 265 200 157 127 105 89 71
0.22 681 443 313 234 183 148 122 103 88
0.24 735 520 366 273 213 171 141 118 101
0.26 696 589 424 316 245 196 161 135 115
0.28 633 584 479 362 280 224 183 153 130
0.3 576 535 485 410 318 254 207 173 147

The figures in bold digits represent those cases where the maximum value deviates more than 1% from the
value of 1. In all other cases the deviation is less than 1%

lambda value is reached relatively late, so that the assumption of strictly increasing A; can
be maintained as an approximation to reality for every starting period. Note that the above
example can be found in Panel B in the middle of the table.

The case of A,SD is presented in Table 3. Here we can observe relatively low values of
maximizing ¢. Thus Theorem 3 can be applied for starting periods in the range of around 10 to
20. Also, Theorem 4 can be applied with relatively early starting periods without exhibiting
the—possibly implausible—behavior of first decreasing and then increasing risk (cf. red line
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Table 3 Discrete instants of time where k;g D is maximal dependent on a broad variety of realistic values of o
and 7

o 4

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

0.14 27 25 22 21 19 18 17 16 15
0.16 23 21 20 18 17 16 15 14 13
0.18 20 19 17 16 15 14 14 13 12
0.2 17 16 15 14 14 13 12 12 11
0.22 15 14 13 13 12 12 11 11 10
0.24 13 13 12 11 11 10 10 10 9
0.26 12 11 11 10 10 9 9 9 8
0.28 10 10 9 9 9 9 8 8 8
0.3 9 9 9 8 8 8 7 7 7

in Fig. 3). Such behavior only occurs if the starting period lies before the maximizing ¢ of
Table 3.

5 Discussion and conclusion

In this paper, we extend risk-value models for valuing streams of risky cash flows by intro-
ducing the concept of terminal value to this framework. As the case of the input-oriented
perspective is treatable in a simple manner, the main focus is on the output-oriented view.

For a constant growth assumption, upper and lower bounds for the terminal value in
the case of a translation-invariant and in the case of a position-invariant risk measure can
be derived. For both cases, we also derive an exact formula, however only under a special
growth assumption for the future cash flows, which can be characterized as unrealistic for
many application cases, especially in case of the standard deviation being the risk measure.
However, the aim of this article is not to provide an economic justification for the assumptions
but rather to clarify which assumptions are required to be able to use terminal values or at least
upper and lower bounds for these. Furthermore, we demonstrate how the general findings can
be applied under the assumption that the price of the market portfolio follows a Geometric
Brownian motion. It becomes apparent that in the value-at-risk case under this assumption
the prerequisites of the lower bound result are not fulfilled literally. However, for realistic
parameter values the corresponding theorem can still serve as an approximation.

As a concrete consequence for applying Theorems 1 to 4, it appears to be advisable to
apply these for rather late starting periods N + 1, in which case the arithmetic mean of the
upper and the lower bound appears to be a relatively good approximation of the correct value.
If the cash flow modeling requires relatively early terminal values (say: at N = 5), then one
can simply valuate the first periods after the staring period separately (say: from 6 to 30) and
only use the terminal value formulae afterwards (say: for N = 30). Generally, the upper and
lower bound results may be more beneficial for realistic cash flow modeling situations than
the closed-form exact terminal value due to the corresponding required assumptions.

Summarizing, the concept of terminal value can in principal be used in risk value models,
but only with certain caveats and limitations. This paper therefore marks a significant progress
compared with the original framework of Dorfleitner and Gleifiner (2018), in which a final
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cash flow at some period is required. Generally, it should be noted that as in usual DCF models
the value of the stream of cash flows is very sensitive to the specification of the growth rate
(Friedl and Schwetzler 2011).

Several generalizations of the concept could be investigated in the future. One idea is
to overcome the Brownian motion hypothesis to calculate explicit risk premium sequences.
Other dynamics such as dynamics with jumps or long-time mean-reverting processes for the
stock price process are also conceivable. Moreover, as with this research risk-value models
are also established over an infinite time horizon, it may be an interesting task to investigate
whether dynamic (i.e. multi-period) risk measures as introduced by Riedel (2004) can be
utilized for a generalisation of the imperfect replication approach. However, it is unclear at
the moment how the initial approach of Dorfleitner and Gleiner (2018) is to be generalized
that this becomes possible.

In any case, the results found in this paper can be very useful for practitioners, who prefer
to model some periods explicitly and then make some simplifying assumptions for the rest.
In this regard our contribution extends this concept to risk-value models or at least shows
under which assumptions it can be used.
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Appendix A: A short recapitulation of risk-value-model valuation
A.1 Basics

Risk-value model valuation according to Dorfleitner and Gleiiner (2018) essentially builds
upon a risk measure to determine and quantify the notion of risk and scales the reference
investment in a way thatit has the samerisk as the cash flow to be valued. Thus, we shortly state
some necessary essentials about risk measures, which can generally have several properties.
For risk-value models three properties are of importance. Let X be the set of all real-valued
random variables on the probability space (2, E, P) with existing finite values of p (X) for
X € X. Then we define:

e positive homogeneity (PH) through p(cX) = cp(X) forallc > 0, X € &,
e translation invariance (TI) through p(X +¢) = p(X) —cforallc € R, X € X and
e position invariance (PI) through p(X +c¢) = p(X) forallc e R, X € X.

The prerequisite for risk-value model valuation is the use of a PH risk measure that is
simultaneously either TI or PI. Therefore, the expected shortfall, also called conditional
value-at-risk, (see e.g. Acerbi and Tasche 2002; Inui and Kijima 2005; Bamberg and Neuhierl
2010) and the value-at-risk are suited as they both are PH and T1. Moreover, PH risk measures
fulfilling the PI property such as the standard deviation or TI-variants of PI risk measures,
i.e. risk measures applied to X — E (X), which are also deviation measures (Righi 2019), can
serve as basis of risk-value-model valuation.
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Table4 Overview of employed

general mathematical notation risk measure p
riskless interest rate r
risk premium for period ¢ At
cashflow in period ¢ Xt
equity capital need for period 7 x(()t)
market return over [0, ¢] Rim
expected market return over [0, 7] e M

Table 4 overviews the most important symbols used in this paper.

The general valuation problem can be stated as finding a joint present value of risky
future cash flows X1, X», ..., Xy. Dorfleitner and Gleiner (2018) suggest two generally
interesting valuation approaches, the output and the input-oriented view. For the remainder
of this “Appendix” we simply state some main content from Dorfleitner and Gleifiner (2018)
in a nutshell.

A.2 Output-oriented view

For a TI or PI risk measure, the output-oriented method valuation according to Dorfleitner
and GleiBner (2018) in a one-period setting (risky cashflow X being realized in one period
t = 1) starts with the two replication equations

EX)=EQU+r)+z(0+Ry)) =y +r)+z(1+pupy) and (18)
p(X)=p A +r)+z(1+Ry)) , 19)

where y is the amount invested risklessly and z the amount invested into the market portfolio.
This approach comes to the valuation

EX)—p (X -EX)) ;52—
14+r
The valuation of N subsequent joint cashflows X1, ..., X then is carried out through
applying value additivity on the N cashflows by

YE(X) — p (X —E(X0) A
A+ ’

21

t=1

where

e — ((L+r)=1)
Ay = — . 22
' 14 (Rt,M - Mt,M) .

Note that in the original framework the cash flow Xy is the last cash flow. However, theo-
retically also an infinite number of cash flows can be considered with the same model and,
if the limit exists, also valued through:

N E(X) — p (X, —E(X)) A
(1 +r) ’

t=1
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Note that for a PI risk measure, the valuation procedure simplifies to
i E(X) = p (X0) &y 23)
(1+r)
with
e — (A0 1)

= . 24
t 0 (Rt,M) ( )

A.3 Input-oriented view

The one-period setup of the input-oriented view with financing restrictions rests on the three
equations:

xo=y+z (25)
0=pX)=p(UA+Rp)+z(1+Ry)) (26)
EX)=E@ +r)+y(+Rp)+z(1+ Ry)) , 27)

where X is now the cash flow to equity and x( represents the initial equity capital need, while
the risk measure p (.) now is the VaR at the 1 — p confidence level and Rp represents the
(risky) interest rate for a loan with default probability p. The valuation formula derived is

) (rm—pp)+p(Ru—rp)(p—r)
B0~ o (Ru—ry)
1+r
where up = E(Rp) and r,, is the demanded interest rate at default probability p (i.e. the

maximum value of Rp). Typically x¢ is larger than or equal to zero. However, if xg < 0,
EX)

V(X) = , (28)

then the value of X is given by V(X) = T-. Whatever the sign of xg is, the net present
value is obtained as V (X) — xg.
The valuation of N subsequent joint cashflows X1, ..., X then is carried out through

applying value additivity on the N cashflows by
N
3 E(X,) —x3!

(1 +r) 29

t=1

where A/ is a risk premium term, essentially corresponding to the factor multiplied with xo
in (28) in an annualized version. We do not display At’ in any further detail because it is not
of relevance for the considerations of this paper. The quantity in the formula that effectively
measures the risk is the equity capital need xo, which is allocated to the periods subject to
the condition

N
xo=y x5 (30)
t=1

As for the input-oriented view the allocation problem is to be solved in any case, (30)

also true for an infinite number of cash flows. Moreover, A,’ can exceed any boundary for

(1)
0

increasing ¢.> However, if we additionally assume that the x,’ finally become 0 after a certain

5 At least, this is the case in the concrete specification presented in Dorfleitner and Gleifiner (2018).
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instant of time, one can also generalize this method to an infinite number of cash flows. Note
that then practically from a certain period on the cash flows are valued only through their
expected value (as x(()t) =0).

A.4 Risk-measure related considerations

Last, we complement this recapitulation of Dorfleitner and GleiB3ner (2018) with some own
remarks on risk measures.

The answer to the question which (classes of) risk measures are suited for risk-model
valuation is relatively simple. First, coherent risk measures (see Artzner et al. 1999) or
spectral risk measures (see e.g. Acerbi 2002; Brandtner and Kiirsten 2015) fulfill PH and
TI. Furthermore, convex risk measures (Follmer and Schied 2002) are employable as long
as they are PH. The property of law invariance (Kusuoka 2001; Fritelli and Rosazza 2005)
is formally not necessary, nevertheless it is fulfilled by all known real-world relevant risk
measures.

In the mathematical risk measure literature, we also find dynamic risk measures such as
coherent ones (see Riedel 2004 or Artzner et al. 2007) or convex ones (Fritelli and Rosazza
2004). The interesting property of such approaches is the decision consistency over time.
However, this research is based on an already established valuation methodology by Dor-
fleitner and Gleiiner (2018), which decomposes a stream of cash flows into single cash flows,
each of which is valued on one-period basis (over a varying time interval). In this context, the
only instant of time in which a decision is made is = 0. Hence, this framework is also the
basis of our contribution. This implies that for constructing a terminal value the one-period
valuation (over a varying time interval) is a necessary step. Therefore, dynamic risk measures
are in our context no applicable tool.

Furthermore, it is noteworthy that the standard deviation and the VaR together with a
Brownian motion assumption of the market log-returns lead to two explicit time-dependent
formulae for the risk premia (Dorfleitner and GleiBner 2018). However, many different
explicit or implicit risk premia over time can be thought of.

References

Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk aversion. Journal of
Banking and Finance, 26, 1505-1518.

Acerbi, C., & Tasche, D. (2002). Expected shortfall: A natural coherent alternative to value at risk. Economic
Notes, 31(2), 379-388.

Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance,
9,203-228.

Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., & Ku, H. (2007). Coherent multiperiod risk adjusted values
and Bellman’s principle. Annals of Operations Research, 152(1), 5-22.

Bamberg, G., & Neuhierl, A. (2010). On the non-existence of conditional value-at-risk under heavy tails and
short sales. OR Spectrum, 32, 49—60.

Berk, J., & DeMarzo, P. (2016). Corporate Finance (4th ed.). Boston: Addison Wesley.

Brandtner, M., & Kiirsten, W. (2015). Decision making with expected shortfall and spectral risk measures:
The problem of comparative risk aversion. Journal of Banking & Finance, 58, 268-280.

Courteau, L., Kao, J. L., & Richardson, G. D. (2001). Equity valuation employing the ideal versus ad hoc
terminal value expressions. Contemporary Accounting Research, 18(4), 625-661.

Dixit, V., & Tiwari, M. K. (2020). Project portfolio selection and scheduling optimization based on risk
measure: A conditional value at risk approach. Annals of Operations Research, 285(1), 9-33.

Dorfleitner, G., & Gleiner, W. (2018). Valuing streams of risky cash flows with risk-value models. Journal
of Risk, 20(1), 1-27.

@ Springer



Annals of Operations Research

Follmer, H., & Schied, A. (2002). Convex measures of risk and trading constraints. Finance and Stochastics,
6(4), 429-447.

Friedl, G., & Schwetzler, B. (2011). Terminal value, accounting numbers, and inflation. Journal of Applied
Corporate Finance, 23(2), 104-112.

Fritelli, M., & Rosazza, G. (2004). Dynamic convex risk measures. In G. Szego (Ed.), Risk measures for the
21st century (pp. 227-248). New York: Wiley.

Fritelli, M., & Rosazza, G. (2005). Law invariant convex risk measures. Advances in Mathematical Economics,
7, 33-46.

Inui, K., & Kijima, M. (2005). On the significance of expected shortfall as a coherent risk measure. Journal
of Banking & Finance, 29(4), 853-864.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions (2nd ed., Vol. 1).
New York: Wiley.

Kusuoka, S. (2001). On law invariant coherent risk measures (pp. 83-95). Tokyo: Springer.

Massari, M., Gianfrate, G., & Zanetti, L. (2016). Corporate valuation: Measuring the value of companies in
turbulent times. New York: Wiley.

Penman, S. H. (1998). A synthesis of equity valuation techniques and the terminal value calculation for the
dividend discount model. Review of Accounting Studies, 2(4), 303-323.

Riedel, F. (2004). Dynamic coherent risk measures. Stochastic Processes and Their Applications, 112, 185—
200.

Righi, M. B. (2019). A composition between risk and deviation measures. Annals of Operations Research,
282(1),299-313.

Sarin, R. K., & Weber, M. (1993). Risk-value models. European Journal of Operational Research, 70, 135-149.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	On the use of the terminal-value approach in risk-value models
	Abstract
	1 Introduction
	2 General solutions to the terminal-value problem
	2.1 Output-oriented view with TI risk measure
	2.2 Output-oriented view with PI risk measure
	2.3 Input-oriented view

	3 A concrete specification
	3.1 Risk premium sequences
	3.2 General results
	3.3 Application, numerical examples and results

	4 Further numerical results and practical considerations
	5 Discussion and conclusion
	Acknowledgements
	Appendix A: A short recapitulation of risk-value-model valuation
	A.1 Basics
	A.2 Output-oriented view
	A.3 Input-oriented view
	A.4 Risk-measure related considerations

	References




