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Abstract: We identify a (pseudo) relativistic spin-dependent analogue of the celebrated quantum
phase transition driven by the formation of a bright soliton in attractive one-dimensional bosonic
gases. In this new scenario, due to the simultaneous existence of the linear dispersion and the
bosonic nature of the system, special care must be taken with the choice of energy region where the
transition takes place. Still, due to a crucial adiabatic separation of scales, and identified through
extensive numerical diagonalization, a suitable effective model describing the transition is found.
The corresponding mean-field analysis based on this effective model provides accurate predictions for
the location of the quantum phase transition when compared against extensive numerical simulations.
Furthermore, we numerically investigate the dynamical exponents characterizing the approach from
its finite-size precursors to the sharp quantum phase transition in the thermodynamic limit.

Keywords: phase transitions; semiclassical approximation; Dirac bosons; mean field analysis;
adiabatic separation

1. Introduction

The methods and ideas of quantum chaos [1,2] provided deep insights into the way classical
information conspires with h̄ in a subtle manner. To a large extent, this can be understood within a
semiclassical theory, explaining genuine quantum behaviour, such as entanglement and coherence.
In this field, Shmuel Fishman made paramount contributions ranging from the celebrated explanation
of dynamical localization as a type of Anderson transition in kicked systems [3] to the resummation
of periodic orbit expansions to construct semiclassical approximations for individual eigenstates in
chaotic systems [4]. The present contribution aims to express our admiration for his scientific work.

During the last decade, the field of quantum chaos experienced an influx of new ideas coming
from its application to the realm of interacting many-body systems. The newly emerging field of
many-body quantum chaos is based on exciting developments in our understanding of fundamental
problems, such as the equilibration of closed systems [5–9] and the scrambling of quantum information
due to classical chaos [10–13].

It is, therefore, not a surprise that semiclassical methods, both at the heuristic level of
quantum-classical correspondence [14–16] and the level of asymptotic analysis of path integrals
describing coherent quantum effects [17–21], were lifted from their original particle-like form into
the realm of quantum fields. Among the plethora of phenomena characteristic of the rich physics
of interacting many-body systems, critical phenomena have always had a special place. In this new
disguise, many-body semiclassical methods are a suitable tool to understand even the most delicate
quantum effects related to the emergence of criticality.
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A natural arena for testing this idea is the attractive Lieb-Liniger model [22] describing
one-dimensional bosons attractively interacting through short-range forces and, in particular,
its low-energy effective description that was experimentally realized [23,24]. The reason for this
is that this system displays a quantum phase transition [25–28] and admits a proper semiclassical
derivation of a well-defined and controlled classical limit in the form of mean-field equations, thus
allowing for direct application of semiclassical techniques [21]. The semiclassical study of this system
in [21] revealed the key role played by locally unstable mean-field dynamics in the corresponding
dynamical and spectral quantum mechanical features.

The extension of many-body semiclassics beyond the realm of bosonic systems is still in its infancy,
but a step in this direction is to first consider how the well-established picture of [21] gets modified
by two new ingredients: a relativistic dispersion and the presence of spin-like degrees of freedom.
Since the very possibility of having locally unstable dynamics (as opposed to global chaos) of the
attractive Lieb-Liniger model is due to the integrability of the effective Hamiltonian describing its low
energy regime, a natural question concerns possible non-integrable behaviour of such models and
its consequences for the existence and characteristics of the quantum phase transition. In this paper,
we answer some of these questions.

The paper is organized as follows. After we introduce the model and describe its general physical
properties in Section 2, we present the motivation for the transformation into a special Fock basis in
Section 3 and how this optimal transformation adiabatically fragments the Hamiltonian in Section 4.
After that, in Section 5, the conversion of the channel containing the ground state into its classical form
is examined. The most important results presented in the Section 6 are the exact calculation of the
critical interaction strength and the analysis of discontinuities in the functional dependence of the
energy on the interaction. Finally, the asymptotic convergence of the first excited energy level towards
the ground state level leading to a degenerate ground state in the mean field is quantified in Section 7.

2. The Hamiltonian and Its Symmetries

The Hamiltonian of the (modified) Lieb-Liniger model with linear dispersion and contact potential
is defined as

Ĥ = −ih̄
N

∑
β=1

∂̂β ⊗ σ̂
(β)
z − Rα

4

N

∑
β,γ=1

δ(x̂β − x̂γ)(σ̂
(β)
x + σ̂

(γ)
x ), (1)

describing bosons on a ring with radius R with a contact interaction that can be interpreted as a mass
term: The moment two bosons are at the same point they obtain a mass through the contact potential,
whereas they are massless otherwise. In the following we assume attractive interactions, e.g., α > 0,
and we will choose natural variables h̄ = 1, L = 2πR = 2π such that the unit of energy is [E] = h̄

R [28].
As appealing as it is, it is important to note that the system above appears ill-defined, as its

Hamiltonian (1) is not bounded from below. Unlike in fermionic systems, in this bosonic system
this issue cannot be resolved by the introduction of a Fermi sea. One way out of the problem is to
interpret (1) as emerging from a local approximation of a one-dimensional condensed matter or cold
atom system with two crossing bands that is perturbed by an interband interaction. This naturally
introduces a regularization of the noninteracting model with a single-particle momentum cutoff
defining the region where the linearization is justified. In this approach, the linear dispersion is a
property of excited states and has an effect on dynamical properties of states with a certain momentum.
An example of such (local) Dirac bosons in two dimensions was found in the collective plasmon
dispersion relation in honeycomb-lattices of metallic nanoparticles [29]. In such local approximation,
one has to make sure that any prediction of the model has to be independent of the cutoff, which might
be realized in a quench scenario, starting with a narrow momentum distribution.

However, we take a different perspective here that takes a truncated model as it is, i.e., we truncate
to the three lowest single-particle momentum modes (for each quasi-spin, see below) and then assume
that the ground state of this model represents a physical ground state. One possible realization of
such a system is obtained by mapping the truncated model to a spin-one bose gas on two quantum
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dots (or two sites with suppressed hopping), where the physical spin takes the role of the momentum
k = −1, 0, 1 and the pseudo-spin 1/2 labels the two sites that have opposite external magnetic fields
applied to them, introducing linear Zeeman splitting and thus the “three-mode linear dispersion”.
The interaction processes are then taking, e.g., two particles of opposite spin on the same site and
distribute them into the spin-zero modes of the two sites. There are different processes, of course, but
the overall interaction effect is a spin-mediated hopping of a single particle with the total spin (of the
participating particles) being preserved. The noninteracting case would decouple the two sites.

To implement the truncation within a Fock space approach, we choose the eigenbasis of the
non-interacting (α = 0) Hamiltonian as the single-particle basis

|k, σ〉 = |k〉 ⊗ |σ〉 , (2)

where as orthonormal eigenbasis for the momentum operator we use plane waves

〈x|k〉 = 1√
2π

eikx, with k ∈ Z (3)

as the most obvious choice. For the quasi-spin an orthonormal eigenbasis is used consisting only of
“up” and “down”

σ ∈ {+1,−1}, |σ〉 ∈
{(

1
0

)
,

(
0
1

)}
(4)

generated by the third Pauli-matrix
σ̂z |σ〉 = σ |σ〉 . (5)

From these definitions the Fock space is characterized through the occupation numbers nk,σ of the
several states |k, σ〉with creation and annihilation operators satisfying canonical commutation relations

[âk,σ, â†
l,τ ] = δk,lδσ,τ , [âk,σ, âl,τ ] = 0, [â†

k,σ, â†
l,τ ] = 0, (6)

where each pair of creation/annihilation operators defines an occupation number operator

ln̂k,σ = â†
k,σ âk,σ (7)

for the corresponding mode. With the help of these bosonic operators this leads, after truncation of the
momenta from Z to {−1, 0, 1}, to the more convenient form

Ĥ = ∑
k∈{−1,0,1}
σ∈{−,+}

σk · â†
k,σ âk,σ −

α

2 ∑
k,l,m,n∈{−1,0,1}

σ,τ∈{−,+}

â†
k,σ â†

l,τ âm,−σ ân,τ · δk+l,m+n, (8)

with the relevant Fock states labeled by six occupation numbers,

|n1,+, n0,+, n−1,+, n1,−, n0,−, n−1,−〉 . (9)

This Hamiltonian has a set of symmetries that will be the key for the adiabatic separation later on.
We have the total number of particles

N̂ = ∑
k∈{−1,0,1}
σ∈{−,+}

n̂k,σ, (10)

and the total angular momentum
L̂ = ∑

k∈{−1,0,1}
σ∈{−,+}

k · n̂k,σ. (11)
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Using (8), it is easy to show that
[Ĥ, N̂] = [Ĥ, L̂] = 0, (12)

and the Hilbert space can be divided into sectors with the respective quantum numbers (N, L).
To simplify the task we will focus on the special case of fixed N and L = 0. Except for the derivation of
the effective Hamiltonian which is done for general L. In this way, the effective number of degrees of
freedom is reduced from six to four.

Besides these two symmetries, the energy spectrum splits up symmetrically in the positive and
negative direction, as can be seen in Figure 1. For an even particle number N this observation can be
explained using the operator

ξ̂ = ⊗N
α=1σ̂

(α)
x (−1)

Ŝ
2 (13)

where Ŝ is the total (pseudo) spin

Ŝ =
N

∑
α=1

σ̂
(α)
z (14)

that satisfies
(−1)

Ŝ
2 · (−1)−

Ŝ
2 = 1, (15)

and therefore it is easy to show that

〈ψ| ξ̂† Ĥξ̂ |ψ〉 = − 〈ψ| Ĥ |ψ〉 . (16)

As ξ̂ is a bijection on the set of eigenstates |ψ〉 of Ĥ with energy E = 〈ψ| Ĥ |ψ〉, there always exists
a state |φ〉 = ξ̂ |ψ〉 that is also an eigenstate of Ĥ. The energy value corresponding to this state is then
given by

Eφ = 〈φ| Ĥ |φ〉 = −E. (17)

Finally, a parity operator P̂ can be defined which simultaneously flips all spins and momenta,
given by a complex conjugation to invert the momenta in the eigenbasis of plane waves followed by a
spin flip,

P̂ = ⊗N
α=1σ̂

(α)
x (·)∗, (18)

satisfying P̂2 = 1. Also, since [P̂, Ĥ] = 0, P̂ represents a discrete symmetry that splits the Hilbert space
into two separate subspaces leading to a separation of the energy spectrum into two independent
subspectra (In general, one does have [P̂, L̂] 6= 0; however, for L = 0 the two operators commute.)

H =

(
H+ 0
0 H−

)
, (19)

see Figure 1.
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0.2 0.4 0.6 0.8 1.0
αN

-4
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Energy

Figure 1. Energy spectrum for N = 4, L = 0 splitted into positive (blue) and negative (gray) parity.
Scaled units [E] = h̄

R used.

As a final remark, we note that the existence of further symmetries is ruled out by a numerical
diagonalization and the analysis of avoided crossings, as indicated for N = 20, L = 0, P = 1 in
Figure 2. The absence of real crossing suggests that there are no additional symmetries to be found
which could be used to further reduce the dimensions of the Hamiltonian (8) [30].

0.2 0.4 0.6 0.8 1.0
αN

1

2

3

4

5

Energy

point 1

point 2

0.3642 0.3644 0.3646 0.3648 0.3650

αN

2.697

2.698

2.699

2.700

Energy

0.825 0.830 0.835 0.840

αN

3.86

3.88

3.90

3.92

Energy

Figure 2. Excitation spectrum at N = 120, L = 0 (left) and zooms into two exemplarily points which
display avoided crossings (right). Scaled units [E] = h̄

R used.

3. Adiabatic Separation of the Hamiltonian

Using
n0 ≡ n0,+ + n0,−, (20)

which corresponds to the total number of particles in the zero modes, we can rearrange the Fock basis
into several blocks. Figure 3 shows the wavefunction of the ground state and the first five excited states
of the system for N = 120, L = 0, αN = 0.7. The vertical grid lines indicate the borders between the
different blocks of the Fock basis which are arranged in ascending values of n0. Within one block the
states are further sorted with respect to nimb ≡ n0,+ − n0,− which characterizes the imbalance between
the occupation of the zero modes of a Fock state.
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n0

ψ
(a), ground state

n0

ψ
(b), 1.-excited state

n0

ψ
(c), 2.-excited state

n0

ψ
(d), 3.-excited state

n0

ψ
(e), 4.-excited state

n0

ψ
(f), 5.-excited state

Figure 3. The wavefunctions ψ of the six energetically lowest states for αN = 0.7, L = 0 and N = 120.
Along the horizontal axis we order the Fock basis for fixed N and L into sectors of constant zero mode
occupation n0 = n0,+ + n0,−, and within these blocks, we further order the basis according to the
imbalance between the zero modes n0 = n0,+ − n0,−. The further subordering, using the last two
remaining degrees of freedom, is not chosen in a specific way. This representation exhibits particle in a
box-type excitations in the sectors of constant n0.

Inspection of the wavefunctions in Figure 3 indicates a further substructure: Within each
n0-subspace the wavefunction has a form corresponding to the ground (see panels Figure 3a–d
and Figure 3f) or excited (see Figure 3e) state of a particle in a box whereas over the whole Fock
space these fine structures are enveloped by an overall oscillation. Going even further, this kind
of behaviour can be compared to the excitation spectrum of a molecule in the Born-Oppenheimer
approximation [31]. In this picture, the behaviour within a constant n0-subspace corresponds to a
fast degree of freedom which separates the energy spectrum into different channels [32]. Within
each channel, there are smaller excitations which are determined by the slow degree of freedom
corresponding to the behaviour of the oscillations in the envelope.

Based on this physical motivation we now take a look at the matrix representation of the
Hamiltonian (8). If we choose N > 0 and order the Fock basis in blocks of constant n0 including both
parities P = ±1, one obtains a tridiagonal block matrix

H =



H0 H0,2 0

H2,0 H2
. . . . . .

0
. . . . . . . . . 0
. . . . . . HN−2 HN−2,N

0 HN,N−2 HN


, (21)

where Hn0 is the projection of the Hamiltonian (8) into the subspace with fixed n0, while Hn0±2,n0

couples the n0-block to its next neighbours. Due to the form of the interaction all other blocks
vanish. The next step is to define transformations Un0 which diagonalize Hn0 and thereby the global
transformation

U =



U0 0

0 U2
. . .

. . . . . . . . .
. . . UN−2 0

0 UN


(22)
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from the Fock space into a basis that diagonalizes each projection of the Hamiltonian (8) to an
n0-subspace. This allows us to systematically select vectors solely corresponding to the ground, first or
second excited states of the channels and project out all the others. This projection then neglects all
possible couplings between different channels. Please note that this procedure has to be repeated for
every αN as the magnitude of the interaction alters the corresponding eigenvectors of the n0-blocks.

The resulting spectrum is shown in Figure 4. Neglecting the coupling of different channels is fully
justified as seen from the excellent agreement between the exact and approximated spectrum.

0.2 0.4 0.6 0.8 1.0
αN

1

2

3

4

Energy

Figure 4. Spectrum based on the adiabatic approximation (22) (dots) compared to the exact spectrum
(lines) at N = 70, L = 0. The approximated dots are obtained by restriction to the ground state
(red), first (black) and second (green) excited state within the fast degree of freedom. Scaled units
[E] = h̄

R used.

Here, the solid blue lines show the energy levels of the full Hamiltonian (8). In comparison,
the dotted lines show the excitation spectrum if the Hamiltonian is restricted to different single
channels. They correspond to restrictions to the ground state (red), first (black) and second (green)
excited state within the fast degree of freedom. The excellent agreement shows that this approximation
provides energy levels of the original system quantitatively to very good accuracy. Furthermore, it
enables us to split the spectrum into several subspectra which can be investigated independently of
each other.

4. Effective Hamiltonian

The subsequent derivation is carried out for chosen particle number N and total momentum L,
such that the respective operators are replaced by these quantum numbers. To properly derive the
block structure of the Hamiltonian (8), an operator P̂n0 can be defined that projects the Hilbert space
onto its subspace with constant n0. By definition we have

N

∑
n0=0

P̂n0 = 1̂, (23)

which can be used to rewrite the Hamiltonian as

Ĥ = ∑
n0,n′0

P̂n′0
ĤP̂n0 = ∑

n0

Ĥeff(n0) + ∑
n0,n′0

Ĥcoup(n′0, n0), (24)

where the second term is the coupling Hamiltonian. The part diagonal in n0 is the effective Hamiltonian

Ĥeff(n0) = Ĥ0(n0) + Ĥ1(n0) + Ĥ2(n0), (25)
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that defines the adiabatically separated channels. In this division H0(n0) represents the kinetic part of
the Hamiltonian (8). H2(n0) are the parts of the interaction which contain bosonic operators ak,σ, âk,σ
with k ∈ {±1} and commute with n̂0. Last of all in H1(n0) we summed up all the remaining parts of
the interaction, which commute with n̂0. This Heff is the starting point of all further analysis.

4.1. Redefinition of Zero Modes

The effective Hamiltonian (25) has an additional constant of motion,

F̂ ≡ ∑
σ=±1

â†
0,σ â0,−σ (26)

that can be easily shown to commute also with N̂ and L̂. The redefinition of the creation and
annihilation operators of the zero modes

ẑ± ≡
1√
2
(â0,+ ± â0,−) (27)

gives

∑
σ=±1

â†
0,σ â0,σ → ẑ†

+ ẑ+ − ẑ†
− ẑ−, (28)

while n̂0 = ẑ†
+ ẑ+ + ẑ†

− ẑ− keeps its structure. A further definition offers a new good quantum number
necessary to describe the effective system:

ĉ0 = ẑ†
+ ẑ+, [Ĥeff(n0), ĉ0] = 0. (29)

Therefore we are able to rewrite Ĥ1(n0) in diagonal form as

Ĥ1(n0) =
α

2
(2N − n0 − 2)(2ĉ0 − n0), (30)

where the range of this new quantum quantum number c0 ∈ {0, 1, . . . , n0} depends on n0. Please note
that the operator ĉ0 is deliberately choosen in a way such that the resulting eigenenergy

E1(n0, c0) =
α

2
(2N − n0 − 2)(2c0 − n0) (31)

of Ĥ1(n0) is minimal for c0 = 0.

4.2. Redefinition of Kinetic Modes

Now we focus on the remaining parts of the effective Hamiltonian (25) to show how it can be
rendered diagonal by a redefinition of the creation and annihilation operators. Up to now Ĥeff(n0) (25)
consists of two parts. While the first one (E1(n0, c0)) was analyzed in Section 4.1, the second part looks
comparatively difficult:

Ĥ0(n0) + Ĥ2(n0) = ∑
k∈{−1,1}
σ∈{−,+}

σk · â†
k,σ âk,σ + ∑

k=±1
−α

4
(3N + n0 + k · L− 2)ĥk, (32)

where ĥk is defined as
ĥk ≡ â†

k,+ âk,− + â†
k,− âk,+, k ∈ {±1}. (33)

It is quadratic in the creation and annihilation operators

â†
k,+ âk,−, k ∈ {±1}, (34)
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suggesting to define a vector

v ≡
(

â1,+ â1,− â−1,+ â−1,−
)T

, (35)

containing all annihilation operators of the (k = ±1)-modes, that allows us to rewrite the
Hamiltonian (32) as

Ĥ0 + Ĥ2 = v† Mv, M ≡
(

A+ 0
0 A−

)
, (36)

where

A+ ≡
(

1 − α
4 (K− L)

− α
4 (K− L) −1

)
, A− ≡

(
−1 − α

4 (K + L)
− α

4 (K + L) 1

)
, (37)

and K > 0 depends on N and n0 via

K ≡ 3N + n0 − 2. (38)

The quadratic form (36) allows us to diagonalize the Hamiltonian (32). From the blockstructure of
the matrix one can already conclude that the diagonalization will only mix those operators within the
same k-mode, (

p̂+
p̂−

)
≡ C+

(
â1,+

â1,−

)
,

(
n̂+

n̂−

)
≡ C−

(
â−1,+

â−1,−

)
, (39)

where C± are matrices obtained from the eigenvectors of A±. This notation is chosen in such a way
that “p” corresponds to the new operators obtained from the operators acting on “positive” k-modes
and “n” from the “negative” ones. Furthermore, the “+”, “−” indices (not to be confused with the
eigenvalues of the parity operator) of the new operators refer to the associated eigenvalues of the
diagonalized matrix

C±A±CT
± =

√1 + ( α
4 (K∓ L))2 0

0 −
√

1 + ( α
4 (K∓ L))2

 . (40)

As this redefinition is a rotation of the old operators, the sum of their occupation numbers
remains unaffected,

n̂1 ≡ n̂1,+ + n̂1,− = â†
1,+ â1,+ + â†

1,− â1,− = p̂†
+ p̂+ + p̂†

− p̂−, (41)

and the same holds true for the negative k-modes

n̂−1 ≡ n̂−1,+ + n̂−1,− = â†
−1,+ â−1,+ + â†

−1,− â−1,− = n̂†
+n̂+ + n̂†

−n̂−. (42)

Finally, in view of the transformation from Section 4.1, we are able to fully diagonalize the effective
Hamiltonian (25)

Ĥeff(n0) =
α

2
(2N − n0 − 1)(2ĉ0 − n0)+

√
1 +

(α

4
(K− L)

)2
· ( p̂†

+ p̂+ − p̂†
− p̂−)

+

√
1 +

(α

4
(K + L)

)2
· (n̂†

+n̂+ − n̂†
−n̂−).

(43)
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This can be made explicit using the eigenbasis of the operators

ĉ+ ≡ p̂†
+ p̂+, ĉ− ≡ n̂†

+n̂+, (44)

that commute with Ĥeff(n0). Using

L = n1 − n−1, N − n0 = n1 + n−1, (45)

one gets the explicit expression

Eeff(n0, c0, c+, c−) =
α

2
(2N − n0 − 1)(2c0 − n0) +

√
1 +

(α

4
(K− L)

)2
·
(

2c+ −
N − n0 + L

2

)
+

√
1 +

(α

4
(K + L)

)2
·
(

2c− −
N − n0 − L

2

) (46)

for the eigenenergies. Please note that the range of the new quantum numbers

c± ∈
{

0, 1, . . . ,
N − n0 ± L

2

}
(47)

is defined by N, L and n0, while in the case of L = 0, (46) simplifies to

Eeff(n0, c0, c+, c−) =
α

2
(2N − n0 − 1)(2c0 − n0) +

√
1 +

(α

4
K
)2
· (2(c+ + c−)− (N − n0)). (48)

Each combination of quantum numbers (c0, c+, c−) then defines a different channel within the
effective Hamiltonian (43). In a last step, we assume that interactions between different channels
can be neglected as motivated in Section 3. Within an (c0, c+, c−)-channel this leaves only one
possible combination

p̂†
−n̂†
− ẑ− ẑ− (49)

and its Hermitian conjugate, leading to an approximated single-channel Hamiltonian

Ĥapprox(c0, c+, c−) = Eeff(n̂0, c0, c+, c−)−
α

2

[(
1 +

â√
1 + â2

)
p̂†
−n̂†
− ẑ− ẑ− + h.c.

]
with â ≡ α

4
(3N + n̂0 − 2)

(50)

for the channel labeled by (c0, c+, c−).
Figure 5 presents the decoupled energy spectrum of this system resulting from the

Hamiltonian (50). The contribution of c+ and c− to the approximate energy Eeff(n0, c0, c+, c−) depends
only on their sum c+ + c− for the case L = 0, and therefore c− was chosen to be always zero.
The resulting spectrum is plotted (marked by dots) against the one (solid lines) from the complete
Hamiltonian (8). While the higher excitations show small deviations, the results are essentially the
same as without the approximation. In particular, as the main interest is in the lowest channel which
corresponds to the black dots, the new quantum numbers give rise to the ability to split the spectrum
into several combinations of {c0, c+, c−}. Further investigations will be focused on the ground state
and the lowest excitations which means that these quantum numbers are always chosen to be zero.
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Figure 5. The exact energy spectrum (solid) evaluated for N = 70, L = 0. Above it is plotted
the decoupled energy spectrum (dots), obtained by numerical diagonalization of (50), with the
corresponding effective quantum numbers. In choice of the parameters and approximations this
is equivalent to Figure 4, but after the previous derivation the division into several channels is now
structured by the effective quantum numbers. Scaled units [E] = h̄

R used.

5. Classical Analysis

In the following, we will analyse the critical properties of our effective model (50) by means of a
semiclassical analysis. Starting with the diagonal part (43)

Ĥeff(n0) =
α

2
(2N − n0 − 1)(ẑ†

+ ẑ+ − ẑ†
− ẑ−)

+

√
1 +

(α

4
(3N + n0 − 2)

)2
· ( p̂†

+ p̂+ − p̂†
− p̂− + n̂†

+n̂+ − n̂†
−n̂−),

(51)

we substitute the creation/annhihlation operators by classical phase space variables

f̂σ →
√

n f ,σ · eiφ f ,σ , f ∈ {z, p, n}, σ ∈ {+,−}, (52)

and neglect all terms of order O(N0) in the limit of N → ∞, to obtain

Eeff,cl =
α

2
(2N − n0)(nz,+ − nz,−) + cosh(γ)(np,+ − np,− + nn,+ − nn,−),

sinh(γ(α, N, n0)) ≡
α

4
(3N + n0)

(53)

where “cl” refers to the classical (mean field) limit. Since the coupling between different channels can
be neglected, as shown in Sections 3 and 4, the classical form of the remaining interaction then gives

Hcoup,cl(n0) =
α

2
(1 + tanh(γ)) nz,−

√
np,−nn,− · cos(2φz,− − φp,− − φn,−). (54)

To get an easily solvable form we reduce the Hamiltonian (51) to its channel of minimal energy
by setting

nz,+ = np,+ = nn,+ = 0, (55)

while we reexpress {nz,−, np,−, nn,−} in terms of N, L and n0 through the point transformation
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n0 = nz,−, np,− = nn,− =
N − n0

2
,

θ = φz,− −
1
2
(φp,− + φn,−), θN =

1
2
(φp,− + φn,−), θL =

1
2
(φp,− − φn,−).

(56)

This finally leads to a one-dimensional description with only two (conjugate) phase-space coordinates
n0 and θ,

Ecl(α, φ, z) =− cosh(γ)(N − n0)−
α

2
n0 ((2N − n0) + (N − n0) (1 + tanh(γ)) cos(2θ)) . (57)

To extract the physical properties of this mean field Hamiltonian (57), valid for lim N → ∞, we
define scaled variables

ecl =
Ecl
N

, z =
n0

N
∈ [0, 1], ᾱ = αN, sinh(γ) = sinh(γ(ᾱ, z)) =

ᾱ

4
(3 + z) (58)

to get the energy per particle as

ecl(ᾱ, θ, z) = − cosh(γ(ᾱ, z))(1− z)− ᾱ

2
z ((2− z) + (1− z) (1 + tanh(γ(ᾱ, z))) cos(2θ)) . (59)

We are now ready to proceed with the study of the classical phase space. Obviously, it is π-periodic
in θ such that the analysis can be restricted to θ ∈ [−π

2 , π
2 ].

Figure 6 shows contour plots of the energy ecl for different values of the coupling ᾱ. As clearly
seen, there is a qualitative change within the phase space, when the scaled interaction is increased
from ᾱ = 0 and ᾱ = 1. While in the non-interacting case, the phase space allows only rotations (Using
the analogy to the mathematical pendulum), the phase space is divided into two qualitatively different
regions at ᾱ = 1. The regime of the lowest energies consists of vibrations/librations, separated from
the rotating orbits by a separatrix. This separatrix is created at z = φ = 0 at a critical interaction
αcrit. Furthermore, for weak interaction (0 ≤ ᾱ ≤ ᾱcrit) the energy minimum is located at z = 0 and
degenerate in θ. In contrast, at a stronger interaction (ᾱcrit < ᾱ), the energy minimum consists of only
one discrete point z > 0, θ = 0.

According to its definition, z represents the ratio of particles within the zero modes n0,+ and n0,−
with respect to the whole particle number N. This yields the interpretation that, for an interaction
greater than ᾱcrit, the occupation of the zero modes within the ground state changes from a microscopic
occupation near zero to a macroscopic one at a finite value and therefore indicates that z can be taken
as an order parameter characterizing a type of quantum phase transition. Since in this model there
is no physical ground state, the abrupt changes that characterize quantum phase transition happen
now around an effective, pseudo-ground state, and properly speaking we should refer to this as
a pseudo-quantum phase transition. In the spirit of not overcharging with new terminology the
manuscript, however, we used and continue using the term quantum phase transition along the text.
This is in complete analogy with the spin-one Bose gas without pseudospin and quadratic Zeeman
shift [33] and the truncated versions of the attractive one-dimensional Bose gas [21].
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Figure 6. Phase diagram of ecl for ᾱ = 0 (a), 1
3 (b), 2

3 (c), 1 (d). z = n0
N is the normalized zero mode

occupation and θ the conjugate phase.. The color scaling describes the value of the energy. Blue
represents the minimum and light orange the maximum.

6. Analytic Analysis of the Quantum Phase Transition

Armed with a clear signature of a phase transition in the change of morphology of the classical
(mean field) limit produced by the appearance of the separatrix, we will now study the different aspects
of this critical behaviour. As discussed before in Section 5, the energy minimum is always located at
θ = 0 for ᾱ > ᾱcrit and is degenerate in θ for ᾱ ≤ ᾱcrit. Therefore, this variable can be eliminated in the
following discussion by setting θ = 0. The resulting energy dependence ecl(ᾱ, θ = 0, z) on z for several
ᾱ is shown in Figure 7.

- 1
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- 1

2
0 1

2
1

-1.0
-0.8
-0.6
-0.4

e0, cl

(b)

- 1

2
0 1

2
1

-1.2
-1.0
-0.8
-0.6
-0.4

e0, cl

(c)

Figure 7. ecl(ᾱ, θ = 0, z) for αN = 0.4 (a), 0.6 (b), 0.8 (c).

The range of z was deliberately chosen as {− 1
2 , 1}, despite the fact that negative z are unphysical

according to its definition, to illustrate the behaviour of the local minimum depending on the interaction
strength ᾱ. For ᾱ ≤ ᾱcrit this minimum would be at z∗ < 0. As this is not part of the allowed phase
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space, the minimum will simply be located at z∗ = 0. If the interaction strength is increased, z∗

increases too until it reaches z∗ = 0. This is exactly the point where the quantum phase transition can
be expected. To find the critical value, one cane use that the derivative of the energy ecl with respect to
z should vanish when evaluated at z = 0 and ᾱ = ᾱcrit

∂ecl(ᾱcrit, θ = 0, z)
∂z

∣∣∣∣
z=0

= −3ᾱcrit

2
+

4√
16 + 9ᾱ2

crit

= 0, (60)

which provides the critical parameter as

ᾱcrit =
2
3

√
2(
√

2− 1) ≈ 0.607. (61)

To further prove this critical behaviour, Figure 8 shows the functional dependence of the second
derivative of energy minimum with respect to ᾱ,

∂2ecl(ᾱ, θ = 0, zmin)

∂2ᾱ
, with ecl(ᾱ, θ = 0, zmin) ≡ ecl,min(ᾱ). (62)

The plot consists of four curves and a dashed line indicating the exact N → ∞ values of the
discontinuity. All the curves are based on values of the groundstate energy for discrete sets of points
of ᾱ, with the second derivative evaluated numerically. The blue dots were calculated using the
energy dependence given by the classical Hamiltonian (59), whose minimal energy was numerically
determined within the phase space for different values of ᾱ. They are compared to the quantum
mechanical results for the ground state at various particle numbers N given by the lowest eigenvalue
of the matrix representation of (50) renormalized by 1

N .
The analytical result e′′0,<(ᾱ), is obtained through a simple derivative of the classical energy with

respect to z at the critical point

e′′0,<(ᾱcrit) =
∂2ecl(ᾱcrit, θ = 0, z)

∂2z

∣∣∣∣
z=0

= − 9

4
√

2
(

1 +
√

2
)3/2 ≈ −0.424. (63)

Extracting the second value right behind the critical threshold is a bit harder, as the change of the
z-position depending on ᾱ has to be taken into account. To this end a leading-order expansion in z
is necessary

z(ᾱ) = z(ᾱcrit) +
∂z
∂ᾱ

∣∣∣∣
ᾱ=ᾱcrit

(ᾱ− ᾱcrit) + O((ᾱ− ᾱcrit)
2) ≈ z′(ᾱcrit)(ᾱ− ᾱcrit), (64)

where we used z(ᾱcrit) = 0.
Now problem is reduced to calculating the derivative of z with respect to ᾱ at the critical point.

For this purpose we define the function

g(ᾱ, z) =
∂e(ᾱ, θ = 0, z)

∂z
. (65)

The zero of this function for a chosen ᾱ gives the z-position of the energy minimum and therefore
its derivative is

∂z
∂ᾱ

∣∣∣∣
ᾱ=ᾱcrit

= −
(

∂g
∂z

)−1

ᾱcrit,z(ᾱcrit)=0

(
∂g
∂ᾱ

)
ᾱcrit,z(ᾱcrit)=0

. (66)
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The last step is to insert ᾱ into

ecl(ᾱ, θ = 0, z)→ ecl(ᾱ, θ = 0, z(ᾱ) = z′(ᾱcrit)(ᾱ− ᾱcrit)) (67)

and to calculate the second derivative

∂2ecl(ᾱ, θ = 0, z(ᾱ))
∂2ᾱ

= − 9
1156

√
373469√

2
− 325591

2
≈ −2.478. (68)

Clearly, the dependence of the ground state energy is seen to be discontinuous at ᾱ = ᾱcrit with
ᾱcrit determined in the previous section. With the last results we even obtained an analytic expression
to quantify the magnitude of the discontinuity

e′′0,< − e′′0,> =
81

289

√
569
√

2− 751 ≈ 2.05, (69)

in excellent agreement with the numerical result shown in Figure 8.
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Figure 8. Second derivative of the ground state energy with respect to ᾱ. Scaled units [E] = h̄
R used.

7. Further Characterization of the Critical Behaviour

In this last section, we will further characterize the finite-size effects in the quantum phase
transition by means of the way the critical parameters approach their sharp values in the mean field
limit N → ∞. Our choice of the appropriate observables comes from the behaviour of the spectrum
when we approach the critical region. As seen in Figure 9, and in accordance with what happens in
the attractive Lieb-Liniger model [21], one observes a strong accumulation of excited states around
criticality, a phenomenon that can be related to an excited-state quantum phase transition [34,35].

The structure of the spectrum in Figure 9 and the dependence shown in Figure 10 suggests that
the approach to criticality is well captured by two parameters, namely the minimal gap and interaction
value describing its position,

lim
N→∞

∆Egap = 0, lim
N→∞

(ᾱgap − ᾱcrit) = 0, (70)

in the form of a power laws

∆Egap ∝ N−β, ∆ᾱgap ≡ ᾱgap − ᾱcrit ∝ N−γ, (71)

where β, γ > 0, will be referred to as dynamical exponents [26].
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Figure 9. Illustration of convergence of the ten lowest energylevels in the first channel towards the
critical point for N = 100 (a), 500 (b), 1000 (c), 5000 (d). Scaled units [E] = h̄

R used.
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Figure 10. Energy gap ∆Egap for N = 20 000 with ᾱmin = 0.606 and ᾱmax = 0.610. Scaled units
[E] = h̄

R used.

To this end the gap is numerically calculated in a small region between specifically chosen
ᾱmin, ᾱmax for a given particle number N. Afterwards, an interpolation function is calculated within
this region and the minimum of it is numerically determined. This procedure is repeated for several
N. Because of its special behaviour at the phase transition, the necessary numerical effort can be
reduced drastically [36]. By means of this numerical approach, we are able to present results with
particle numbers between twenty and five million. The results are shown in Figure 11 using a double
logarithmic scale.
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Figure 11. Asymptotic behaviour of the gap in interaction ᾱ (a) and energy (b) depending on the
particle number N in a double logarithmic plot with linear fits.

To extract the power law the particle numbers with N ≥ 20,000 are fitted linearly. Smaller particle
numbers are taken out of the fit because this power-law is found to be valid only for large particle
numbers. The obtained relations are

∆ᾱgap ∝ N−0.3336, ∆Egap ∝ N−0.6651, (72)

where the powers seem to coincide with the values − 1
3 and − 2

3 within small tolerance.
These scalings rule how the mean-field limit N → ∞ is approached by two purely quantum

observables, as by their very definition the minimal gap and corresponding critical interaction require
quantization. An analytical approach that allows for a physical picture and the prediction of such
scaling exponents lies therefore beyond the realm of the mean-field approach. A proper semiclassical
analysis, able to study such effects by quantizing the mean-field phase space, was successfully applied
for the non-relativistic, spinless case in [21,28], where the dynamical exponents were found to be
exactly given by 1

3 and 2
3 . We expect that an extension of the semiclassical quantization of [21,28] in

the present relativistic case is feasible given the close similarities in the effective phase space, and the
study of the corresponding scaling laws is work in progress.

8. Summary and Conclusions

In this article, we explored a (pseudo) relativistic extension of the attractive Lieb-Liniger model,
by considering both particles with linear dispersion and spin degree of freedom. Our objective was
to check the existence of a relativistic analogue of the well-known quantum phase transition [26]
displayed by the original non-relativistic model, where the attractive potential drives a transition of
the ground state from a homogeneous state into an inhomogeneous one due to the critical appearance
of a bright soliton, as thoroughly study by means of semiclassical methods in [21].

As a main result, we find numerically and explain analytically that the relativistic extension indeed
shows clear signatures of critical behaviour and a quantum phase transition where the macroscopic
occupation of the side modes (|k| = 1), characterized by the vanishing order parameter given by the
occupation of the homogeneous zero modes, is destroyed by quantum fluctuations giving rise to the
macroscopic occupation of the zero modes, indicating a sudden broadening of the particle distribution
and an increase in the interaction energy.

Given the fact that the existence of the phase transition in the non-relativistic case is essentially
due to the quantum integrability of the model, the fact that the same effect can be seen in the present
non-integrable system points towards universal aspects of this transition.

To get an analytical understanding of this transition and its connection to the integrability of the
non-relativistic case, we followed a combined approach. First, extensive numerical simulations show
an adiabatic separation that mimics integrability in the low-energy region. Second, a classical analysis
based on this approximate separability of the model allows for understanding the critical behaviour
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as a consequence of the appearance of separatrix motion in the mean field limit. This combination
enabled us to provide analytical results for the location and characteristics of the quantum phase
transition in excellent agreement with exact diagonalization results.

Our work follows the idea of a universal connection between the characteristics of separatrix
dynamics in the mean field limit and the parameters describing ground and excited state
quantum phase transitions of the quantum system, a subject of particular interest in the field of
many-body semiclassics.
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