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A Introduction 

1 Generation and reactivity of vinyl radicals 

 

It has been slightly more than 100 years since the pioneering work of Gomberg who 

discovered the first organic free radical upon treatment of triphenylmethyl chloride with 

elemental zinc.
[1]

 A century later, free radicals have become an integral part of modern 

organic chemistry and are nowadays widely employed. In this regard, remarkable advances 

have been achieved in the field of different reaction types including chain reactions, 

defunctionalization chemistry, complex intramolecular cyclizations, radical translocations, or 

exceptional rearrangements.
[2-7]

  

With the discovery of trialkyltin hydrides as radical precursors in the 1960s,
[8,9]

 numerous 

applications and different kinds of radicals were reported. However, these transformations 

were predominantly based on alkyl radicals and comparatively less attention was dedicated to 

vinyl radicals.
[10-12]

 Being considered too reactive and uncontrollable, only a handful reports 

described vinyl radicals as intermediates. It took until the 1980s when pioneering work by 

Curran and Stork turned their attention towards vinyl radicals as intermediates for radical 

transformations (Scheme 1).
[13-16]

 

 

Scheme 1. An early example of a reaction proceeding via a vinyl radical intermediate by Stork in 

1982.
[13]

 

 

In principle, there are different ways to initiate radical transformations and therefore to access 

vinyl radical intermediates (Scheme 2). Without doubt, one of the most dominant methods to 

trigger radical transformations is the utilization of tin related compounds. Usually, the 

combination of Bu3SnH or bulkier Ph3SnH together with radical starters such as AIBN 

represent excellent radical precursors. Upon thermal or photoinitiated decomposition of 
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AIBN, the corresponding isobutyronitrile radical readily abstracts the hydrogen atom from the 

organotin compound due to the relatively weak Sn-H bond (78 kcal/mol).
[17]

 The 

corresponding trialkyl stannane radical R3Sn
•
 is able to homolytically abstract a halogen atom 

from the substrate giving rise to a carbon-centered radical. Besides halogen atoms, other 

activation groups rely on thiols, thioethers, or xanthates as they readily react with R3Sn
•
 

forming strong Sn-S bonds.
[6]

 This methodology has been widely exploited to directly access 

a vinyl radical intermediate from any vinyl-X substrate (Scheme 2, Method A).
[6,10-12]

  

 

Scheme 2. Different approaches to access a vinyl radical intermediate. 

 

As an alternative approach, vinyl radicals can be generated by direct homolysis of vinyl 

halides using very energetic UV-light (Scheme 2, Method B).
[18,19]

 Furthermore, vinyl radicals 

commonly occur as intermediates upon addition of various radical sources to triple bonds. In 

this regard, carbon-centered, tin-centered, sulfur-centered, or other heteroatom-centered 

radicals are widely employed (Scheme 2, Method C).
[5-7]

 Lastly, vinyl radicals can be 

produced via single electron reduction. Again, vinyl halides serve as vinyl radical precursors 

but this time, the vinyl radical is released upon reductive cleavage of the C-halogen bond. 

This principle has first been realized electrochemically,
[20]

 and more recently via photoredox 

catalysis (Scheme 2, Method D).
[21-25]
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Among all these different options to access vinyl radicals, a broad range of reactivities have 

been reported. An overview is given in the following Scheme 3. 

 

Scheme 3. General reactivity of vinyl radical intermediates. 

 

In the simplest way, the vinyl radical is immediately quenched by hydrogen abstraction 

stemming from either R3SnH or the solvent which is often utilized in defunctionalizations of 

vinyl halides or quenching of vinyl radical intermediates, e.g. after addition to triple bonds.
[26-

30]
 Corey et al. have proven that this principle can be exploited in the enantioselective total 

synthesis of (+)-biotine (7) (Scheme 4).
[26]

 The key step included homolytic desulfurylation of 

thioether 5 with Cy3SnH and AIBN. The resulting α-amino radical 8 readily undergoes 

5-exo-dig ring closure to vinyl radical 9 which is rapidly quenched to 6. 

Radical cyclization reactions are commonly used to construct complex ring systems. Besides 

simple reductions, vinyl radicals readily cyclize with double bonds,
[13,31-33]

 triple bonds,
[34,35]

 

or with heteroatoms.
[36]

 In this regard, an early example was provided by Padwa et al. in a 

tandem cyclization to construct thiophene 11 in moderate yields (Scheme 5).
[35]

 The reaction 

sequence is initiated by radical addition of a thioacetyl radical onto the triple bond of 10, 

resulting in a vinyl radical intermediate 12 which undergoes 5-exo-dig ring closure. The 

corresponding second vinyl radical 13 finally cyclizes at the sulfur position giving rise to 

thiophene 11. 
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Scheme 4. Radical quenching of the vinyl radical as key step in the synthesis of (+)-biotin.
[26]

 

Cy = cyclohexyl. 

 

 

Scheme 5. Tandem radical cyclization by Padwa et al.
[35]

 

 

Radical translocations emerged as a powerful tool in organic chemistry.
[37]

 Often being 

considered as a side reaction, such rearrangements proved to be surprisingly predictable and 

controllable. The most commonly translocations involve a 1,5-,
[14,16,38-42]

 or 1,6-HAT
[43-45]

 

(HAT = hydrogen atom transfer). The group of Pillai successfully demonstrated that vinyl 
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radicals efficiently undergo 1,5-HAT and such translocations can be applied for the synthesis 

of (±)-heliotridane 15 (Scheme 6).
[46]

 The vinyl radical 17 is generated upon homolytic 

bromide abstraction from Bu3Sn
•
 which undergoes 1,5-HAT to α-amino radical 18. 

Subsequent 5-exo-trig cyclization and quenching of the primary radical gives rise to the final 

product. 

 

Scheme 6. Radical translocation of vinyl radical 17 as key step in the synthesis of (±)-heliotridane 

(15).
[46]

 

 

The group of Ryu successfully achieved alkyne carbonylation with radicals (Scheme 7).
[47]

 In 

this report, a vinyl radical is produced by addition of tributyl stannane radical Bu3Sn
• 

to 

alkyne 19. The corresponding vinyl radical 23 undergoes carbonylation to generate a 

α-ketenyl radical 24. Addition of amine 21 and subsequent 1,4-H shift affords the final 

product 22 in moderate to excellent yields. 

 

Scheme 7. Trapping of the vinyl radical 23 with carbon monoxide.
[47]
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In 2009, MacMillan and co-workers reported an enantioselective total synthesis of 

(+)-minfiensine (27) in nine steps with an overall yield of 21%. This synthetic route featured a 

cascade organocatalytic sequence to construct the central tetracyclic pyrroloindoline core 25 

(not depicted), followed by a 6-exo-dig radical cyclization with 
t
Bu3SnH and AIBN to give 

the final piperidinyl scaffold 26 (Scheme 8).
[48]

 

 

Scheme 8. Enantioselective total synthesis of (+)-minfiensine by MacMillan in 2009.
[48]

 

TES = Triethylsilyl ether; PMB = 4-Methoxybenzyl ether. 

 

Although the combination of trialkyltin hydrides and AIBN has been well-established to 

initiate radical transformations, the presented work commonly suffered from decisive 

drawbacks. Stoichiometric amounts or even an excess of highly toxic organotin compounds 

were required. Combined with harsh activation conditions such as high temperatures or 

hazardous UV-light, considerable concerns were raised about the necessity of these 

ecologically questionable conditions.
[49]

 As soon as the toxic properties associated with 

organotin compounds became public, it has become a global interest to search for more 

sustainable alternatives. Reaction procedures using only catalytic amounts of Bu3SnH should 

reduce tin-contaminated waste,
[50]

 tin-recycling systems were developed to relieve the 

environment,
[51]

 or organotin hydride substituents were introduced.
[49,52]

 However, it would be 

much more desirable to completely switch to more benign activation methods.  

Herein, visible light mediated photoredox catalysis represents an elegant solution. Although 

first pioneering work was already described by the groups of Kellogg,
[53,54]

 Deronizer,
[55]
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Okada,
[56]

 and others
[57-59]

 in the late 1970s, only little attention was given to this process. 

However, 30 years later, this activation methodology attracted full attention. Yoon’s success 

on the [2+2] cycloaddition of enones,
[60]

 MacMillan’s work on asymmetric alkylation of 

aldehydes,
[61]

 and Stephenson’s protocol for hydrodehalogenation were considered to be 

groundbreaking.
[62]

  

The following two sections will first briefly introduce the underlying physical processes in a 

common photoredox catalyzed reaction and subsequently summarize major contributions in 

this area referring to the generation and functionalization of vinyl radicals with visible light. 
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2 Photophysical background of photocatalysts 

 

The principle behind visible light driven processes is the employment of photocatalysts which 

are capable of absorbing photons in this specific region of the electromagnetic spectrum. This 

is essential since most organic molecules are not able to interact with visible light.
[63]

 These 

common molecules can only be excited by highly unfavorable UV-light.
[23]

 However, this is 

usually undesired because chemical transformations might suffer from selectivity problems or 

decomposition of substrates. Additionally, reactions associated with very energetic UV-light 

are afflicted with safety hazards, and require cost-intensive light sources as well as 

glassware.
[64]

 However, these issues can be ingeniously circumvented by photoredox 

catalysis. Instead of harmful UV-light, photocatalysts can be employed which can transfer 

single electrons (SET = single electron transfer) upon excitation with mild and benign visible 

light.
[23]

 Herein, established photocatalysts are typically based on transition metal 

complexes
[65,66]

 or organic dyes.
[67-69]

 Despite the cost-efficiency of organic chromophores, 

problems can arise from high catalyst loadings and instability or degradation under certain 

reaction conditions.
[69]

 Therefore, transition metal complexes are generally considered to be 

superior. In this regard, the most powerful complexes are based on ruthenium and iridium 

complexes with polypyridyl ligands (Figure 1).
[22,65,70-72]

 However, photochemical 

transformations driven by copper have also found great applications due to its unique 

behavior compared to the latter.
[73-78]
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Figure 1. Selected example of commonly employed transition metal photocatalysts. 

 

To understand the following visible light mediated transformations and to get familiar with 

the commonly used terminology, it is inevitable to concisely introduce the photophysical 

processes behind these reactions. Such photocatalysts as depicted in Figure 1 exhibit strong 

absorption bands in the visible region of the light spectrum. Upon irradiation with a specific 

wavelength from simple LEDs, fluorescent light bulbs or Xe lamps, the photocatalyst C gains 

energy and reaches a long-lived excited state C
*
 (Scheme 9).

[72]
 In this particular state, the 

photocatalyst is a powerful reducing as well as oxidizing agent. Therefore, the photocatalyst 

can either donate one single electron to the substrate A which oxidizes the catalyst (oxidative 

quenching cycle) or accept one electron from the substrate D which reduces the catalyst 

(reductive quenching cycle). As a result, this gives highly reactive intermediates A
•–

 or D
•+

 

and simultaneously an oxidized (C
n+1

) or reduced (C
n-1

) species of the catalyst (n = oxidation 

state of the catalyst). To regenerate the catalyst, the opposed process needs to take place in 

order to regain its ground state C. Ideally, D and A can be assigned to the same molecule 

which makes this process highly efficient and economically valuable as no chemical waste is 
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produced. However, reactions for which only one substrate is of interest, so-called sacrificial 

electron donors or acceptors can be utilized. This helps to close the catalytic cycle or to access 

more redox active species of the catalyst. For example, tertiary amines are very prevalent 

reagents to serve as reductants due to the availability and low cost.
[79]

 However, caution is 

required as these oxidized amines are excellent radical hydrogen donors (HAT = hydrogen 

atom transfer), meaning they can easily quench radical intermediates which often results in 

undesired by-products.
[79]

 As sacrificial electron acceptor, methyl viologen can be 

employed.
[80,81]

 The reaction pathway taking place depends on each individual reaction and 

can often be tailored by careful refinement of the conditions. For example, each photocatalyst 

in each electrochemical half reaction exhibit unique redox properties. As a rule of thumb, it is 

generally valid that the reduced catalyst C
n-1

 is a stronger reductant and similarly the oxidized 

catalyst C
n+1

 a better oxidant compared to the excited state of the catalyst C
*
. This principle is 

often exploited when challenging substrate with high redox potentials are employed.
[82,83]

 

 

Scheme 9. General overview of a photoredox catalytic process. 

 

This compact summary of a visible light mediated process should help to understand the 

following chemical transformations. The photophysical background of common 

photocatalysts has been well studied and fully characterized in the past,
[73,84-91]

 and these 

processes along with photophysical properties of the catalysts have already been discussed 

and tabulated multiple times much more in detail in related articles.
[23,66,70,72,92]
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3 Reactions of vinyl radicals promoted by visible light  

 

With the revival of visible light photoredox catalysis by the group of Yoon, MacMillan and 

Stephenson, not much time went by until first reactions involving vinyl radicals as 

intermediates were reported. The following part should summarize major contributions in this 

area which have been achieved up to this date. 

In 2010, Stephenson and co-workers discovered a method for the single electron reduction of 

bromomalonate 34 with visible light.
[93]

 Upon irradiation, the reductively quenched catalyst 

transfers one single electron to 34. The resulting radical first reacts intramolecularly with 

cyclopentene, followed by a 5-exo-dig ring closure. Subsequently, the resulting vinyl radical 

intermediate is quenched via hydrogen atom transfer (HAT) by previously oxidized NEt3 

(Scheme 10). 

 

Scheme 10. Tin-free radical cyclization initiated by visible light photoredox catalysis.
[93]

  

 

Later, they were able to further expand the scope for dehalogenations to unactivated vinyl 

halides as depicted in Scheme 11. Utilizing the reductive quenching cycle of fac-Ir(ppy)3, 

several vinyl iodides 37 were subjected to optimized photochemical conditions yielding 

hydrodehalogenated products 38 in excellent yields.
[94]

 

 

Scheme 11. Tin-free radical dehalogenation of unactivated vinyl iodides 37.
[94]
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Reiser and co-workers investigated the combination of 1,5-dimethoxynaphthalene (DMN) and 

ascorbic acid for the reductive debromination with visible light (Scheme 12).
[95]

 Herein, the 

vinyl radical is directly formed upon activation of vinyl bromide 39. The resulting vinyl 

radical 41 undergoes fast halide elimination to give 40. 

 

Scheme 12. Photocatalytic reductive debromination of vic-dibromoalkene 39.
[95]

 HA
-
 = Ascorbate ion. 

 

Nitrogen-centered radicals were generated from electron-poor aryloxyamides 42 using visible 

light from a compact fluorescent lamp by the group of Leonori (Scheme 13).
[96]

 These amidyl 

radicals readily undergo intramolecular 5-exo-dig ring closure which gives rise to a vinyl 

radical. Hydrogen abstraction from 1,4-cyclohexadiene gave the final product in moderate to 

high yields. However, during their studies the authors noticed that the reaction also worked in 

the absence of a photocatalyst which made a mechanistical proposal for the initial N-O 

fragmentation difficult. 
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Scheme 13. Visible light promoted 5-exo-dig cyclization of amidyl radicals.
[96]

 

 

Furthermore, Song et al. have proven that substituents of terminal alkynes can have a 

beneficial effect on the diastereoselectivity (Scheme 14).
[97]

 Herein, they showed that alkyl 

substituents adjacent to the vinyl radical gave predominantly the Z-isomers while aryl groups 

resulted in E-isomers, respectively. The authors assumed that H-abstraction from PhSiH3 

might be one of the key factors and concluded that the configuration of the vinyl radical 

defined the stereoselective outcome. 

 

Scheme 14. Visible light mediated synthesis of benzosilolines.
[97]
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Stephenson et al. demonstrated that bromocyclopropanes could undergo a radical cyclization 

cascade after visible light promoted single electron reduction (Scheme 15).
[98]

 The vinyl 

radical 50 is formed after 5-exo-dig cyclization of the cyclopropyl radical and the alkyne. 

However, the full reaction mechanism to product 49 was unclear as several potential 

mechanistic pathways were proposed to construct the seven-membered ring 49. 

 

Scheme 15. Visible light mediated tandem cyclization of bromocyclopropanes 48.
[98]

 

 

Li and co-workers disclosed a tandem cyclization of 1,6-enynes with arylsulfonyl chlorides by 

using visible light photoredox catalysis (Scheme 16).
[99]

 This protocol tolerates a great variety 

of substitution patterns. The vinyl radical intermediate is formed after addition of the aryl 

radical to the alkyne 51 which subsequently undergoes a tandem cyclization to construct the 

polycyclic ring system 53 which is a ubiquitous motif and can be found in many natural 

products, biomolecules, and optoelectronic materials.  
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Scheme 16. Tandem cyclization of 1,6-enynes with aryl sulfonyl chlorides.
[99]

 

 

A novel [4+2] benzannulation protocol was developed by the group of Zhou (Scheme 17).
[100]

 

Here, aryl radicals are generated from aryl diazonium salts 55 which can readily react with 

alkynes 56, resulting in a vinyl radical intermediate 58 which can further cyclize with the ring 

system. Oxidation to the cation regenerates the photocatalyst and re-aromatization gives 

product 57. 

 

Scheme 17. Visible light mediated synthesis of phenanthrenes 57.
[100]

 

 

Zhou et al. have proven that trifluoroacetimidoyl chlorides 59 serve as an excellent source for 

trifluoroacetimidoyl radicals under visible light photoredox conditions (Scheme 18).
[101]
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Utilizing the reductive quenching cycle, the photocatalyst Ru(bpy)3Cl2 is able to cleave the 

C-Cl bond of 59. Radical addition to the alkyne affords a vinyl radical intermediate 62 which 

subsequently cyclizes with the aromatic ring to form 2-trifluoromethyl quinoline 61. 

 

Scheme 18. Visible light induced radical cyclization of trifluoroacetimidoyl chlorides.
[101]

 

 

Recently, Ji et al. described a mild and efficient method for the synthesis of 

3-difluoroacetylated coumarins via visible light (Scheme 19).
[102]

 Herein, a 
•
CF2CO2Et radical 

was formed from 64 by oxidative quenching of the excited photocatalyst fac-Ir(ppy)3. Radical 

addition to the triple bond affords a vinyl radical which undergoes intramolecular radical 

cyclization to construct difluorosubstituted coumarins. The proposed mechanism was 

supported by TEMPO trapping of the 
•
CF2CO2Et radical. However, the scope of the reaction 

was limited to Br-CF2CO2Et as the authors failed to transfer this protocol to Br-CHFCO2Et or 

Br-CF2PO(OEt)2. Later, the substrate scope was further extended to construct indenones 

under very similar reaction conditions by Rastogi and co-workers.
[103]
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Scheme 19. Visible light mediated radical aryldifluoroacetylation of alkynes.
[102]

 

 

A very similar reaction was developed by She and co-workers in 2016 (Scheme 20).
[104]

 In 

this report, THF served as source for α-oxo radicals via hydrogen abstraction from tert-

butoxyl radicals which were formed upon single electron reduction of tert-butyl 

hydroperoxide (TBHP). Apart from that, the reaction mechanism is congruent with the 

previously discussed transformation. 

 

Scheme 20. Visible light promoted synthesis of substituted coumarins 69.
[104]

 

 

König et al. utilized aryl diazonium salts 71 as precursors for aryl radicals under metal-free 

conditions with eosin Y as photocatalyst (Scheme 21).
[105]

 This aryl radical readily reacts with 

an excess of alkyne 72 resulting in a vinyl radical intermediate 74 which is capable of 

cyclizing at the sulfur position. The proposed mechanism is supported by successful TEMPO 

trapping of both the aryl radical and the vinyl radical intermediate. 
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Scheme 21. Visible light photocatalytic synthesis of benzothiophenes 73.
[105]

 

 

Recently, the group of Liu developed a stereoselective radical cyclization cascade of sulfonyl 

chlorides 76 with terminal alkynes 75 (Scheme 22).
[106]

 The key elementary step in this 

transformation includes a 1,5-hydrogen transfer of the vinyl radical intermediate 78 which is 

followed by a stereoselective 5-exo-trig cyclization. 

 

Scheme 22. Stereoselective radical cyclization cascade.
[106]

 

 

A novel synthesis of β-amino alcohol derivatives 82 was achieved by the group of Yu 

(Scheme 23).
[107]

 Reductive cleavage of p-CF3PhCO2NHTfoc by the excited photocatalyst 

produces a nitrogen-centered radical (
•
NHTfoc). This electrophilic N-radical adds to the 

electron rich double bond of 81. Subsequently, the electron rich radical intermediate reacts 
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with comparably electron poor alkyne 80 to produce a vinyl radical intermediate 83. The key 

step of this synthesis is a 1,5-HAT of this vinyl radical which gives rise to a α-oxo radical 84. 

This radical is oxidized to the cation, therefore regenerating the photocatalyst and generating 

the final product upon nucleophilic substitution with H2O forming benzaldehyde as 

stoichiometric by-product. The 1,5-HAT as key step is supported by deuterated benzyl vinyl 

ether D-81 which gives rise to >95% deuteration of the vinyl proton in the final product. 

 

Scheme 23. Photoredox induced radical relay toward functionalized β-amino alcohol derivatives.
[107]

 

Tfoc = 2,2,2-trifluoroethoxy carbonyl. 

 

A tandem cyclization of vinyl radicals to access indolines was investigated by Reiser and 

co-workers (Scheme 24).
[108]

 The authors propose single electron transfer to cleave the C-Br 

bond in 85 by reductively quenched iridium photocatalyst Ir(ppy)2(dtbbpy)PF6. The resulting 

vinyl radical 87 readily undergoes 1,6-HAT which affords α-amino radical 88. Cyclization 

with the double bond and quenching of the alkyl radical by previously oxidized amine 

produces the final product 86 and closes the catalytic cycle.  
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Scheme 24. Hydrogen atom transfer as key step to approach indolines promoted by visible light.
[108]

 

 

Very recently, Han and et al. disclosed a stereoselective chlorotrifluoromethylation of alkynes 

using visible light (Scheme 25).
[109]

 Utilizing the oxidative quenching cycle of excited 

photocatalyst fac-Ir(ppy)3 leads to decomposition of commercially available triflyl chloride 

(90). The resulting electron poor trifluoromethyl radical adds to alkyne 89 which gives a vinyl 

radical intermediate. To close the catalytic cycle, the authors propose oxidation of the vinyl 

radical to the corresponding cation which is trapped by previously formed Cl
-
. This 

transformation produced tetrasubstituted alkenes 91 which could further be utilized in 

Suzuki-coupling reactions. The stereoselectivity is assumed by the stabilization effect of the 

aromatic ring adjacent to the vinyl radical. This established protocol could also be extended to 

sulfonyl chlorides as coupling partners which led to chlorosulfonylated products.
[110]
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Scheme 25. Stereoselective chlorotrifluoromethylation of alkynes by visible light photoredox 

catalysis.
[109]

 

 

Later, the same group published a similar protocol to access different α-trifluoromethyl 

ketones in moderate to high yields (Scheme 26).
[111]

 This time, Umemoto’s reagent (94) was 

utilized as CF3 radical precursor. Upon radical addition of the CF3 radical to the triple bond, 

the authors again propose the oxidation of the vinyl radical to the cation which is 

subsequently trapped by H2O. The final product is formed after deprotonation and keto-enol 

tautomerism. The mechanistical proposal is supported by D2O and H2
18

O labeling control 

experiments. Both the deuterated proton as well as the 
18

O isotope were found to be highly 

enriched in the final product 95. 

 

Scheme 26. Multicomponent oxidative trifluoromethylation of alkynes via photoredox catalysis.
[111]
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Using visible light and eosin Y as organic dye, Lei et al. reported a Z-selective radical 

addition of diaryl phosphine oxides 98 to alkynes 97 in H2O (Scheme 27).
[112]

 Reductive 

quenching of excited photocatalyst gives rise to a phosphinoyl radical after proton-coupled 

electron transfer (PCET). Subsequently, the radical adds to the triple bond of the alkyne 

resulting in a vinyl radical intermediate. The authors propose reduction of this vinyl radical to 

the corresponding anion by the organic dye which closes the catalytic cycle. Protonation of 

the anion gives the final product. The high selectivity is presumed to be due to the strong π-π 

stacking interactions of both the aromatic ring of the phenyl acetylene as well as the aromatic 

substituents at the phosphorus atom. The mechanistical proposal is supported by 

isotope-labeling studies with D2O.  

 

Scheme 27. Z-selective addition of diaryl phosphine oxides to alkynes under visible light photoredox 

conditions.
[112]

 

 

A novel synthesis of 3-acylindoles 102 was achieved by Zhou and co-workers 

(Scheme 28).
[113]

 The nitrogen atom of substrate 101 can easily be oxidized to the radical 

cation by the excited photocatalyst which makes the α-amino C-H bond in the molecule 

significantly acidic. As a result, 101 readily loses a proton to give the α-amino radical.
[79]

 

After 5-exo-dig cyclization, the corresponding vinyl radical 103 is trapped by molecular 

oxygen, eventually leading to 102 after regeneration of the catalyst, together with H2O as the 

only stoichiometric by-product. However, the authors could not completely rule out the 

possibility that oxygen sources other than O2 might be responsible for the carbonyl 

functionality in the end. 
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Scheme 28. Visible light mediated synthesis of 3-acylindoles 102.
[113]

 

 

Recently, Reiser and co-workers contrived a novel visible light promoted activation of 

α-bromo cinnamates by energy transfer mechanism (Scheme 29).
[114]

 Due to the long 

excited-state lifetime (τ = 2300 ns),
[70]

 Ir[dF(CF3)ppy]2(dtbbpy)PF6 is able to transfer the 

energy to extended π-systems such as α-bromo cinnamate derivatives 104. This results in 

homolytic cleavage of the C-Br bond. Subsequently, the vinyl radical intermediate is trapped 

by molecular oxygen which eventually leads to a α-keto radical. This radical undergoes 

5-endo-dig cyclization resulting in another vinyl radical intermediate which is, again, trapped 

by O2. It is notable that molecules bearing electron withdrawing substituents in the starting 

material undergo 6π-electrocyclization which give rise to dihydroindeno[1,2-c]chromenes 

105, whereas electron donating groups result in indenones 106. The reaction mechanism is 

supported by several control experiments including different 
18

O2 labeling experiments which 

revealed that molecular oxygen is, indeed, incorporated two times in the reaction process. 
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Scheme 29. Visible light promoted synthesis of dihydroindeno[1,2-c]chromenes 105 and 

indenones 106.
[114]

 

 

An efficient strategy to access 3-acyl indoles, benzofurans, or benzothiophenes was developed 

by Xia et al. (Scheme 30).
[115]

 Upon visible light and base induced decarboxylation of 108, 

the radical rapidly undergoes 5-exo-dig cyclization, resulting in a vinyl radical intermediate 

which is trapped by molecular oxygen. Protonation and elimination of H2O give rise to 

carbonylated heterocycles 109. The scope of the reaction is large, however the transformation 

suffers from high catalyst loadings. 
18

O2 labeled control experiments revealed that the oxygen 

atom of the carbonyl group is indeed derived from O2. 
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Scheme 30. Visible light promoted synthesis of carbonylated heteroaromatic compounds.
[115]

 

 

A dual transition metal-visible light photoredox catalyzed synthesis of quinoline derivatives 

was reported by Xia and co-workers (Scheme 31).
[116]

 Therein, a nitrogen-centered radical is 

proposed after deprotonation and single electron oxidation of 111 which subsequently adds to 

alkyne 112. The resulting vinyl radical intermediate 114a undergoes 6-exo-dig cyclization 

which gives rise to another vinyl radical 114b. This intermediate reacts with molecular 

oxygen resulting in a copper-oxygen species which eventually leads to the final product 113. 

 

Scheme 31. Visible light promoted synthesis of quinoline derivatives.
[116]
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A visible light mediated radical hydroamination reaction followed by a radical Smiles 

rearrangement was achieved by Belmont and et al. (Scheme 32).
[117]

 Upon deprotonation with 

NaOH, hydrazone 115 can easily be oxidized by the excited photocatalyst Ru(bpy)3Cl2, 

resulting in a N-centered radical. This radical rapidly undergoes 6-exo-dig cyclization to 

afford vinyl radical key intermediate 117 which spontaneously rearranges and releases SO2. 

Single electron reduction regenerates the photocatalyst and product 116 is formed after 

protonation. 

 

Scheme 32. Visible light mediated radical Smiles rearrangement. The rearrangement of key vinyl 

radical intermediate 117 and SO2 extrusion is depicted in the box.
[117]

 

 

Xu and co-workers demonstrated that the combination of gold and photoredox catalysis can 

be an efficient approach to thio-functionalized vinylsulfones 120 via atom transfer radical 

addition (ATRA) of PhSO2SCF3 (119) to alkynes with excellent stereo- and regiocontrol 

(Scheme 33).
[118]

 The gold catalyst Ph3PAuNTf2 served as a π acid to activate the alkyne and 

is crucial for the high E/Z selective outcome. The authors propose a phenylsulfonyl radical 

(PhSO2
•
) upon irradiation which adds to the gold-activated alkyne. The resulting vinyl radical 

121 might interact with the gold catalyst forming an Au(II) intermediate 122. This transition 

state favors the E configuration of the intermediate which explains the high diastereoselective 

outcome of this transformation. The final product 120 can be formed via reductive elimination 

of the Au(III) intermediate 123. 
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Scheme 33. Atom transfer radical addition of 119 to alkynes.
[118]

 

 

Very recently, a net redox-neutral generation and reaction of ketyl radicals was developed by 

Nagib and co-workers (Scheme 34).
[119]

 In this transformation, α-acetoxy iodides 127 were 

synthesized in situ by treating the corresponding aldehydes 124 with catalytic amounts of 

Zn(OTf)2. This significantly lowered the reduction potential, making the single electron 

reduction much more accessible. These α-acetoxy iodides were coupled in ATRA reactions 

with alkynes which gave rise to synthetically versatile Z-vinyl halides 126 in up to 20:1 

diastereomeric ratio. However, this reaction differs from the classic photoredox 

transformations as no photons are used for the turnover of one catalytic cycle. Instead, visible 

light is used to access the active species of the catalyst. Upon irradiation, the precatalyst dimer 

Mn2(CO)10 is homolytically cleaved to 
•
Mn(CO)5 (= Mn

•
). This catalytically active species is 

able to abstract I
•
 from α-acetoxy iodides 127 to produce a ketyl radical intermediate 128 and 

a Mn-I species. The ketyl radical readily reacts with alkyne 125 giving rise to a vinyl radical 

intermediate 129. This recombines with Mn-I to provide the final product 126 and closes the 

catalytic cycle. Regarding the high diastereomeric ratio in the product, the authors propose a 
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post-reaction product isomerization mechanism. They supported this theory by conducting a 

control experiment of a 1:1 E/Z mixture of the product which readily epimerized in the 

presence of the active Mn-catalyst.  

 

Scheme 34. Manganese catalyzed net redox-neutral generation and functionalization of ketyl radicals 

with visible light. Mn
•
 = 

•
Mn(CO)5.

[119]
 

 

Visible light photoredox catalysis proves to be a future-oriented tool and many notable 

reactions were reported over the last years.
[21-25,69,76,120,121]

 Many of these powerful 

transformations were previously in the need of toxic chemicals like SnBu3H or required harsh 

reaction conditions such as dangerous UV-light or highly elevated temperatures. Herein, 

visible light represents an elegant solution to circumvent these issues as benign and mild 

activation method. However, nearly all of these great examples on visible light mediated 

generation and functionalization of vinyl radical intermediates focused on intramolecular 

transformations. In sharp contrast, intermolecular reactions attracted much less attention and 

only few reports can be contemporary found in the literature. From a synthetic point of view, 
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this would be much more desirable as it would dramatically increase the potential to unlock 

novel and unprecedented bond formations. Therefore, the main part of this thesis deals 

completely with the comparably underexplored intermolecular functionalization of vinyl 

radicals. 
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B Visible light mediated activation of vinyl halides 

1 Introduction 

 

Selective activation of C(sp
2
)-halogen bonds represents one key aspect of modern organic 

synthesis. In this regard, palladium-catalyzed cross-coupling reactions proved to be a 

milestone for constructing novel C-C bonds and have been well studied over the past 

50 years.
[122-126]

 As an alternative approach, C(sp
2
)-halogen bonds can be activated by single 

electron reduction. First realized via electrochemical methods in the 1970s,
[127]

 this principle, 

however, remained comparably underexplored. Upon uptake of one single electron, the C-X 

(X = halogen atom) bond of the substrate is decisively weakened.
[128]

 As a consequence, the 

corresponding radical anion (C-X
•–

) readily undergoes fragmentation into a carbon-centered 

radical (C
•
) and a halide anion (X

–
) (Scheme 35).

[128,129]
 Conversely, analogous dissociation 

into the carbanion (C
–
) and the halide radical (X

•
) is rather unlikely due to electronic 

reasons.
[130]

 

 

Scheme 35. Reductive cleavage of C-X bonds. R = Caryl or Cvinyl; X = halogen atom. 

 

In the past, various kinetic studies and calculations regarding the bond fragmentation have 

been performed. It has been shown that cleavage of the C-X bond can either follow a 

concerted or a stepwise mechanism.
[128,129,131,132]

 While for aliphatic compounds a concerted 

mechanism is proposed after uptake of one electron,
[133,134]

 both pathways might be possible 

for aromatic C-X bonds.
[128,135]

 Therefore, compounds having relatively large bond 

dissociation energies (BDE) of the C-X bond like chloro- or bromobenzene are considered to 

follow a stepwise mechanism whereas a concerted mechanism is proposed in the case of 

iodobenzene.
[129,136,137]
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Each compound is defined by its standard reduction potential E
°
1/2 which describes an 

electrochemical half reaction and represents the tendency of a compound to undergo single 

electron reduction or oxidation. According to this, strongly shifted negative values imply that 

such substrates are hard to reduce and require an increased electrical potential and vice 

versa.
[70]

 The standard reduction potential of a compound can easily be obtained by cyclic 

voltammetry (CV) and is generally measured in volts at standard conditions. In this thesis all 

values are referred to the saturated calomel electrode (SCE). However, limitations for such 

transformations are often observed for molecules bearing low lying π*-orbitals like 

NO2-substituted compounds.
[83,138,139]

 Such molecules regularly exhibit similar reduction 

potentials regardless of their complete structure. This is mainly due to the fact that nitro 

functional groups are excellent electron acceptors.
[130,140]

 As a result, this can dramatically 

disturb the bond fragmentation because cleavage can only occur when the accepted electron is 

actually located in the σ*-orbital of the C-X bond.
[132,141]

  

In the recent years, electrochemistry emerged as a valuable tool in organic chemistry.
[20,142]

 In 

this regard, even challenging C-X bond fragmentations were accessible by applying high 

currents. Still, electrochemical processes suffer from one crucial drawback as these redox 

reactions can either be oxidative or reductive, but not both at the same time.
[24]

 This limitation 

can be elegantly overcome by visible light mediated photoredox catalysis. The combination of 

reductive cleavage to access free radicals, followed by subsequent oxidation of radical 

intermediates is a commonly utilized principle in photoredox catalysis which enabled the 

formation of spectacular and unprecedented new bonds.
[21,63,76]
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2 Preliminary studies with vinyl bromides 

2.1 Cleavable redox auxiliary as activating group 

 

Although it has already been shown that vinyl radicals are versatile intermediates in organic 

chemistry (vide supra), the direct formation of such radicals by activation of C(sp
2
)-X bonds 

with visible light, however, attracted much less attention and only few examples were 

reported in the literature.
[94,95,114,138,139]

 In 2014, Reiser and co-workers successfully 

introduced α-bromo chalcones 131 as useful vinyl radical precursors (Scheme 36).
[138,139]

 

Upon irradiation with visible light, the C-Br bond of 131 could be cleaved after injection of 

one single electron by the excited iridium photocatalyst. After Br
-
 extrusion, the vinyl radical 

was readily coupled with a large number of alkenes or various heterocycles which gave rise to 

substituted 3,4-dihydronaphtalenes 132 or complex polycyclic compounds 133. 

 

Scheme 36. Visible light mediated activation of α-bromo chalcones 131.
[138,139]

 

 

Even though the scope of the reaction was large, this transformation suffered from a severe 

drawback. The reaction was strongly limited to the extended π-system of the chalcone 

scaffold. In fact, the authors disclosed only one example for which the developed protocol 

was successfully transferred to a decreased π-system such as α-bromo ethyl cinnamate (134) 

(Scheme 37). Yet, from a synthetic point of view, this would be highly desirable. In sharp 

contrast to the aromatic ring of the chalcone, the ester functionality allows further 

transformation into chemically useful compounds. 
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Scheme 37. Successful coupling of α-bromo ethyl cinnamate (134) with pyrrole (135).
[138]

 

 

In 2012, Yoon and co-workers demonstrated that α,β-unsaturated 2-imidazolyl ketones 137 

readily underwent [2+2] cycloaddition with a variety of Michael acceptors (Scheme 38).
[143]

 

These cyclobutane adducts could be easily converted into carboxamides, esters, thioesters, 

and acids by subsequent cleavage of the imidazolyl core. Most importantly, these products 

were not accessible via the direct visible light mediated cycloaddition of the α,β-unsaturated 

carbonyl compounds. The authors found that the involvement of an aryl enone turned out to 

be a strict requirement for the successful photoreaction. However, by installing an imidazolyl 

“redox auxiliary” they were capable of miming the aromatic property of the aryl enone and 

concluded that the imidazolyl group temporarily modulates the reduction potential. 

 

Scheme 38. Overcoming the limitation for the [2+2] cycloaddition of enones.
[143]

 

 

The key step in both syntheses consisted of an initial single electron reduction of the model 

substrate by the excited photocatalyst. Therefore, it seemed feasible that the previously 
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discussed limitation of the chalcones might also be elegantly overcome by following this 

principle. A retrosynthetic plan to key α-bromo chalcone derivative 143 as photochemical 

precursor was easily designed and is depicted in Scheme 39. Acetylation of commercially 

available N-methylimidazole (146) should give ketone 145 which can undergo an aldol 

condensation with benzaldehyde to produce imidazolyl-substituted chalcone derivative 144. 

The final α-bromo chalcone derivative 143 as vinyl radical precursor should be achieved via 

selective bromination. Subsequent photochemical coupling and cleavage of the auxiliary 

should overcome previously mentioned aryl limitation and give access to a broad variety of 

novel carbonyl functional groups which might be valuable building blocks for future 

transformations. 

 

Scheme 39. Retrosynthetic route to α-bromo chalcone derivative 143 as photochemical precursor. 

 

Based on the literature, N-acetylated morpholine (149) seemed to be the most promising 

reagent for the acylation of N-methylimidazole (146) which could be quantitatively obtained 

by stirring morpholine (147) in isopropenyl acetate (148) at elevated temperatures 

(Scheme 40).
[144]
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Scheme 40. Acetylation of morpholine (147). 

 

Acetylation of N-methylimidazole (146) was carried out by treating 146 with 
n
BuLi at low 

temperatures. The corresponding anion was subsequently trapped by previously synthesized 

acyl imidazole 149 to give ketone 145 in high yields (Scheme 41).
[145,146]

 

 

Scheme 41. Preparation of imidazolyl ketone 145. 

 

The desired chalcone derivative 144 was quantitatively prepared in a Claisen-Schmidt 

condensation of 145 with benzaldehyde (150) (Scheme 42).
[145,146]

 

 

Scheme 42. Claisen-Schmidt condensation to 144. 

 

Selective α-bromination of 144 was carried out under previously established conditions for 

chalcones.
[138]

 Therefore, Br2 was prepared in situ by oxidation of HBr with 

OXONE
®
 (= potassium peroxymonosulfate), followed by selective bromide elimination with 

NEt3 to vinyl bromide 151. Unfortunately, bromination of the aromatic ring also occurred 

which undeniably led to a complex reaction mixture (Table 1, entry 1). As bromination of 



Main part 

 
36 

 

imidazole is well known,
[147]

 a short screening was conducted in order to increase the 

selectivity (Table 1).  

Table 1. Bromination of chalcone derivative 144.
a
 

 

Entry Bromination agent Yield (%)
e
 

151a / 151b 

1
b 

HBr, OXONE
®
 complex mixture 

2
c 

Br2 44 / - 

3
d 

HBr, OXONE
®
 - / 74 

a
Reactions were performed on a 2 mmol scale in DCM. NEt3 (5 equiv) was added after full 

bromination was observed. 
b
HBr (2 equiv), OXONE

®
 (1.2 equiv), rt, 3 d. 

c
Br2 (1.2 equiv), 0 °C, 1 h. 

d
HBr (4 equiv), OXONE

®
 (2.4 equiv), rt, 3 d. 

e
Isolated yields. 

 

Direct addition of Br2 at lower temperature was found to successfully suppress the undesired 

bromination of the imidazole ring and 151a was isolated in moderate yields (entry 2). Still, 

formation of by-products diminished the yield. In addition, it was decided to take fully 

brominated product 151b into account since the imidazole scaffold should be cleaved in the 

course of the subsequent transformations anyhow and, in principle, should not disturb the 

photochemical coupling. Gratifyingly, using an excess of HBr and OXONE
®
 resulted in 

desired product 151b in high yields (entry 3).  

With both products in hand, vinyl bromides 151a and 151b were subjected to photochemical 

test reactions. Preliminary studies were carried out using electron rich enol acetate 152a, a 

classic trapping reagent in photochemical couplings (Table 2).
[148,149]
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Table 2. Preliminary studies of newly synthesized α-bromo chalcone derivatives.
a
 

 

Entry Substrate  Product  Yield (%)
b
 

1 R = H 151a R = H 153a - 

2 R = Br 151b R = Br 153b 45 

a
Reactions were performed on a 0.5 mmol scale with 151 (1 equiv), 152a (5 equiv), H2O (1.1 equiv), 

Ru(bpy)3Cl2 (1 mol%) in 2 mL DMF. 
b
Combined isolated yields of separated E and Z isomer. E/Z 

ratio of approximately 1:1. 

 

As enol acetates have already been proven to serve as reliable trapping reagents for 

α-bromo chalcones in the past, the photochemical coupling seemed to be promising.
[150]

 

Unfortunately, no product was formed when substrate 151a was subjected to previously 

optimized reaction conditions (entry 1).
[151]

 In contrast, the fully brominated substrate 151b 

was successfully coupled with enol acetate 152a as the expected 1,4-dicarbonyl compound 

153b was isolated in moderate yields (entry 2). Before any further optimization was 

attempted, it was a priori checked if photocoupled product 153b can in general be converted 

to ester 154. Methylation should transform the imidazolyl scaffold in a good leaving group 

which could then be replaced by nucleophiles. However, no product was formed when the 

previously developed protocol from Yoon and co-workers was applied. Instead, complete 

decomposition of the starting material took place (Scheme 43).
[143]

 

 

Scheme 43. Failed cleavage of the imidazolyl redox auxiliary.
[143]

 

 

In summary, the visible light mediated activation of α-bromo chalcone derivatives 151a and 

151b was examined. As previous investigations were prone to be strictly limited to the 
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aromatic moiety of chalcones, it was attempted to bypass these tedious requirements with the 

help of a cleavable redox auxiliary. In this regard, a broader substrate scope should be 

accessible by cleaving the auxiliary after the successful photoreaction as the group of Yoon 

has already demonstrated.
[143]

 Although the synthesis to chalcone derivative 144 was easily 

achieved, the bromination step appeared to be sensitive towards side reactions. Nevertheless, 

non-brominated and fully brominated products 151a and 151b were isolated and subjected to 

previously optimized photoconditions. Surprisingly, only the fully brominated substrate 151b 

could be successfully coupled, albeit only in moderate yields. Unfortunately, substitution of 

the 2-imidazolyl auxiliary failed. Due the sluggish bromination step, combined with the 

disappointing photoreaction and the unsuccessful cleavage of the auxiliary, this project was 

stopped at this time. Even if the cleavage of fully brominated substrate 153b would have 

worked, the bad atom economy in 153b makes this process highly inefficient and 

environmentally unsustainable. 
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2.2 Controlling the reduction potential 

 

A central part in visible light mediated photoredox catalysis is defined by the standard 

reduction potential E
°
1/2. Each photocatalyst exhibits its own unique reduction potential in 

each stage of the photochemical cycle and thereby often points out the limitation of a 

photochemical transformation.
[70]

 As a consequence, the photocatalyst must exhibit a more 

negative reduction potential to successfully enable single electron transfer to the substrate. 

While this issue can easily be solved by applying higher currents in electrochemistry, 

photochemical transformations are in that regard often confined. In the past, these 

electrochemical limitations could be circumvented by in situ transformations into more 

reactive intermediates,
[152]

 or by converting electrochemically inert functional groups into 

redox active substrates facilitating single electron reduction.
[153,154]

 In order to shift the 

electrochemical potential to a region which is more accessible for the photocatalyst, thereby 

making single electron reduction more likely, it is often helpful to introduce electron 

withdrawing groups.
[70]

 This principle has already been exploited in photoredox chemistry 

with visible light and is exemplarily outlined by previous work on photochemical 

deoxygenation of alcohols by the group of Reiser (Scheme 44).
[154]

 Here, the authors 

demonstrated that activated benzoates 159 readily underwent single electron reduction. In 

sharp contrast to unactivated benzoates, the reduction potential could be considerably 

manipulated by trifluoromethylations. 

 

Scheme 44. Benzoates as activation group for photochemical deoxygenation with visible light. 

Influence of the trifluoromethyl substitution on the reduction potential.
[154]
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In the previous chapter it has been mentioned that α-bromo chalcone (131) could be readily 

photochemically activated and successfully coupled with a great variety of substrates while 

structurally related α-bromo ethyl cinnamate (134) turned out to be surprisingly inert. Indeed, 

cyclic voltammetry measurements quickly revealed that 134 is by far more difficult to reduce. 

Compared to α-bromo chalcone (131) with a reduction potential of -0.88 V vs SCE,
[138]

 

α-bromo ethyl cinnamate (134) exhibits a significantly more challenging reduction potential 

of -1.54 V vs SCE (Table 3). Therefore, in the oxidative quenching cycle, only the precious 

iridium-based photocatalyst fac-Ir(ppy)3 (E
°
M

+
/M* = -1.73 V vs SCE) should be able to reduce 

134 which explains the previously observed sluggish reactivity (cf. Chapter 3). 

Table 3. Comparison of the reduction potential of 131 and 134 along with the reduction potentials of 

commonly employed photocatalysts.
a
 

 

Entry Photocatalyst E
°
M

+
/M* E

°
M/M

- 

1 Ru(bpy)3Cl2 -0.81 V -1.33 V 

2 Ir[dF(CF3)ppy]2(dtbbpy)PF6 -0.89 V -1.37 V 

3 Ir(ppy)2(dtbbpy)PF6 -0.96 V -1.51 V 

4
b
 Cu(dap)2Cl -1.43 V - 

5
c
 fac-Ir(ppy)3 -1.73 V -2.19 V 

a
E

°
M

+
/M* = oxidative quenching cycle; E

°
M/M

- = reductive quenching cycle. All potentials are given in V 

vs the saturated calomel electrode (SCE).
[70]

 Measurements were performed in MeCN at rt unless 

otherwise noted. 
b
Determined in DCM. 

c
Determined in EtOH / MeOH, 1:1. 

 

However, in terms of sustainability it would be much more desirable to use a more abundant 

metal like ruthenium as central part of the catalyst. Therefore, based on previous 

investigations regarding the reduction potential of fluorinated benzoates, a similar trend was 

envisioned with trifluoromethylated phenyl cinnamates 162. These should be easily accessible 

by esterification of commercially available cinnamoyl chloride (164) with phenols 165. 

Bromination should be carried out similarly to the previously described procedure and 

transesterification or ester saponification should help to overcome present substrate limitation 

after ensued photochemical coupling (Scheme 45). 
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Scheme 45. Retrosynthetic route to fluorinated α-bromo phenyl cinnamates 162. 

 

Utilizing a standard protocol for esterifications of cinnamoyl chloride with phenols,
[155]

 a 

variety of substituted phenyl cinnamates 166 were obtained in excellent yields (Scheme 46). 

In addition, phenyl cinnamate (167) and benzyl cinnamate (168) were also synthesized and 

should serve as reference value to α-bromo ethyl cinnamate (134). Subsequent bromination 

and elimination gave desired α-brominated products in high yields except for perfluorinated 

phenyl cinnamate (175) which decomposed under such conditions (Scheme 47).  
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Scheme 46. Synthesis of fluorinated phenyl cinnamates. 

 

 

Scheme 47. Synthesis of α-bromo phenyl cinnamates along with their measured reduction potential. 

Products obtained as E/Z mixtures. For details see Experimental part. 
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However, cyclic voltammetry measurements of these newly synthesized substrates revealed 

that the desired substitution effect was non-existent. Unfortunately, trifluorosubstituted 

substrate (174) exhibited nearly the same reduction potential as non-substituted phenyl 

cinnamate (172) and a negligible outcome compared to α-bromo ethyl cinnamate (134). This 

was unexpected because in the case of the benzoates, the 3-substituted trifluoromethylated 

substrates perceptibly differed from the non-substituted.
[154]

 Unfortunately, the introduction of 

additional trifluoromethyl substituents seemed to be disproportionately cost-intensive and 

required hazardous starting materials.
[156]

 Therefore, further evaluation of trifluoromethylated 

phenyl cinnamates was omitted. 
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2.3 Utilizing the reductive quenching cycle 

 

In principal, a photoreaction can follow two different reaction pathways. The excited state of 

the photocatalyst can be oxidatively or reductively quenched, often depending on the specific 

reaction conditions. In this regard, additives might help to drive the reaction into one direction 

and therefore to get control over the mechanism. So far, the preceding reactions were 

performed in the oxidative quenching cycle and did not require any additives. Both cycles are 

in general limited by their unique reduction potentials. In fact, much stronger reducing 

capabilities of the photocatalysts can be reached by utilizing the reductive quenching cycle.
[70]

 

This pathway can easily be accessed by adding substrates which are readily oxidized. In this 

regard, reliable reductants are typically based on low-priced trialkylamines.
[92]

 While 

reactions performed in the reductive quenching cycle generally proceed considerably 

faster,
[82]

 problems can hereby arise with the oxidized amines. Single electron oxidation of 

trialkylamines results in substantial acidification of the C-H bond adjacent to the nitrogen 

atom which considerably weakens the bond strength.
[157,158]

 As a result, these oxidized amines 

(R3N
•+

) are extraordinary hydrogen donors (Scheme 48).
[79]

 This can often be desired, e.g. in 

the case of defunctionalizations,
[62,94]

 but on the contrary this can also dramatically disturb the 

mechanism and lead to undesired by-products.
[159,160]

 In order to suppress the formation of 

by-products it might help to employ aromatic amines lacking any α-C-H bonds like NPh3 or 

derivatives thereof.
[79,159]

 

 

Scheme 48. Simplified model of trialkylamines in photoredox catalysis.
[79]

 

 

As all attempts to broaden the substrate scope by manipulating the aryl enone system failed so 

far (vide supra), direct functionalization of α-bromo ethyl cinnamate (134) was reconsidered. 
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Utilizing the reductive quenching cycle, different iridium-based photocatalysts should 

generally be able to successfully inject one electron into 134. However, previous 

investigations on chalcones 176 have already shown that simple trialkylamines like NEt3 

exclusively formed unprofitable hydrodehalogenated product 179 instead of desired 

polycyclic compound 178 (Scheme 49).
[138]

 

 

Scheme 49. Visible light mediated coupling of α-bromo chalcone (176) with furan (177).
[138]

 

 

In 2012, Stephenson and co-workers successfully suppressed undesired hydrodehalogenated 

product 183 by utilizing inexpensive sodium ascorbate as sacrificial electron donor. In this 

regard, the authors developed a protocol which completely eliminated unpreferred 

hydrodehalogenated side-product by using substoichiometric amounts of reductant 

(Scheme 50).
[82]

 

 

Scheme 50. Sodium ascorbate as reductive quencher in photoredox catalysis.
[82]

 

 

Inspired by these results, it was hypothesized that these findings could also be utilized for the 

functionalization of α-bromo ethyl cinnamate (134) in the reductive cycle. For a reasonable 

comparison, furan (177) was chosen as trapping reagent as it has already been successfully 

employed in the coupling with α-bromo chalcones in the reductive quenching cycle 

(Table 4).
[138]
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Table 4. Visible light mediated coupling of α-bromo ethyl cinnamate (134) and furan (177) with 

sodium ascorbate as reductive quencher.
a
 

 

Entry Catalyst 

(1 mol%) 

Sodium ascorbate 

(equiv) 

Solvent Yield (%)
b
 

of 184 

1 fac-Ir(ppy)3 1.5 MeCN / MeOH - 

2 Ir(ppy)2(dtbbpy)PF6 2.0 MeCN / MeOH traces 

3
c
 Ir(ppy)2(dtbbpy)PF6 1.0 MeCN / MeOH traces 

4
d
 Ir(ppy)2(dtbbpy)PF6 0.35 MeCN / MeOH traces 

a
Reactions were performed with 134 (0.5 mmol), 177 (2.5 mmol), photocatalyst (1 mol%) in MeCN 

(1.4 mL) and MeOH (1.0 mL). 
b
Isolated yields after column chromatography. 

c
No full conversion was 

observed. 
d
Only 50% conversion was observed. 

 

Preliminary studies were carried out with either fac-Ir(ppy)3 or Ir(ppy)2(dtbbpy)PF6 since 

these two catalysts exhibit the highest reducing power in the reductive quenching cycle. Both 

photocatalysts should be in the range of α-bromo ethyl cinnamate (134) with a measured 

reduction potential of -1.54 V vs SCE. Surprisingly, strongly reducing fac-Ir(ppy)3 (E
°
M/M

-

 = -2.19 V vs SCE)
[70]

 was found to be completely inactive (entry 1). Turning to less reducing 

Ir(ppy)2(dtbbpy)PF6 (E
°
M/M

-
 = -1.51 V vs SCE)

[70]
 resulted in full conversion of starting 

material with two equivalents of sodium ascorbate (entry 2). Unfortunately, only traces of 

product were found and only hydrodehalogenated product was obtained. As sodium ascorbate 

seemed to be the obvious hydrogen source,
[95,161]

 the amount of the sacrificial electron donor 

was next lowered (entry 3 or 4). As a result, this suppressed the formation of reduced product 

but resulted in incomplete consumption of the starting material. Therefore, no rise of desired 

product was obtained. Although the reductively quenched Ir(ppy)2(dtbbpy)PF6 was indeed 

capable of activating α-bromo ethyl cinnamate (134), the nature of the vinyl radical seemed to 

be too reactive.
[3,7]

 Even an excess of electron rich trapping reagent did not outcompete 

undesired hydrogen atom transfer (HAT) by the oxidized sodium ascorbate. 
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As sodium ascorbate was found to be unsuitable as reductive quencher, alternative reagents 

were needed. Recently, Weaver and co-workers were confronted with a similar problem 

during their studies on the functionalization of 2-azoyl radicals.
[162,163]

 While working on the 

photo-induced activation of 2-bromo thiazoles (186), the authors also struggled with 

undesired hydrogen atom abstraction by the reductive quencher which inevitably resulted in 

unprofitable defunctionalization to thiazole (189). However, they were able to overcome this 

issue by exploiting the bad solubility of nonpolar amines like 190 in MeCN.
[163]

 By this 

means, it was possible to keep the active amine concentration low minimizing the formation 

of defunctionalized by-product 189 (Scheme 51). 

 

Scheme 51. Photocatalytic generation of 2-azoyl radicals with unconventional amines as single 

electron reductants.
[163]

 

 

Different unpolar trialkylamines were screened and best results were obtained with bulky 

N-cyclohexyl-N-isobutylcyclohexanamine (190) which exhibits a solubility of only 0.01 M in 

MeCN at ambient temperature, more than a hundredfold less than DIPEA for example (1.3 M 

in MeCN).
[163]

 Due to the structurally relation of aryl radicals to vinyl radicals, it was 

speculated that undesired hydrodefunctionalization could also be suppressed under such 

conditions. N-cyclohexyl-N-isobutylcyclohexanamine (190) was quickly synthesized by 

literature known reduction of amide 193 with LiAlH4 (Scheme 52).
[164]
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Scheme 52. Synthesis of N-cyclohexyl-N-isobutylcyclohexanamine (190).
[164]

 Cy = cyclohexyl. 

 

With bulky amine 190 in hand, different tertiary amines were tested as potential additives 

(Table 5). Indole (194) was chosen as model substrate this time. First test reactions were 

carried out with Ir(ppy)2(dtbbpy)PF6 since this photocatalyst exhibited the highest activity so 

far. Unfortunately, when the reaction was performed with commercially available NBu3, only 

decomposition of starting material was observed (entry 1). Gratifyingly, 
i
BuN(Cy)2 (190) as 

potential reductant promoted the reaction as 19% of polycyclic compound 195 was isolated 

(entry 2). However, hydrodebrominated product 185 still turned out to be the major product in 

this reaction even though 
i
BuN(Cy)2 was not completely dissolved in MeCN. Reducing the 

amount of sacrificial electron donor and adding K2CO3 as non-redox active co-base did not 

give better results (entry 3). In order to push the yield more into the direction of desired 

coupling product, the amount of indole was increased (entry 4). As expected, higher yields of 

195 were obtained, while simultaneously the amount of by-product 185 was decreased. 

Lastly, different photocatalysts were screened (entry 5 – 6). It turned out that all catalysts 

were nearly equally active but none of them gave better yields than 25% of the corresponding 

product. 
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Table 5. Photomediated coupling between α-bromo ethyl cinnamate (134) and indole (194).
a
 

 

Entry Catalyst Indole (equiv) Electron donor (equiv) Yield (%)
b
 

195 / 185 

1 Ir(ppy)2(dtbbpy)PF6 (2.0) NBu3 (2.0) - 

2 Ir(ppy)2(dtbbpy)PF6 (2.0) 
i
BuN(Cy)2 (2.0) 19 / 42 

3
c
 Ir(ppy)2(dtbbpy)PF6 (2.0) 

i
BuN(Cy)2 (0.5) 16 / 32 

4 Ir(ppy)2(dtbbpy)PF6 (5.0) 
i
BuN(Cy)2 (2.0) 24 / 6 

5 Ir[dF(CF3)ppy]2(dtbbpy)PF6 (5.0) 
i
BuN(Cy)2 (2.0) 25 / 13 

6 Ru(bpy)3Cl2 (5.0) 
i
BuN(Cy)2 (2.0) 24 / 26 

a
Reactions were performed on a 0.5 or 0.3 mmol scale with 1 mol% photocatalyst in 2.5 mL solvent. 

b
Yields were determined by 

1
H-NMR analysis using 1,3,5-trimethoxybenzene as internal standard. 

Both isomers of undesired hydrodehalogenated products 185 were formed. 
c
K2CO3 (2.0 equiv) was 

added as additional base. 

 

In conclusion, the observed conversion of starting material was rather low in all cases. 

Additionally, undesired reduced product 185 was either predominantly formed or at least to a 

significant extent. This could be slightly suppressed by increasing the amount of trapping 

reagent. However, further increase of the equivalents of indole would not have been feasible, 

as isolation problems would become problematic. As ethyl cinnamate (185) is industrially 

produced by esterification of cheap cinnamic acid, this defunctionalization is completely 

unprofitable.  
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2.4 Formation of the vinyl radical in situ by a multicomponent cascade process 

 

Multicomponent reactions (MCRs) represent a powerful tool in organic chemistry to quickly 

access complex structures from simple starting materials by forming multiple bonds at one 

time.
[165-170]

 A MCR is usually defined as an one-pot reaction with at least three different 

components which incorporates large fragments of all starting materials in the final 

framework of the product. As a consequence, this can quickly result in a huge database of 

different derivatives due to possible functionalization at diverse locations in the molecule. 

However, the most prevalent MCRs are based on ionic reactions, whereas radical processes 

are rather scarce.
[171]

 Problems can obviously arise by competing cross-reactions of the 

radicals which lead to tedious side-products, therefore diminishing the yield. However, this 

can be bypassed via radical polar effects or by careful adjustment of the stoichiometry or the 

conditions.
[172,173]

 This has been very recently exploited by Chu and co-workers in a 

four-component radical trifluoromethylation cascade reaction. Therein, an electrophilic 

CF3-radical was first created from Togni’s reagent (196) and Hantzsch ester (197) by an 

electron-donor-acceptor complex (EDA) which was first coupled with an electron-rich alkene 

198 and subsequently with an electron-deficient olefin 199 (Scheme 53).
[174]

 

 

Scheme 53. Multicomponent radical cascade by Chu et al. Radical cross-reactivity was successfully 

suppressed via radical polar effect.
[174]

 

 



Main part 

 
51 

 

Although some mixed ionic / radical multicomponent processes mediated by visible light can 

be found,
[175-178]

 pure multicomponent radical reactions are rather scarce. Very recently, 

Wallentin and co-workers disclosed a photoredox three-component reaction (Scheme 54).
[179]

 

Again, selectivity prevailed by a radical polar effect. Based on the oxidative quenching cycle 

of fac-Ir(ppy)3, acyl radicals were generated from anhydrides which were formed in situ from 

carboxylic acids 201 and dimethyl carbonate (DMDC). These electron-rich acyl radicals 

readily react with electron-deficient double bonds 202 which can further couple with 

electron-rich silyl enol ethers 203. 

Scheme 54. Visible light mediated redox-neutral three-component reaction.
[179]

 

 

As the direct activation of the C-Br bond of 134 through a photoinduced electron transfer 

(PET) was found to be unsuitable to access vinyl radical key intermediate 205, it was next 

hypothesized if such a reactive intermediate could be created in situ from other readily 

accessible radical precursors (Scheme 55). In principle, vinyl radicals can be formed by the 

addition of carbon-centered radicals to alkynes.
[3,5,7]

 In order to access a similar intermediate, 

an aryl radical should be coupled with ethyl propiolate (207). In this regard, aryl diazonium 

salts have already been proven to be suitable aryl radical precursors in photoredox catalysis 

due to their relatively high reduction potentials.
[105,148,177,180-183]
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Scheme 55. Planned synthetic design to access vinyl radical key intermediate in situ. 

 

Ethyl propiolate (207) was commercially available and aryl diazonium tetrafluoroborates 206 

can easily be obtained by treating the corresponding aniline with NaNO2 in the presence of 

HBF4.
[148]

 In order to increase the radical polar effect, electron-rich aryl diazonium salt 209 

was chosen as model substrate (Scheme 56).  

 

Scheme 56. Synthesis of aryl diazonium salt 209.
[148]

 

 

Again, previously synthesized enol acetate (152a) should serve as trapping reagent 

(cf. Chapter 2.1). Selectivity should be preserved by radical polar effect. Therefore, 

electron-rich aryl radical 211 should readily add to electron-deficient ethyl propiolate (207) to 

give relatively electron-poor vinyl radical key intermediate 212 which can further be coupled 

with electron-rich enol acetate 152a (Scheme 57). However, selectivity problems can easily 

occur through side-reactions. In this regard, the photoinduced direct coupling between aryl 

diazonium salts and enol acetates have already been described in the literature,
[148]

 as well as 

HAT to quench either the aryl radical intermediate,
[182]

 or the vinyl radical intermediate.
[138]
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Scheme 57. Planned photocatalytic three-component cascade reaction. 

 

With all starting materials in hand, first test reactions were performed with Ru(bpy)3Cl2, 

because this photocatalyst has already proven to be active for the coupling of vinyl radicals 

with enol acetates (cf. Chapter 2.1).
[150,151]

 Also DMF seemed to be the most suitable solvent 

as visible light induced photoredox reactions with aryl diazonium salts,
[148,182,184,185]

 as well as 

previous reports on vinyl radicals were conducted in this polar solvent (Table 6).
[138,139]
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Table 6. Visible light promoted three-component reaction.
a
 

 

Entry Aryl diazonium 

salt 209 (equiv) 

Ethyl propiolate 207 

(equiv) 

Enol acetate 152a 

(equiv) 

DMF (mol/L) Yield 

(%)
b
 

1 1.0 2.0 1.2 0.2 -
c
 

2 1.0 6.0 1.2 0.2 19 

3 2.0 6.0 1.0 0.2 22 

4 2.0 6.0 1.0 0.5 27 

5 2.0 6.0 1.0 0.16 -
c
 

a
Reactions were performed on a 0.5 or 0.3 mmol scale with 1 mol% photocatalyst in DMF. 

b
Combined 

isolated yields of separated E and Z isomer after purification via column chromatography. 
c
Complex 

reaction mixture was obtained. 

 

However, first reaction with only two equivalents of alkyne 207 only resulted in a complex 

mixture between potential desired product 210 and several literature known by-products 

(Table 6, entry 1).
[138,148,182]

 In order to minimize cross-reactivity and push the selectivity 

more to product 210, the amount of ethyl propiolate (207) was investigated next. Indeed, an 

excess of six equivalents of 207 gave the desired coupling product in 19% yield (entry 2). But 

still, significant amounts of cross-reactions prevented higher yields of 210. Slightly higher 

yields were obtained by using an excess of diazonium salts which made the enol acetate the 

stoichiometric limiting compound (entry 3). A higher concentration reduced the amount of 

by-products, but nonetheless only 27% yield of desired product could be isolated (entry 4). As 

expected, when the reaction mixture was more diluted, only traces of product were obtained 

and side reactions were favored (entry 5). 

Scheme 58 depicts a plausible reaction mechanism based on recent literature reports.
[148,149]

 

The catalytic cycle is initiated by photoexcitation of Ru(bpy)3Cl2 with visible light. The 

excited catalyst is oxidatively quenched by aryl diazonium salt 209 providing aryl radical 211. 

This electron-rich radical can couple with electron-deficient alkyne 207 generating vinyl 

radical intermediate 212. Subsequently, this electron-poor radical can be trapped by 
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electron-rich enol acetate 152a. Radical 213 is oxidized to the cation 214 via another SET 

either by the photocatalyst which closes the catalytic cycle or by initiating a radical chain 

process. Product 210 is formed after release of an acyl cation which can be trapped by DMF 

for example.  

 

Scheme 58. Plausible reaction mechanism to form product 210. 

 

Unfortunately, only small amounts actually followed this pathway as only 27% of desired 

product was isolated at best. Indeed, the proposed reaction mechanism is prone towards 

several side reactions (Scheme 59). At first, the concentration of alkyne 207 needs to be high 

enough to lead the reaction towards vinyl radical intermediate 212 instead of literature known 

coupling with enol acetate 152a.
[148]

 However, simultaneously the concentration of enol 

acetate 152a also needs to be high for an efficient trapping of the vinyl radical intermediate 

212 in order to suppress HAT to ethyl cinnamate 218.
[138]

 Additionally, a slight excess of aryl 
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diazonium salt is recommended as defunctionalization to anisole (217) will always be present 

to some extent.
[182]

 Unfortunately, this leads to a dilemma. While one side-reaction can be 

efficiently suppressed, it favors another but does not necessarily increase the yield of desired 

product.  

 

Scheme 59. Potential side reactions which can occur during the reaction. Horizontal arrows lead to the 

desired product, whereas vertical arrows lead to literature known by-products. 

 

In principle, higher yields are possible by further enhancing the radical polar effect. 

Therefore, more electron donating or electron withdrawing substituents might be installed to 

suppress undesired cross-reactions. However, this would make this transformation highly 

dependent on electronic effects, therefore dramatically decreasing the scope and thus limiting 

its synthetic value. Therefore, further screening to optimize this reaction was omitted. 
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2.5 Conclusion 

 

In summary, a great variety of attempts were tested in order to bypass previous limitations in 

photoredox chemistry. Based on previous investigations, it was found that the aryl enone 

system seemed to be a strict requirement for the photochemical activation of α-bromo 

chalcones with visible light.
[138,139]

 It has been tried to mimic the aromatic nature of chalcones 

with the help of an aromatic redox auxiliary. Thus, a 2-imidazolyl substituted α-bromo 

chalcone derivative was synthesized. Supported by the literature, this auxiliary should be 

easily cleavable after the photoreaction. However, it turned out that the synthetic route 

towards desired chalcone derivative was not straightforward. Additionally, the yield in the 

photochemical step was disappointingly low and subsequent substitution of the 2-imidazolyl 

core failed. In another attempt several phenyl cinnamates were examined. It was tried to shift 

the reduction potentials into higher regions which would make them more accessible for 

established photocatalysts in the oxidative quenching cycle. In this way, several phenyl 

cinnamates bearing electron withdrawing groups were synthesized. However, it was found 

that these substitutions exhibited nearly no effect on the reduction potentials compared to 

simple ethyl cinnamate. As the oxidative quenching cycle seemed to be ineffective, the 

reductive quenching cycle was investigated next. Here, activation of α-bromo ethyl cinnamate 

was achieved but coupling of the vinyl radical failed. Instead, only hydrodebrominated 

product was obtained, an omnipresent obstacle associated with the reductive quenching cycle. 

At last, it was tried to access the vinyl radical in situ. Thus an aryl radical should first add to 

an alkyne forming the vinyl radical intermediate. This intermediate should further be trapped 

with enol acetates giving highly desirable 1,4-dicarbonyl compounds. Indeed, the product was 

formed and could be isolated but unfortunately, this multicomponent reaction was prone to 

numerous side reactions. This cross-reactivity could not be bypassed which strongly 

diminished the yield of desired product. 
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3 Visible light mediated activation of α-chloro cinnamates
1
 

3.1 Literature background 

 

Selective activation of C(sp
2
)-chloride bonds using transition metal catalysis is still highly in 

demand. In sharp contrast to its heavier analogues, chloro-substituted substrates generally 

exhibit attractive starting materials since they are readily available at a lower cost and also in 

terms of sustainability superior and therefore significantly preferred. On the contrary, 

activation of C(sp
2
)-chloride bonds is often considered challenging due to their noticeable 

higher bond dissociation energy.
[186]

 Therefore, activation of C(sp
2
)-chlorides frequently 

requires special designed catalysts or harsh reaction conditions.
[187]

 In principle, reactivity 

strictly correlates with the bond dissociation energies of C-halogen bonds,
[188,189]

 however, 

some inconsistencies regarding the activation via electrochemical methods can be found in the 

literature. In 2012, Suga and co-workers reported the electro-reductive cyclization of aryl 

halides 219 promoted by 9,9-diethylfluorene (220) as mediator (Scheme 60).
[190]

 Despite 

having the most negative reduction potential, the chloro-substituted compound exhibited the 

highest reactivity compared to its aryl bromide or iodide derivative. This is unusual because 

the expected result should be the other way round. Unfortunately, the authors could not give a 

plausible explanation regarding this exceptional trend. 

 

Scheme 60. Electro-reductive cyclization of aryl halides promoted by fluorene derivatives.
[190]

 

 

                                                           
1
 This chapter is partially based on T. Föll, J. Rehbein, O. Reiser, Org. Lett. 2018, 20, 5794-5798. Appropriate 

copyrights have been obtained where necessary. 
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Although it is clearly known that the bond dissociation energies of the C(sp
2
)-X follows the 

order F>Cl>Br>I,
[186]

 the dissociation and fragmentation rate of C(sp
2
)-X

•–
 attracted 

considerable attention in the past.
[128,129,131-133]

 It has been suggested that the bond dissociation 

energy in the ground state is negligible because the carbon-halogen bond loses the majority of 

the bond strength after addition of one electron.
[130]

 The group of Zhang estimated the bond 

dissociation energies of benzyl chloride and benzyl bromide in the radical anion species  

(RX
•–

). Therein, they concluded that the C-Cl bond is exergonic (-6.5 kcal/mol) towards 

cleavage to the benzyl radical and the chloride anion whereas the C-Br bond in the 

corresponding benzyl bromide was found to be endoenergetic (2.5 kcal/mol).
[130]

 This means 

that fragmentation would unexpectedly be more favored in the case of the chloride. However, 

later the group of Daasbjerg performed similar calculations for the same substrates.
[191]

 In this 

study, the author found that these values should be substantially more negative for both 

substrates. In fact, both substrates should be unstable whereas dissociation in case of the 

bromide should be even slightly more favored (-50 kcal/mol for RCl
•–

 and -56 kcal/mol for 

RBr
•–

). However, this would suggest that despite the huge difference in the ground state, the 

bond dissociation energies of both substrates suddenly converge to a similar value after 

activation, thereby making the previous difference in energy negligible. As a consequence, 

both substrates should immediately undergo fragmentation after injection of one single 

electron. Besides these theoretical studies, there are also additional experimental 

discrepancies in visible light photoredox catalysis. Weaver and co-workers demonstrated that 

2-halo azoles 222 exhibited complete different reactivity based on the attached halogen atom. 

Therein, they reported that 2-chloro azoles readily underwent C-H functionalization with 

amines whereas under similar conditions 2-bromo azoles were preferably coupled with 

alkenes even in the presence of amines (Scheme 61).
[162,192]

 The authors concluded that the 

fragmentation rate of the radical anion is responsible for the different reactivity.
[162]
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Scheme 61. Different reactivity of 2-halo azoles.
[162,163,192]

  

 

Furthermore, it has been proposed that photochemically generated Br
–
 could easily be 

oxidized to Br
•
 in the presence of Ru(bpy)3Cl2.

[193-195]
 This has been exploited to form Br2 

in situ. However, this mechanistic proposal remains questionable because such 

transformations were only investigated with CBr4 as Br
–
 source and in the past it has already 

been demonstrated that fragmentation of polyhalomethanes also works in the absence of any 

photocatalyst.
[196]
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3.2 Optimization of the reaction conditions 

 

In the past, vinyl bromides bearing an extended π-system such as α-bromo chalcones 131 

were found to be excellent vinyl radical precursors under typical photocatalytic conditions 

with visible light (vide supra). However, all attempts to transfer such transformations to more 

reduced π-systems such as α-bromo ethyl cinnamate (228a-Br) gave only mediocre results at 

best so far. This decrease of the conjugated π-system is also reflected in the observed 

difference for the measured reduction potentials. Indeed, the gap between both substrates is 

tremendous (E
°
RX/RX

•–
 = -0.88 V vs SCE for α-bromo chalcone; E

°
RX/RX

•–
 = -1.54 V vs SCE for 

228a-Br), thereby substantially hampering the initial single electron transfer. Nonetheless, 

228a-Br should be amenable for highly reducing fac-Ir(ppy)3 (E
°
M

+
/M* = -1.73 V vs SCE). As 

utilizing the reductive quenching cycle in order to reach more negative reduction potentials 

was found to be unproductive, the oxidative quenching cycle with abovementioned 

photocatalyst was re-investigated. Additionally, considering the aforementioned literature 

aspects regarding the fragmentation of C(sp
2
)-halogen bonds via single electron reduction, 

photochemical activation of vinyl chlorides also seemed theoretically feasible. Therefore, 

α-chloro ethyl cinnamate (228a-Cl) was incorporated in the primary screening experiments. 

Gratifyingly, both substrates are amenable in one step. Applying the general procedure 

developed by Jothi et al., 228a-Br and 228a-Cl were both obtained in reasonable yields as 

diastereomerically pure Z isomer (Scheme 62).
[197]

  

 

Scheme 62. Titanium mediated synthesis of α-halo cinnamates 228a-Br and 228a-Cl. 
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Table 7. Catalyst screening and reaction optimization.
a
 

 

Entry Photocatalyst E
°
M

+
/M* (V vs SCE) X Solvent Yield 

(%)
b
 

1 fac-Ir(ppy)3 -1.73 Br DMF 16 

2 fac-Ir(ppy)3  Br MeCN 8 

3 fac-Ir(ppy)3  Cl DMF 43 

4 fac-Ir(ppy)3  Cl MeCN 58 

5
c
 fac-Ir(ppy)3  Cl MeCN 98 

6
d
 fac-Ir(ppy)3  Cl MeCN 15 

7 Ir(ppy)2(dtbbpy)PF6 -0.96 Cl MeCN - 

8 Ir[dF(CF3)ppy]2(dtbbpy)PF6 -0.89 Cl MeCN - 

9 Ru(bpy)3Cl2 -0.81 Cl MeCN - 

10
e
 Cu(dap)2Cl -1.43 Cl MeCN - 

11
f
 -  Cl MeCN - 

12
g
 fac-Ir(ppy)3  Cl MeCN - 

a
Standard reaction conditions: 228a-X (0.5 mmol), 152a (2.5 mmol), photocatalyst (1 mol%), solvent 

(c = 0.1 M), N2 atmosphere, rt, 24 h, blue LED (λ = 455 nm). 
b
Isolated yields after purification via 

column chromatography. E/Z ratio of approximately 1:1 in all cases. 
c
2mol% catalyst. 

d
Under O2 

atmosphere. 
e
Green LED (λ = 530 nm) was used. 

f
No photocatalyst. 

g
No light. 

 

With both vinyl halides in hand, first test reactions were carried out using fac-Ir(ppy)3 as 

photocatalyst (Table 7). Again, enol acetate 152a should serve as coupling partner. Despite a 

reduction potential of -1.54 V vs SCE in MeCN and thereby clearly in the range of the 

photocatalyst, 228a-Br was found to be unsuitable and gave only traces of the desired 

compound in this transformation (entry 1 and 2). Subjection of 228a-Cl, which reduction 

potential was priorly determined to be -1.64 V vs SCE in MeCN, to similar reaction 

conditions surprisingly gave desired 1,4-dicarbonyl compound 229aa in much higher yields. 

Both DMF and MeCN were found to be suitable solvents and gave rise to 229aa in moderate 

yields (entry 3 and 4). Since MeCN slightly outperformed noxious DMF concerning the yield, 

further optimizations were performed in more benign MeCN. Full consumption of starting 

material and an extraordinary clean conversion towards 229aa was obtained after increasing 
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the catalyst loading to 2 mol% (entry 5). However, an inert atmosphere seemed to be a strict 

requirement in this transformation as strongly diminished yields were obtained under O2 

atmosphere (entry 6). Among other established photocatalysts, fac-Ir(ppy)3 was identified as 

the solely active catalyst which is in line with their more positive reduction potential (entry 

7 – 10). Finally, control experiments proved a photocatalytically driven process as no 

conversion was observed in the absence of either photocatalyst or light (entry 11 and 12). 
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3.3 Substrate scope 

 

It has been shown that fac-Ir(ppy)3 is indeed an efficient photocatalyst for the single electron 

reduction of α-chloro ethyl cinnamate (228a-Cl) in MeCN. Furthermore, after chloride 

extrusion the resulting the vinyl radical intermediate could be readily coupled. Using benign 

visible light as sole energy source, it was found that enol acetate 152a is an excellent trapping 

reagent which gave rise to 229aa in marvelous yields. As activation of C(sp
2
)-chlorides is 

generally highly demanded and the presented reaction produced synthetically useful 

1,4-dicarbonyl compounds, it was decided to further investigate this transformation. 

Therefore, a large set of both α-chloro cinnamates 228 and enol acetates 152 as trapping 

reagents was synthesized. Gratifyingly, most α-chloro cinnamates were accessible by 

applying previously described reaction sequence for 228a-Br and 228a-Cl.
[197]

 Therefore, a 

large set of substrates with various electron donating or withdrawing groups attached on the 

aromatic ring was synthesized from the corresponding readily available benzaldehydes 230 

(Scheme 63). Concerning heterocyclic derivatives, electron rich 2-furyl-substituted and 

electron poor 2-pyridyl derivative were taken into account. Unfortunately, the reaction failed 

for the synthesis of sterically demanding esters 228c and 228d. However, these substrates 

were easily accessed after saponification of the methyl ester 228b to the carboxylic acid 232 

and subsequent re-esterification (Scheme 64). Further potential limitations should be pointed 

out by the non-existent or disconnected π-systems of the substrates 228t and 228u. A 

chlorination elimination sequence was tried for 228t whereas 228u was obtained in an Fe(0) 

mediated protocol developed by Mioskowski et al. (Scheme 65 and 66).
[198,199]
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Scheme 63. Synthesis of α-chloro cinnamates via titanium mediated olefination.
[197]

 

 

 

Scheme 64. Saponification of methyl ester 228b and subsequent esterification to 228c and 228d. 
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Scheme 65. Synthesis of 228t by applying a protocol by Nama et al.
[199]

 

 

 

Scheme 66. Synthesis of 228u by applying a protocol by Mioskowski et al.
[198]

  

 

An overview of the successfully prepared enol acetates 152 is depicted in Scheme 67. Such 

compounds can be obtained in an acid catalyzed reaction between isopropenyl acetate (148) 

and the corresponding ketone 236.
[200]

 Again, focus was laid on several electron withdrawing 

or electron donating groups at different positions at the aromatic ring. Also sterically 

demanding derivative 152k, aliphatic compound 152l and heterocyclic 152m should reveal 

limitations of the planned photocatalytic coupling with α-chloro cinnamates. 
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Scheme 67. Preparation of enol acetates 152.
[200]

 

 

Having synthesized a great variety of α-chloro cinnamates and enol acetates, both substrates 

were subjected to previously optimized reaction conditions (Table 7, entry 5). Gratifyingly, 

ester substitution was well tolerated except for sterically bulky 
t
Bu-ester 229da (Scheme 68, 

229aa – 229ca). Focusing back on originally prepared ethyl ester 228a-Cl, several enol 

acetates were investigated next. As expected, a large number of electron rich enol acetates 

could be readily coupled reflecting the electrophilic nature of the vinyl radical (229ab –

 229af). Additionally, high yields usually prevailed at ortho- or para-substituted compounds. 

Moreover, weak electron acceptors still gave the desired 1,4-dicarbonyl compound in 

appreciable yields (229ah – 229aj). Notably, no cross-reactivity was observed with attached 

halogen substituents in the aromatic moiety of the enol acetates. However, the transformation 

was found to be sensitive towards sterically more demanding trapping reagents (229ak). 

Unfortunately, aliphatic enol acetates gave the desired product only in strongly diminished 

yields (229al) and heterocyclic enol acetate 152m was not tolerated at all due to known 

cross-reaction of radical intermediates to such scaffolds.
[138,180]

 In all cases, an E/Z 

distribution of nearly 1:1 was observed which might be attributed to the low rotation barrier of 

vinyl radicals.
[201,202]

 However, control experiments proved that both starting material 228 and 

product 229 undergo isomerization under these photoconditions. 



Main part 

 
68 

 

 

Scheme 68. Scope of enol acetates 152 in the coupling with α-chloro cinnamates 228. Standard 

reaction conditions: 228 (0.5 mmol), 152 (2.5 mmol), fac-Ir(ppy)3 (2 mol%) in 5 mL of MeCN. 

Combined isolated yields of separated E and Z isomer after purification via column chromatography. 

E/Z ratio of approximately 1:1 in all cases, for details see Experimental part. 

 

Next, previously synthesized α-chloro cinnamates were subjected to optimized reaction 

conditions (Scheme 69). As electron acceptors generally shift the reduction potential to more 

positive values, thereby making single electron reduction by excited photocatalyst more 

feasible, high yields were expected in the case of electron withdrawing 

substituents.
[70,83,130,191]

 In accordance with this prediction, photocatalytic activation of 

electron deficient α-chloro cinnamates proceeded smoothly and gave rise to high yields of 

products (229ea – 229ja). As aryl halides generally exhibit significantly more negative 

reduction potentials compared to vinyl halides and are therefore not even rudimentally in the 

range for fac-Ir(ppy)3,
[83,128,129,183]

 chemoselectivity prevailed with both chloride (229ea, 

229ha, 229ia) and bromide (229fa, 229ja) atoms attached on the aromatic ring of the 

cinnamates. As previously observed, nitro groups (229ka) were not tolerated at all,
[138,139]

 

presumably due to efficient quenching of excited states by this functional group.
[83,130,191]

 

Moving to electron donating groups, restrictions of this photocatalytic transformation were 
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found for both weak and strong donors (229la – 229pa) because such substituents hamper the 

initial single electron transfer by lowering the reduction potential.
[130]

 Therefore, only strongly 

diminished yields in the range between 30 – 40% were obtained. Again, heterocyclic 

compounds were not tolerated at all due to cross-reactions of the vinyl radical occurring at the 

aromatic ring (229ra, 228s). As expected, a conjugated π-system is a strict requirement for 

this transformation as can be seen from the unsuccessful activation of 228t and 228u. 

 

Scheme 69. Scope of α-chloro cinnamates 228. Standard reaction conditions: 228 (0.5 mmol), 152a 

(2.5 mmol), fac-Ir(ppy)3 (2 mol%) in 5 mL of MeCN. Combined isolated yields of separated E and Z 

isomer after purification via column chromatography. E/Z ratio of approximately 1:1 to 2:1 in all 

cases, for details see Experimental part. 
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3.4 Up-scaling of the photochemical transformation and enantioselective synthesis of 

α-alkylidene-γ-aryl-γ-butyrolactone (238) 

 

In the previous chapter the visible light mediated activation of vinyl chlorides was introduced. 

It has been shown that this process was well tolerated for a great variety of functional groups 

attached on both substrates. Most notably, this transformation gave rise to synthetically 

attractive 1,4-dicarbonyl compounds.
[203,204]

 Such building blocks are generally highly 

demanded as they can easily be converted into furans, pyrroles, or other heterocycles.
[205-209]

 

However, such lucrative motifs are often tedious to access by conventional methods.
[210]

 This 

newly developed process represents an excellent alternative using harmless reagents and 

gentle conditions. As related compounds of 229aa have already been utilized for the 

construction of furans
[211]

 or pyrroles,
[209]

 a stereoselective approach to 

α-alkylidene-γ-butyrolactone was envisioned as application. Such scaffolds recently attracted 

much attention as biologically active compounds including anti-inflammatory, phytotoxic, or 

cytotoxic properties.
[212-217]

 The key step towards the desired compound should be a chemo- 

and stereoselective reduction of the ketone moiety. The resulting chiral alcohol should easily 

cyclize under acidic conditions which gives rise to the γ-butyrolactone ring (Scheme 70). As 

both isomers of the 1,4-dicarbonyl compound were perfectly separable via column 

chromatography, this synthetic route should provide diastereomerically pure (E)-238 and 

(Z)-238. 

 

Scheme 70. Synthetic route towards desired α-alkylidene-γ-aryl-γ-butyrolactone 238. Either pure 

(E)-229aa or (Z)-229aa should provide diastereomerically pure (E)-lactone or (Z)-lactone. 

 

In order to perform a decent screening for the next steps, a substantial quantity of compound 

229aa needed to be synthesized first. So far, the photochemical transformation to 229aa was 

only performed on a 0.5 mmol scale which is barely sufficient for one test reaction. 

Unfortunately, scaling a photoinduced process up to larger amounts is not trivial in sharp 

contrast to classic reactions.
[218]

 Photoreactions are generally limited by Lambert-Beer’s law 
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which describes the attenuation of light through the medium. In other words, a bigger reaction 

medium inevitably results in prolonged reaction times because light is no longer capable of 

penetrating the entire reaction medium. For visible light mediated processes this has already 

been successfully circumvented in 2012 by the invention of continuous-flow setups which are 

characterized by high surface-area-to-volume ratios,
[219-221]

 enabling photoreactions on scales 

up to 1 kg.
[222-224]

 However, Stephenson and co-workers also demonstrated that batch setups 

are also suitable for multi-gram scales (Scheme 71).
[225]

 

 

Scheme 71. Scalable trifluoromethylation of N-Boc-pyrrole in a batch setup. TFAA = trifluoroacetic 

anhydride.
[225]

 

 

A batch setup which has originally been employed for UV-light reactions was considered for 

the preliminary scale up experiment (see Experimental part for details). Similar to the 

previously utilized small batch system, irradiation should take place from the inside of the 

reaction medium. However, instead of a glass rod which was attached to one single LED, the 

irradiation apparatus now consisted of a hollow glass cyclinder filled with a metal block. 30 

high power LEDs (λ = 455 nm) were wrapped around this metal block which was further 

connected to an internal water cooling system to maintain ambient temperature. The 

combined shaft could now be immersed in the previously prepared reaction mixture. A 

20 mmol scale seemed most promising to preferably maintain previously optimized 

conditions as the complete apparatus was limited to 200 mL. Gratifyingly, utilizing this 

reaction setup gave rise to 229aa in 61% yield. Most notably, the catalyst loading could be 

significantly reduced to 0.5 mol% compared to the original 2 mol%. Furthermore, no isolation 

problems occurred as MeCN was easily evaporated and the excess of enol acetate 152a was 

distilled off. Subsequently, the residue was purified by column chromatography to separate 

both isomers of the product. This first test reaction was not further optimized as it already 

gave both (E)-229aa and (Z)-229aa in nearly 2 grams, respectively and thus sufficient 

material for some test reactions. A comparison of both reaction setups is depicted in 

Scheme 72. 
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• 1 LED (24 h run time)       • 30 LEDs (48 h run time) 

• high catalyst loading (2 mol%)       • low catalyst loading (0.5 mol%) 

• time-consuming degassing via FPT       • simplified degassing via N2-sparging 

• 0.5 mmol (105 mg) substrate       • 20 mmol (4.2 g) substrate 

• small amount of product (145 mg, 98%)       • high amount of product (3.6 g, 61%) 

   

Scheme 72. Comparison of small and big reaction setup. FPT = Freeze-Pump-Thaw. 

 

With substantial amounts of pure (E)-229aa and (Z)-229aa in hand, first test reactions could 

be carried out. However, before an enantioselective approach towards the desired 

γ-butyrolactone 238, a racemic version needed to be synthesized. In this regard, a Luche 

reduction was considered in order to increase chemoselectivity and minimize side 

reactions.
[226]

 Therefore, the combination of NaBH4 and CeCl3 should help to selectively 

reduce the ketone group in the presence of the α,β-unsaturated ester in the molecule. 

Consistent with the HSAB concept, compound 229aa underwent clean 1,2-reduction of the 

ketone using a slight excess of NaBH4 and CeCl3. Acidification finally gave lactone ring 

closure to pure (E)-238 and (Z)-238 as racemates, respectively (Scheme 73).
[227]
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Scheme 73. Luche reduction and lactone ring closure to racemic (E)-238 and (Z)-238.
[226,227]

 

 

In principle, NaBH4 or related hydride sources represent reliable reagents for the reduction of 

carbonyls. Activation of the carbonyl group by lanthanide salts may further help to increase 

chemoselectivity and thus to overcome side reactions.
[228]

 Unfortunately, the lack of any 

chiral information generally prevents these reagents from being suitable for the asymmetric 

reduction of prochiral compounds. Thus specially designed Lewis acid complexes were 

required in order to achieve stereocontrol.
[229]

 In the past, there have been numerous attempts 

to force chirality using the combination of NaBH4 or LiAlH4 with chiral amino 

alcohols,
[230,231]

 carboxylic acids,
[232,233]

 or other additives.
[234,235]

 However, these approaches 

often suffered from sparse substrate scopes or high amounts of chiral additives. An elegant 

solution was introduced by Corey, Bakshi, and Shibata in the late 1980s. Based on empirical 

studies of Itsuno and co-workers a few years earlier,
[236,237]

 they developed a highly efficient 

oxazaborolidine mediated catalytic system for the stereoselective reduction of ketones with 

BH3.
[238,239]

 Thus outstanding and especially predictable enantiomeric purity of products was 

achieved. The role of the catalyst was divided into activation of the comparatively inert BH3 

as hydride donor source while simultaneously efficiently shielding one site for the binding of 

the ketonic substrate to the catalyst (Scheme 74).
[240]

 Oxazaborolidine catalyst (S)-240 

(CBS catalyst) as depicted in Scheme 69 can easily be prepared in a few steps starting from 

commercially available and cheap (S)-proline.
[241]

 This outstanding stereocontrol for the 

catalytic enantioselective reduction of ketones attracted significant attention in the past and 

led to remarkable advances ever since.
[240,242]
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Scheme 74. Proposed transition state for the enantioselective reduction of acetophenone (239) as 

model substrate.
[239,240]

 

 

Having successfully synthesized racemic (E)-238 and (Z)-238 γ-butyrolactones, the next step 

was to perform the reduction of ketone 229aa enantioselectively. In this regard, the 

aforementioned CBS reduction seemed to be most suitable. Lactonization should be carried 

out under the same conditions as already achieved for the racemic alcohols. First test reactions 

and optimizations were performed with oxazaborolidine catalyst (S)-240 and BH3·Me2S as 

hydride source (Table 8). Based on the transition state and the predictive model for the CBS 

reductions, this reaction should preferably form (R)-γ-butyrolactones in the end. When 

(E)-229aa was subjected to similar reaction conditions as for the Luche reduction, comparable 

regioselectivity was observed. Unfortunately, the starting material was poorly consumed and 

only approximately 25% reacted (entry 1). Prolonging the reaction time from 1 h to 4 h gave 

desired (E)-238 lactone in 62% after acidification (entry 2). However, the compound 

exhibited a relatively poor enantiomeric excess (ee) of only 70%. In order to increase the 

stereoselectivity and therefore push the ee, the reaction temperature was lowered from 0 °C to 

-15 °C (entry 3). Gratifyingly, this increased the ee to 79% but the reaction proceeded 

significantly slower and needed 23 h for completion. When (Z)-229aa was subjected to these 

conditions though, the desired α-alkylidene-γ-aryl-γ-butyrolactone was obtained in 70% yield 

in highly enantiomeric enriched form (entry 4).  
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Table 8. Optimization of the stereoselective synthesis of α-alkylidene-γ-aryl-γ-butyrolactone 238.
a
 

 

Entry Substrate Conditions 

(ΔT, t) 

Product Yield (%)
b
 ee (%)

c
 

1 (E)-229aa 0 °C, 1 h (R,E)-238 n.d. - 

2 (E)-229aa 0 °C, 4 h (R,E)-238 62 70 

3 (E)-229aa -15 °C, 23 h (R,E)-238 52 79 

4 (Z)-229aa -15 °C, 23 h (R,Z)-238 70 89 

a
Standard reaction conditions: (E)-229aa or (Z)-229aa (1.0 equiv), (S)-240 (0.1 equiv), BH3·Me2S 

(1.3 equiv) in toluene under N2 atmosphere. 
b
Isolated yields after purification via column 

chromatography. 
c
ee determined via chiral HPLC. n.d. = not determined. 

 

The absolute stereochemistry of (R,Z)-238 was confirmed by X-ray crystallography 

(Scheme 75) and is perfectly in line with the previously discussed model for CBS reductions 

and also in agreement with structurally related, but much more simplified ketones such as 

acetophenone or the corresponding β- or γ-keto esters.
[239]

  

 

Scheme 75. X-ray crystallography of (R,Z)-238 and obtained key chiral alcohol in the CBS reduction. 
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3.5 Unraveling the halogen paradox - Mechanistic discussions, computational details and 

control experiments
2
 

 

The trend in reactivity for the aforementioned visible light mediated transformation is 

puzzling. It has been shown that activation of α-chloro cinnamate 228a-Cl under described 

photocatalytic conditions proceeded smoothly whereas α-bromo cinnamate 228a-Br seemed 

to be comparably persistent and surprisingly inert. This exceptional trend is unusual as the 

ease for the single electron transfer is expected to be the other way round.
[128,129,132]

 

Nevertheless, some discrepancies are reported in the literature regarding bond fragmentation 

of C-halogen bonds. It has been suggested that upon injection of one single electron to benzyl 

halides, the bond dissociation should be preferred for the chlorides in sharp contrast to the 

bromides (-6.5 kcal/mol for RCl
•–

 and +2.5 kcal/mol for RBr
•–

; R = benzyl).
[130]

 However, 

another group later performed similar calculations regarding the bond dissociation energies 

for the same substrates and came to a different conclusion. Herein, the dissociation of the 

benzyl bromide radical anion should be slightly more favored, but nevertheless both radical 

anions were estimated to be much more negative and suddenly converge to a strongly shifted 

negative value (-50 kcal/mol for RCl
•–

 and -56 kcal/mol for RBr
•–

; R = benzyl).
[191]

 This 

would suggest that the difference in energies becomes negligible and both intermediates 

should therefore exist completely dissociated. 

In order to unravel the current halogen paradox, the visible light mediated activation of vinyl 

halides was further investigated. Therefore, all four vinyl halides were subjected to previously 

optimized reaction conditions (Table 9). 

  

                                                           
2
 Special thanks to Prof. Dr. Julia Rehbein (University of Regensburg) who performed the computational studies 

and contributed a lot to the final results. 



Main part 

 
77 

 

Table 9. Comparison of α-halo cinnamates 228a-X.
a
 

 

Entry X BDE vinyl-X (kcal/mol)
[186]

 E
°
RX/RX

•–
 (V)

b
 Conversion / Yield (%)

c
 

1 F 123.7 -1.93 0 / 0 

2 Cl 91.7 -1.64 100 / 98 

3 Br 79.4 -1.54 23 / 23 

4 I 61.9 n.d. - 

a
Reactions were performed using optimized reaction conditions (cf. Chapter 3.2). 

b
Reduction 

potentials were measured in MeCN vs SCE. 
c
Conversion and yield were determined by 

1
H-NMR 

analysis using 1,3,5-trimethoxybenzene as internal standard. 

 

In agreement with the measured reduction potential (-1.93 V vs SCE) and the tabulated bond 

dissociation energies for the C-F bond (123.7 kcal/mol), initial electron transfer from excited 

fac-Ir(ppy)3 (-1.73 V vs SCE) to freshly prepared 228a-F was prohibited and could not take 

place (entry 1). Unfortunately, 228a-I could not be accessed in pure form due to rapid 

decomposition under ambient conditions. Therefore, it was not possible to obtain reliable 

experimental data for the photochemical conversion of 228a-I for which bond fragmentation 

should have been most facile (entry 4). Focusing on 228a-Cl and 228a-Br (entry 2 and 3), the 

difference for the measured reduction potential was surprisingly rather marginal (ΔE
°
RX/RX

•–
 = 

0.1 V vs SCE). Nevertheless, single electron reduction of 228a-Br should be slightly more 

favored. Even though the difference of the bond dissociation energies is huge in the ground 

state, the aforementioned discussions suggest that this might change after single electron 

reduction of 228a-Cl and 228a-Br.
[130,191]

 Still, subjection of 228a-Cl to previously optimized 

reaction conditions gave product 229aa in significantly higher yields compared to 228a-Br.  

In order to get more insight, a cooperation with the group of Prof. Dr. Julia Rehbein from the 

University of Regensburg was started. Thus computational studies regarding the driving 

forces of the two elemental steps were performed which should help to solve the present 

problem (Table 10). 
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Table 10. Computed Enthalpies and Gibbs Free Energies for the two elemental steps.
a
 

 

 
Gas phase 

 
PCM (MeCN) 

X ΔH (kcal/mol) ΔG (kcal/mol) 
 

ΔH (kcal/mol) ΔG (kcal/mol) 

Step 1: Formation of the radical anion 228b-X
•–

 

Br -25.2 -26.2  -66.0 -68.1 

Cl -24.4 -25.1  -66.6 -65.4 

Step 2: Dissociation into 242 and X
–
 

Br 13.3 4.5  -8.9 -18.5 

Cl 21.8 12.4  -4.5 -15.4 

a
Calculations were performed by Prof. Dr. Julia Rehbein. Full computational details are not depicted 

in the Experimental part of this thesis but are downloadable free of charge from the Supporting 

Information of Ref. [243]. PCM = polarizable continuum model. 

 

As can be seen from Table 10, the formation of the radical anion 228b-X
•–

 (Step 1) is 

favorable for both 228b-Cl and 228b-Br in the gas phase. However, dissociation into the 

carbon-centered radical 242 and the halide anion X
–
 (Step 2) is unfavored in both cases which 

presumably corresponds to the lack of stabilizing structures with evolving or fully established 

charges in the gas phase. However, mimicking the dielectric effects by using a polarizable 

continuum model (PCM) of the solvent MeCN, which was used in the photochemical 

transformation, both elemental steps suddenly become exergonic. Nevertheless, fragmentation 

of the C-Br bond in 228b-Br
•–

 should be slightly more favored compared to 228b-Cl
•–

. But 

yet, the free energies surprisingly become more convergent in MeCN (ΔΔG = 3 kcal/mol) 

whereas the gap between both substrates was huge in the gas phase and therefore dissociation 

in the case of the bromide clearly preferred. Interestingly, by computing reaction enthalpies 

for other solvents like benzene, DCM, or DMF revealed MeCN being presumably the most 

suitable solvent. This could be quickly confirmed by including other solvents in the original 

screening (Table 11). 
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Table 11. Comparison of 228a-Cl and 228a-Br in different solvents.
a
 

 

Entry Solvent 

Yield (%)
b
 

Br Cl 

1 benzene - - 

2 chloroform - - 

3 DMSO 14 18 

4 DMF 16 43 

5 MeCN 8 58 

6 MeCN / H2O
c
 10 31 

a
Standard reaction conditions: 228a-X (0.3 mmol), 152 (1.5 mmol), photocatalyst (1 mol%), solvent 

(c = 0.2 M), N2 atmosphere, rt, 24 h, blue LED (λ = 455 nm). 
b
Yields were determined by 

1
H-NMR 

analysis using 1,3,5-trimethoxybenzene as internal standard. 
c
2 equiv H2O. 

 

Going back to original 1 mol% catalyst loading, unipolar solvents were found to be 

completely unsuitable for this transformation which is in agreement with the computational 

results (entry 1 and 2). While there is no noticeable difference for DMSO as solvent (entry 3), 

a dramatic change was suddenly observed for DMF and MeCN though (entry 4 and 5). Again, 

MeCN was superior to other solvents which has also been suggested by the calculations but 

concerning the reactivity, 228a-Cl seemed to be much more reactive compared to 228a-Br. 

However, these experimental results are inconsistent with the theoretical results. In fact, the 

computational results suggest 228a-Br being the more reactive substrate. Another control 

experiment finally confirmed this. Conducting an experiment under optimized reaction 

conditions in which 228a-Br and 228a-Cl were employed in a 1:1 ratio indeed identified 

228a-Br as the more reactive substrate. While the overall conversion of starting material and 

therefore the overall yield of 229aa were now low, analysis of the crude reaction mixture 

surprisingly revealed an approximately threefold higher conversion for 228a-Br (Table 12, 

entry 1 – 3). Notably, the overall conversion was somewhere between pure 228a-Br or 

228a-Cl. 
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Table 12. Direct comparison of 228a-Cl and 228a-Br as well as equimolar amounts of both.
a
 

 

Entry X Conversion (%)
b
 Yield (%)

b
 

1 Cl 100 98 

2 Br 23 23 

3
c
 Cl / Br, 1:1 38

d
 30 

a
Reactions were performed using 228a-X (0.5 mmol), 152a (2.5 mmol), fac-Ir(ppy)3 (2 mol%) in 

5 mL MeCN (= optimized reaction conditions; cf. Chapter 3.2). 
b
Conversion and yield were 

determined by 
1
H-NMR analysis using 1,3,5-trimethoxybenzene as internal standard. 

c
228a-Cl 

(0.25 mmol), 228a-Br (0.25 mmol), 152a (2.5 mmol), fac-Ir(ppy)3 (2 mol% based on the total 

amount of 0.5 mmol 228a-X) in 5 mL MeCN. 
d
38% consisting of 58% conversion of 228a-Br and 

18% of 228a-Cl, respectively. 

 

Finally in line with the computed data, 228a-Br was detected as the more reactive compound. 

In fact, 228a-Br reacted approximately 3 times faster in contrast to competing 228a-Cl. 

However, the yield was now surprisingly low and suspiciously similar to pure 228a-Br as 

radical precursor (Table 12, entry 2 and 3). Therefore, it seemed most likely that the low yield 

was referred to 228a-Br. The only difference between 228a-Br and 228a-Cl is the initial 

extrusion of the halide anion which will form acetyl bromide (AcBr) and acetyl chloride 

(AcCl) as stoichiometric by-product in the course of the reaction.
[149]

 Indeed, the formation of 

both AcBr and AcCl was verified by 
1
H-NMR analysis of the crude reaction mixture (Figure 

2 and 3).  
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Figure 2. Crude reaction of 228a-Cl in CD3CN. 

 

 

Figure 3. Crude reaction of 228a-Br in CD3CN. 

 

Finally, when 0.5 equivalents of AcBr (reflecting a 50% conversion of a given reaction) were 

added to the optimized reaction with 228a-Cl, only 22% of product 229aa were now formed 

instead of the otherwise obtained 98%. This strongly indicates AcBr being a slow but 

nonetheless efficient catalyst poison. Indeed, stirring photocatalyst fac-Ir(ppy)3 in the 

presence of AcBr led to full decomposition after irradiation for 24 h in MeCN which can 

clearly be seen in the succeeding depicted Figures 4 and 5. Studies by König et al.
[244]

 and 

Stephenson and co-workers
[245]

 have already demonstrated the susceptibility of fac-Ir(ppy)3 

towards degradation. 
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Figure 4. 
1
H-NMR of fac-Ir(ppy)3 in CDCl3. 

 

Figure 5. 
1
H-NMR of fac-Ir(ppy)3 after irradiation for 24 h in the presence of AcBr. 

 

Unfortunately, fast quenching of poisonous AcBr via additives to the reaction of 228a-Br 

failed so far (Table 13). Thus neither the addition of stoichiometric amounts nor an excess of 

H2O helped to improve the yield (entry 1 and 2). Furthermore, the addition of redox-neutral 

inorganic bases also did not exhibit a beneficial effect compared to the blank reaction with 

228a-Br (entry 3 and 4).  

Table 13. Control experiments of 228a-Br in the presence of various additives.
a
 

 

Entry Catalyst Additive (2 equiv) Solvent Yield (%)
b
 

1 fac-Ir(ppy)3 H2O MeCN 31 

2 fac-Ir(ppy)3 - MeCN 12 

3 fac-Ir(ppy)3 K2HPO4 MeCN / H2O, 4:1 20 

4 fac-Ir(ppy)3 Na2CO3 MeCN 27 

a
Reactions were performed using optimized reaction conditions for 228a-Cl. 

b
Yields were determined 

by 
1
H-NMR analysis using 1,3,5-trimethoxybenzene as internal standard. 
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With previously discussed results in mind and in accordance with precedent literature reports 

for similar transformations,
[138,139,148,149]

 an absolutely plausible reaction mechanism is 

proposed in the following (Scheme 76). The photocatalytic cycle is initiated by the absorption 

of visible light (λ = 455 nm) by fac-Ir(ppy)3. The excited photocatalyst is now an excellent 

reductant (E
°
M

+
/M* = -1.73 V vs SCE) and therefore capable of reducing both 228a-Cl 

(E
°
RX/RX

•– 
= -1.64 V vs SCE) and 228a-Br (E

°
RX/RX

•–
 = -1.54 V vs SCE). After halide 

extrusion, the corresponding electrophilic vinyl radical intermediate 243 readily couples with 

electron rich enol acetate 152a giving rise to radical intermediate 244. Single electron 

oxidation forms cationic species 245 by either the photocatalyst which regenerates the catalyst 

or by initiating a chain mechanism. Formation of AcBr or AcCl finally produces the product.  

 

Scheme 76. Proposed reaction mechanism. 
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3.6 Conclusion  

 

In summary, a photoinduced activation of α-chloro cinnamates mediated by visible light was 

achieved. Based on the oxidative quenching cycle of highly reducing fac-Ir(ppy)3, vinyl 

radicals were readily generated via single electron reduction and efficiently coupled with enol 

acetates giving rise to a broad range of synthetically valuable 1,4-dicarbonyl compounds. 

Even though vinyl bromides should be superior in terms of single electron reduction and bond 

dissociation, calculations revealed that differences become more convergent in polar solvents 

like MeCN. In fact, it has been shown that vinyl bromides were unsuitable in this 

transformation, presumably due to efficient deactivation of the photocatalyst by acetyl 

bromide which was formed as stoichiometric by-product in the course of the reaction. 

Furthermore, the reaction could be run on a multi-gram scale and the products were found to 

be excellent building blocks for the synthesis of enantioenriched α-alkylidene-γ-aryl-γ-

butyrolactones. 
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4 Visible light mediated activation of α-chloro cinnamonitriles 

4.1 Optimization of the reaction conditions 

 

Cinnamonitriles represent an important class of compounds.
[246,247]

 They can easily be 

prepared from cinnamamides, cinnamaldoximes, or primary alcohols.
[248-253]

 In principle, 

nitriles are very attractive synthons as they can easily be converted into to a broad range of 

different functional groups including esters,
[254]

 carboxylic acids,
[255]

 aldehydes,
[256,257]

 

ketones,
[258]

 or amines.
[259,260]

  

In the previous chapter the successful photochemical activation of vinyl chlorides from 

α-chloro ethyl cinnamates was described. This newly developed method should now be 

further extended to other functional groups in order to broaden the substrate scope. It has 

already been demonstrated that numerous variations were tolerated at the aromatic moiety of 

both the cinnamates and the enol acetates. However, the ester functional group was only 

tested in respect to simple ester exchanges. So far, previous investigations on the 

photochemical activation of vinyl halides completely relied on carbonyl groups adjacent to 

the radical source (vide supra). As electron withdrawing properties seemed to be a strict 

requirement to promote the desired single electron transfer, a functional group with similar 

electronic properties was needed. In this regard, the cyano group seemed to perfectly match 

the desired demands. Therefore, light mediated activation of α-chloro cinnamonitriles was 

envisioned. Additionally, in terms of the high versatility of nitriles as building blocks for 

other functional groups, subsequent manipulations should give rise to a wide range of novel 

derivatives. Unfortunately, the previously synthetic route is not suitable to access the desired 

α-chloro cinnamonitrile. However, Mioskowski et al. reported a lucrative synthesis of 

α-halo-α,β-unsaturated compounds from readily available benzaldehydes and activated 

polyhalides.
[198]

 Fortunately, the desired nitrile is also amenable among other electron 

withdrawing groups. Thus, desired α-chloro cinnamonitrile (248a) was quickly prepared in 

moderate yields as a diastereomeric mixture (Scheme 77). Interestingly, (E)-248a was 

obtained as major isomer which is in accordance to literature data.
[198,261]

 However, 

diastereomeric purity of the starting material seemed to be negligible as previous 

photocatalytic investigations with cinnamates have already been demonstrated. 
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Scheme 77. Preparation of α-chloro cinnamonitrile (248a).
[198]

 Product 248a obtained as E/Z mixture. 

For details see Experimental part. 

 

With sufficient amounts of vinyl chloride 248a in hand, first test reactions were carried out 

(Table 14). Again, previously reliable enol acetates should serve as coupling partners. 

Unfortunately, applying optimized reaction conditions for the visible light mediated 

functionalization of α-chloro cinnamates gave the desired product only in a disappointing 

yield of 31%, even with 2 mol% photocatalyst (entry 1). Focusing on 1 mol% catalyst, 

different photocatalysts in various solvents were screened (entry 2 – 19). Surprisingly, highly 

reducing fac-Ir(ppy)3 which was found to be the only active catalyst for the functionalization 

of α-chloro cinnamates was barely active and gave mediocre yields at best (entry 2 – 6). 

Switching to Ru(bpy)3Cl2 or Ir[dF(CF3)ppy]2(dtbbpy)PF6, both catalysts were not capable of 

promoting this transformation (entry 7 – 11). However, Ir(ppy)2(dtbbpy)PF6 seemed to be 

suitable for the activation of α-chloro cinnamonitriles (entry 12 – 15). Again, polar solvents 

such as DMF or MeCN were superior compared to nonpolar solvents. Turning to DMF and 

MeCN, further screening revealed that higher concentrations gave slightly better yields 

(entry 16 and 17). Unfortunately, adding redox-neutral inorganic bases like K2HPO4 or 

K2CO3 did not help to increase the yield (entry 18 and 19). Again, 2 mol% of photocatalyst 

was required for complete consumption of the starting material (entry 20). Interestingly, 

elaborately dried DMF could be replaced by commercially available DMF in which desired 

product was obtained in 66% yield (entry 21). Finally, standard control experiments proved a 

visible light driven process (entry 22 and 23). 
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Table 14. Catalyst screening and reaction optimization.
a
 

 

Entry Photocatalyst Additive (2 equiv) Solvent Yield (%)
b
 

1
c
 fac-Ir(ppy)3 - MeCN 31 

2 fac-Ir(ppy)3 - DCM 9 

3 fac-Ir(ppy)3 - DMSO 5 

4 fac-Ir(ppy)3 - DMF 13 

5 fac-Ir(ppy)3 - MeCN 16 

6 fac-Ir(ppy)3 - THF 3 

7 Ru(bpy)3Cl2 - DMF traces 

8 Ru(bpy)3Cl2 - MeCN - 

9 Ir[dF(CF3)ppy]2(dtbbpy)PF6 - DCM - 

10 Ir[dF(CF3)ppy]2(dtbbpy)PF6 - DMF - 

11 Ir[dF(CF3)ppy]2(dtbbpy)PF6 - MeCN - 

12 Ir(ppy)2(dtbbpy)PF6 - DCM 12 

13 Ir(ppy)2(dtbbpy)PF6 - DMSO - 

14 Ir(ppy)2(dtbbpy)PF6 - DMF 27 

15 Ir(ppy)2(dtbbpy)PF6 - MeCN 27 

16
d
 Ir(ppy)2(dtbbpy)PF6 - DMF 38 

17
d
 Ir(ppy)2(dtbbpy)PF6 - MeCN 21 

18
d 

Ir(ppy)2(dtbbpy)PF6 K2HPO4 DMF - 

19
d
 Ir(ppy)2(dtbbpy)PF6 K2CO3 DMF - 

20
d,e

 Ir(ppy)2(dtbbpy)PF6 - DMF 60 

21
d,e

 Ir(ppy)2(dtbbpy)PF6 - DMFaq 66 

22
d,e,f 

- - DMFaq - 

23
d,e,g 

Ir(ppy)2(dtbbpy)PF6 - DMFaq - 

a
Standard reaction conditions: 248a (1 equiv), 152a (5 equiv), photocatalyst (1 mol%), solvent 

(c = 0.1 M), N2 atmosphere, rt, 24 h, blue LED (λ = 455 nm). 
b
Isolated yields after purification via 

column chromatography or via 
1
H-NMR analysis using 1,3,5-trimethoxybenzene as internal standard. 

E/Z ratio of approximately 2:1.
c
Optimized reaction conditions for the activation α-chloro cinnamates. 

d
Solvent (c = 0.2 M). 

e
2mol% catalyst. 

f
No photocatalyst. 

g
No light. 
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4.2 Substrate scope 

 

Having identified Ir(ppy)2(dtbbpy)PF6 as optimal catalyst and DMF as most suitable medium, 

different derivatives should be subjected to such conditions. Fortunately, sufficient amounts 

of various enol acetates were still in stock. However, a variety of α-chloro cinnamonitriles 

needed to prepared first. Utilizing previously described procedure provided quick access to 

different derivatives (Scheme 78).  

 

Scheme 78. Synthesis of a variety of α-chloro cinnamonitriles by applying a protocol by 

Mioskowski et al.
[198]

 Products obtained as E/Z mixtures. For details see Experimental part. 

 

Utilizing previously optimized reaction conditions (Table 14, entry 21), various enol acetates 

were subjected to this newly developed transformation (Scheme 79). Similar to α-chloro 

cinnamates, electron-rich enol acetates (249aa – 249ag) could be readily coupled, reflecting 

again the electrophilic nature of the vinyl radical intermediate. In this regard, significantly 

higher yields up to 82% were achieved using strong electron donating substituents attached on 

the aromatic ring. Notably, ortho- (249ae, 249ag) and meta- substitutions (249ad) were well 

tolerated. Switching to weak electron withdrawing groups, marginal lower but still moderate 

yields were obtained (249ah, 249ai). Gratifyingly, aliphatic enol acetate gave product 249aj 

in similar high yields compared to the aromatic coupling partners. 
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Scheme 79. Scope of enol acetates 152 in the coupling with α-chloro cinnamonitrile 248a. Standard 

reaction conditions: 248a (0.5 mmol), 152 (2.5 mmol), Ir(ppy)2(dtbbpy)PF6 (2 mol%) in 2.5 mL 

DMFaq. Combined isolated yields of separated E and Z isomer after purification via column 

chromatography. E/Z ratio of approximately 2:1 in most cases, for details see Experimental part. 

 

Next, the substrate scope of the previously prepared α-chloro cinnamonitriles was investigated 

(Scheme 80). As expected, electron-deficient cinnamonitriles were well tolerated (249ba – 

249fa). In fact, even higher yields up to 84% were achieved compared to 248a which was 

employed in the original screening. This transformation did not suffer from ortho- (249fa) or 

meta-substitution patterns (249ea). Concerning other C(sp
2
)-halides (249ba – 249fa), 

chemoselectivity completely prevailed. However, this reaction was revealed to be susceptible 

to even weak donors (249ga). Therefore, limitations were found for strong donating groups 

(248h) and also commercially available 2-chloroacrylonitrile (248i) could not be employed in 

this reaction. 
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Scheme 80. Scope of α-chloro cinnamonitriles. Standard reaction conditions: 248 (0.5 mmol), 152a 

(2.5 mmol), Ir(ppy)2(dtbbpy)PF6 (2 mol%) in 2.5 mL DMFaq. Combined isolated yields of separated E 

and Z isomer after purification via column chromatography. E/Z ratio of approximately 2:1 in most 

cases, for details see Experimental part. 

 

Compared to α-chloro cinnamates (cf. Chapter 3), the activation of α-chloro cinnamonitriles 

was unfortunately slightly more sluggish. Overall, the isolated yields were comparatively 

lower and the functional group tolerance more vulnerable. However, the reaction was found to 

be more diastereoselective. While for the cinnamates an E/Z ratio of approximately 1:1 was 

observed in the products in most cases, a higher E-selective outcome of approximately 2:1 

was observed for the cinnamonitriles (see Experimental part for details). This means that the 

double bond is indeed isomerizing during the reaction under described photocatalytic 

conditions which could be unambiguously verified by X-ray crystallography for the major 

isomer of 249da (Scheme 81). 
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Scheme 81. X-ray crystallography of the major isomer of 249da. 
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4.3 Proposed reaction mechanism 

 

A plausible reaction mechanism can be proposed based on precedent literature reports and is 

similar to the mechanism already proposed for the cinnamates.
[138,139,148,149]

 Single electron 

transfer from previously excited iridium catalyst to the α-chloro cinnamonitrile 248a leads to 

C-Cl bond dissociation and the vinyl radical key intermediate 251. This electron-deficient 

radical can readily couple with electron rich enol acetate 152a which provides radical 

intermediate 252. This radical intermediate can be oxidized to the cation 253 by the 

photocatalyst which closes the catalytic cycle or by initiating a radical chain process. 

Subsequent acyl extrusion gives rise to acetyl chloride as stoichiometric by-product and 

provides product 254 (Scheme 82). 

 

Scheme 82. Proposed reaction mechanism for the visible light mediated coupling of α-chloro 

cinnamonitriles and enol acetates. 
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4.4 Conclusion and outlook 

 

In summary, the newly developed protocol for the activation of vinyl chlorides was 

successfully extended to α-chloro cinnamonitriles. Thus photocatalytic activation of α-chloro 

cinnamonitriles was achieved. Whereas previous investigations in this group completely 

relied on carbonyls adjacent to the vinyl radical (vide supra), photochemical coupling was 

successfully extended to nitriles for the first time. In this regard, α-chloro cinnamonitriles 

could be readily prepared and subsequently efficiently coupled with numerous enol acetates 

under mild reaction conditions and visible light as sole energy source. A great variety of enol 

acetates were found to be excellent coupling partners but limitations were quickly revealed for 

cinnamonitriles. Nevertheless, further conversion of the nitrile into other functional groups 

should provide access to a wide range of new derivatives in the future.  
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C Summary 

 

This thesis starts with a brief introduction to vinyl radicals in organic chemistry. Beginning 

with early examples such as the combination of SnBu3H and AIBN in the 1980s, it later 

focuses on the generation of such intermediates through more benign visible light. After a 

short introduction to photoredox catalysis, it summarizes major contributions in this field 

from 2010 until the very recent date. 

The main part of this thesis deals with the activation of vinyl bromides and chlorides via 

visible light photoredox catalysis. The initial situation is based on previous investigations on 

α-bromo chalcones. Although these substrates readily undergo single electron reduction, this 

principle of activation could barely be transferred to less extended π-systems such as α-bromo 

cinnamates. The chapter “Preliminary studies with vinyl bromides” illustrates that the inert 

reactivity of α-bromo cinnamates is predominantly based on the more negative reduction 

potential. Several efforts to overcome this previously observed limitation are described. 

Unfortunately, all of these attempts were found to be unproductive and gave only mediocre 

results at best.  

The two subsequent chapters cover research results with vinyl chlorides as radical precursors. 

The chapter “Visible light mediated activation of α-chloro cinnamates” starts with a brief 

comparison of both vinyl halides and reveals that the chloro derivative surprisingly 

outcompetes the vinyl bromide in the visible light mediated coupling with enol acetates 

(Scheme 83).  
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Scheme 83. Visible light mediated coupling of α-halo cinnamates 228 and enol acetates 152. 

 

The investigation of the reaction and its conditions demonstrates that α-chloro cinnamates 

represent excellent radical precursors and these substrates can be readily coupled with enol 

acetates in high yields. Subsequent studies regarding the substrate scope reveal the limitations 

of the described reaction. This coupling proves to be suitable for photochemical up-scaling 

and the corresponding products can be readily converted to biologically active 

γ-butyrolactones. These substrates are first accessed as racemates in a Luche reduction and 

subsequently enantioenriched in a CBS reduction (Scheme 84).  

 

Scheme 84. Synthesis of enantioenriched γ-butyrolactones 238. 

 

This chapter later focuses on solving this current halogen paradox. Numerous control 

experiments and theoretical calculations reveal that the major difference between both 

substrates does not rely on the initial bond fragmentation but is rather based on efficient 

catalyst deactivation in the case of the vinyl bromide. It provides evidence that, in direct 
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comparison to the chloride, the vinyl bromide is consumed faster but nevertheless gives rise to 

lower yields due to poor conversion of the starting material. In the end, acetyl bromide which 

is formed as stoichiometric by-product in the described reaction is convicted as gradual but 

efficient catalyst poison for the photocatalyst fac-Ir(ppy)3. 

The last chapter deals with the expansion of this newly gained results to the functionalization 

of α-chloro cinnamonitriles. After intense catalyst screening, Ir(ppy)2(dtbbpy)PF6 is identified 

as the most active catalyst. Evaluation of the substrate scope demonstrates that the 

cinnamonitriles are slightly inferior to the cinnamates regarding both the yield and the 

functional group tolerance but further functionalization of the nitrile group might give access 

to a broad range of new derivatives (Scheme 85). 

 

Scheme 85. Visible light mediated coupling of α-chloro cinnamonitriles 248 with enol acetates 152. 
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D Zusammenfassung 

 

Diese Arbeit beginnt mit einer kurzen Einführung in die Chemie der Vinylradikale. Der Fokus 

wird hierbei nach anfänglichen Beispielen mit SnBu3H und AIBN auf die Erzeugung 

derartiger Intermediate mit Hilfe von sichtbarem Licht gelegt. Nach einer kurzen Einführung 

in die Photoredoxkatalyse wird ein Großteil der chemischen Umwandlungen auf diesem 

Gebiet zusammengefasst. 

Der Hauptteil dieser Arbeit umfasst die Aktivierung von Vinylbromiden und -chloriden mit 

sichtbarem Licht. Dabei dienen jeweils vorangehende Studien mit α-Bromochalkonen als 

Ausgangspunkt. Obwohl diese Substrate leicht Einzelelektronenreduktionen eingehen, konnte 

dieses Aktivierungsprinzip bislang kaum auf weniger ausgeprägte π-Systeme wie 

α-Bromozimtsäureester übertragen werden. Das Kapitel „Preliminary studies with vinyl 

bromides“ verdeutlicht, dass das reaktionsträgere Verhalten der α-Bromozimtsäureester 

maßgeblich dem erheblich negativeren Reduktionspotential zu Grunde liegt. Im Folgenden 

wird in unterschiedlichen Anläufen versucht, diese Hürde zu überwinden. Jedoch haben sich 

diese als eher unproduktiv und nicht zielführend erwiesen, da entsprechende 

Kopplungsprodukte nur in niedrigen Ausbeuten erhalten werden konnten.  

Die zwei nachfolgenden Kapitel beschreiben die Forschungsergebnisse mit Vinylchloriden als 

Radikalvorstufen. Das Kapitel „Visible light mediated activation of α-chloro cinnamates“ 

beginnt mit einem knappen Vergleich beider Halogenide und verdeutlicht, dass das 

Chlorderivat überraschenderweise eine höhere Aktivität bei der Kopplung mit Enolacetaten 

aufweist (Schema 1).  
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Schema 1. Kopplung von α-Halozimtsäureester 228 mit Enolacetaten 152 mit Hilfe von sichtbarem 

Licht. 

 

Die Untersuchung der Reaktion und ihrer Bedingungen zeigt, dass α-Chlorozimtsäureester 

hervorragende Vinylradikalvorstufen darstellen und diese effizient mit Enolacetaten 

gekoppelt werden können. Im Folgenden wird die Substratbreite dieser neuen 

Aktivierungsmethode erkundet und deren Grenzen aufgezeigt. Im Anschluss wird die 

Umwandlung derartiger Produktbausteine in biologisch aktive γ-Butyrolactone beschrieben. 

Diese werden zunächst mit Hilfe einer Luche Reduktion in racemischer und später durch eine 

CBS Reduktion auch in enantiomerenangereicherten Form isoliert (Schema 2).  

 

Schema 2. Darstellung von enantiomerenangereicherte γ-Butyrolactone 238. 

 

Zum Schluss widmet sich das Kapitel verstärkt dem Enträtseln des gegenwärtigen 

Halogenparadoxons. Zahlreiche Kontrollexperimente und begleitende theoretische 

Berechnungen deuten darauf hin, dass die unterschiedliche Aktivität beider Substrate weniger 



Zusammenfassung 

 
99 

 

auf die ursprüngliche Bindungsspaltung beruht, sondern vielmehr einer effizienten 

Katalysatordeaktivierung durch das im Falle des Vinylbromids gebildeten Acetylbromids zu 

Grunde liegt. Es wird bewiesen, dass im direkten Vergleich das Bromderivat zwar schneller 

abreagiert, aber dennoch geringere Ausbeuten aufgrund des schlechteren Umsatzes liefert. 

Somit wird letztlich aufgezeigt, dass Acetylbromid ein schleichendes Katalysatorgift für den 

Photokatalysator fac-Ir(ppy)3 darstellt. 

Das letzte Kapitel verdeutlicht, dass die kürzlich gewonnen Ergebnisse auf analoge 

Zimtsäurenitrile ausgeweitet werden können. Nach Optimierung der Reaktionsbedingungen 

wird sowohl die Substratbreite erkundet als auch deren Limitierung aufgezeigt. Diese 

Evaluierung offenbart, dass die entsprechenden Nitrile den Estern in puncto erhaltener 

Ausbeute und Verträglichkeit gegenüber funktionellen Gruppen unterlegen sind. Allerdings 

weisen die Produkte eine höhere Diastereoselektivität auf. 

 

Schema 3. Kopplung von α-Chlorzimtsäurenitrile 248 mit Enolacetaten 152 mit Hilfe von sichtbarem 

Licht. 
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E Experimental part 

1 General information 

 

All chemicals were used as received or purified according to Purification of Common 

Laboratory Chemicals.
[262]

 Glassware was dried in an oven at 110 °C or flame dried and 

cooled under a dry atmosphere prior to use. All reactions were performed using Schlenk 

techniques. The blue light irradiation in batch processes was performed using a CREE XLamp 

XP-E D5-15 LED (λ = 450-465 nm). Analytical thin layer chromatography was performed on 

Merck TLC aluminium sheets silica gel 60 F 254. Reactions were monitored by TLC and 

visualized by a short wave UV lamp and stained with a solution of potassium permanganate 

or vanillin. Column flash chromatography was performed using Merck flash silica gel 60 

(0.040-0.063 mm). The melting points were measured on an OptiMelt MPA 100 

(uncorrected). IR spectroscopy measurements were performed on an Agilent Gary 630 FTIR 

spectrometer equipped with a Diamond Single Reflection Accessory. Optical Rotation was 

measured in a Perkin Elmer Polarimeter or an ElmerAnton Paar MCP500 at 589 nm 

wavelength (sodium-d-line) in the specific solvent. X-ray measurements were performed by 

the crystallographic department of the University of Regensburg on Agilent Technologies 

SuperNova, Agilent Technologies Gemini R Ultra or Stoe IPDSI. Analytical HPLC was 

carried out on a Varian 920-LC with DAD. Chiralpak AS-H, Phenomenex Lux Cellulose-1 

and 2 served as chiral stationary phase, and mixtures of n-heptane and i-PrOH were used for 

elution. NMR spectra were recorded on Bruker Avance 300 and Bruker Avance 400 

spectrometers. Chemical shifts for 
1
H-NMR were reported as δ, parts per million, relative to 

the signal of CDCl3 at 7.26 ppm. Chemical shifts for 
13

C-NMR were reported as δ, parts per 

million, relative to the center line signal of the CDCl3 triplet at 77 ppm. Coupling constants J 

are given in Hertz (Hz). The following notations indicate the multiplicity of the signals: s = 

singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sept = septet, 

and m = multiplet. Mass spectra were recorded at the Central Analytical Laboratory at the 

Department of Chemistry of the University of Regensburg on a Varian MAT 311A, Finnigan 

MAT 95, Thermoquest Finnigan TSQ 7000 or Agilent Technologies 6540 UHD Accurate-

Mass Q-TOF LC/MS. The yields reported are referred to the isolated compounds unless 

otherwise stated. 
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2 Preliminary studies with vinyl bromides 

 

1-morpholinoethan-1-one (149),
[144]

 1-(1-methyl-1H-imidazol-2-yl)ethan-1-one (145),
[145]

  

(E)-1-(1-methyl-1H-imidazol-2-yl)-3-phenylprop-2-en-1-one (144),
[145]

 ethyl 2-bromo-3-

phenylacrylate (134),
[138]

 N-cyclohexyl-N-isobutylcyclohexanamine (190),
[164]

 and 

4-methoxybenzenediazonium tetrafluoroborate (209)
[148]

 were prepared according to literature 

and are in agreement with literature reference.
[138,144,145,148,164,197] 

 

(Z)-2-bromo-1-(1-methyl-1H-imidazol-2-yl)-3-phenylprop-2-en-1-one (151a) 

 

To a cooled solution of (E)-1-(1-methyl-1H-imidazol-2-yl)-3-phenylprop-2-en-1-one (144, 

424 mg, 2.00 mmol, 1.00 equiv) in DCM (5 mL) was slowly added Br2 (120 µL, 2.40 mmol, 

1.20 equiv) at 0 °C. After stirring for 1 h at room temperature, NEt3 (1.40 mL, 10.0 mmol, 

5.00 equiv) was slowly added at 0 °C. After stirring for additional 24 h at room temperature, 

the reaction was diluted with DCM (15 mL) and washed with H2O (3 x 15 mL). The 

combined organic layers were dried over Na2SO4, the solvent was removed in vacuo and the 

residue was purified by column chromatography on SiO2 (hexanes / EA, 6:1) to obtain (Z)-2-

bromo-1-(1-methyl-1H-imidazol-2-yl)-3-phenylprop-2-en-1-one as yellow oil (257 mg, 

882 µmol, 44%).  

Rf (hexanes / EA, 6:1) = 0.08; IR (neat): 3019, 1640, 1595, 1446, 1386, 1241, 1092, 920, 846, 

771 cm
-1

; 
1
H-NMR (400 MHz, CDCl3): δ 9.05 (s, 1H), 7.94 – 7.91 (m, 2H), 7.47 – 7.41 (m, 

3H), 7.21 (d, J = 0.8 Hz, 1H), 7.11 (s, 1H), 4.02 (s, 3H); 
13

C-NMR (101 MHz, CDCl3): δ 

178.18, 146.95, 141.31, 134.39, 130.67, 130.34, 129.16, 128.33, 127.13, 122.80, 36.61; 

HRMS (APCI) m/z calculated for C13H12BrN2O ([M+H]
+
) 291.0128, found 291.0131. 
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(Z)-2-bromo-1-(4,5-dibromo-1-methyl-1H-imidazol-2-yl)-3-phenylprop-2-en-1-one 

(151b) 

 

A 25 mL flask equipped with a magnetic stir bar was charged with (E)-1-(1-methyl-1H-

imidazol-2-yl)-3-phenylprop-2-en-1-one (144, 424 mg, 2.00 mmol, 1.00 equiv), OXONE
®

 

(3.07 g, 5.00 mmol, 2.50 equiv) and DCM (10 mL). Subsequently, HBr (47%, 924 µL, 

8.00 mmol, 4.00 equiv) was added in one portion resulting in a dark red colored solution. 

After stirring for 3 d at room temperature, NEt3 (2.80 mL, 20.0 mmol, 10.0 equiv) was 

carefully added. The reaction mixture was stirred for additional 12 h and subsequently 

transferred to a separating funnel and extracted with H2O (2 x 90 mL) and brine (90 mL). The 

combined organic layers were dried over Na2SO4, the solvent was removed in vacuo and the 

residue was purified by column chromatography on SiO2 (hexanes / EA, 6:1) to obtain (Z)-2-

bromo-1-(4,5-dibromo-1-methyl-1H-imidazol-2-yl)-3-phenylprop-2-en-1-one as yellow oil 

(699 mg, 1.56 mmol, 78%). 

Rf (hexanes / EA, 6:1) = 0.30; IR (neat): 3052, 2959, 2922, 1651, 1595, 1442, 1405, 1349, 

1207, 1069, 976, 849, 790 cm
-1

; 
1
H-NMR (300 MHz, CDCl3): δ 8.82 (s, 1H), 7.94 – 7.90 (m, 

2H), 7.48 – 7.44 (m, 3H), 4.01 (s, 3H); 
13

C-NMR (101 MHz, CDCl3): δ 176.89, 147.33, 

141.59, 134.12, 130.81, 130.70, 128.43, 128.11, 121.77, 117.91, 113.74, 36.14; HRMS (ESI) 

m/z calculated for C13H10Br3N2O ([M+H]
+
) 446.8338, found 446.8337. 

 

2-benzylidene-1-(4,5-dibromo-1-methyl-1H-imidazol-2-yl)-4-phenylbutane-1,4-dione 

(153b) 

 

A flame dried Schlenk tube equipped with a magnetic stir bar was charged with (Z)-2-bromo-

1-(4,5-dibromo-1-methyl-1H-imidazol-2-yl)-3-phenylprop-2-en-1-one (151b, 225 mg, 

500 µmol, 1.00 equiv), 1-phenylvinyl acetate (405 mg, 2.50 mmol, 5.00 equiv) and 
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Ru(bpy)3Cl2 (3.70 mg, 5.00 µmol, 1.0 mol%). The flask was sealed with a plastic screw-cap, 

evacuated and backfilled with N2 (3x). Dry DMF (2 mL) and H2O (10.0 µL, 0.55 mmol, 

1.10 equiv) were added and the reaction was magnetically stirred for roughly 5 min under N2 

atmosphere until a homogeneous solution was observed. The resulting mixture was degassed 

by freeze-pump-thaw (3 cycles) and the plastic screw-cap was replaced by another plastic 

screw-cap with a Teflon sealed inlet for a glass rod. A high power LED (λ = 455 nm) was 

attached to the top of the glass rod, which then could act as an optical fiber. After irradiation 

for 3 h the LED was removed, the mixture was diluted with H2O (20 mL) and washed with 

EA (3 x 20 mL). The combined organic layers were dried over Na2SO4, the solvent was 

removed in vacuo and the residue was purified by column chromatography on SiO2 

(hexanes / EA, 10:1 to 5:1) to obtain (E)-153b (52.6 mg, 107 µmol, 22%) and (Z)-153b 

(31.9 mg, 65.3 µmol, 23%) as yellow oils as separated E and Z isomers. E/Z = 62:38. 

Rf (hexanes / EA, 6:1) = 0.20 (E Isomer), 0.13 (Z Isomer); IR (neat): 3060, 2955, 2922, 1684, 

1625, 1408, 1326, 1215, 1002, 954, 928, 745, 685 cm
-1

; 
1
H-NMR (300 MHz, CDCl3, E 

Isomer): δ 8.40 (s, 1H), 8.02 – 7.97 (m, 2H), 7.62 – 7.55 (m, 1H), 7.51 – 7.44 (m, 2H), 7.39 – 

7.33 (m, 5H), 4.44 (s, 2H), 3.95 (s, 3H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 197.44, 

183.31, 146.88, 143.34, 136.58, 135.46, 134.13, 133.31, 129.14, 129.04, 128.68, 128.61, 

128.32, 117.21, 112.34, 38.67, 35.78; 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 8.01 – 7.96 

(m, 2H), 7.61 – 7.55 (m, 1H), 7.51 – 7.44 (m, 2H), 7.21 – 7.12 (m, 5H), 7.07 (s, 1H), 4.45 (d, 

J = 1.3 Hz, 2H), 3.94 (s, 3H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 196.97, 186.16, 

146.89, 143.47, 139.21, 136.15, 136.07, 134.19, 133.47, 128.71, 128.56, 128.36, 128.06, 

127.97, 117.64, 111.99, 46.63, 35.17; HRMS (ESI) m/z calculated for C21H17Br2N2O2 

([M+H]
+
) 486.9651, found 486.9652. 

 

(E)-phenyl cinnamate (167) 

 

A 250 mL flask equipped with a magnetic stir bar and a dropping funnel was charged with 

phenol (3.76 g, 40.0 mmol, 1.00 equiv), NEt3 (7.76 mL, 56.0 mmol, 1.40 equiv) and DCM 

(80 mL). Cinnamoyl chloride (6.66 g, 40.0 mmol, 1.00 equiv) diluted with DCM (80 mL), 
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was slowly added via dropping funnel. After stirring overnight, the mixture was transferred to 

a separating funnel and washed with KHSO4 (1.0 M, 160 mL) and H2O (160 mL). The 

combined organic layers were dried over Na2SO4, the solvent was removed in vacuo and the 

residue was recrystallized in EtOH (10 mL) to obtain (E)-phenyl cinnamate as white powder 

(7.31 g, 32.6 mmol, 81%). 

1
H-NMR (300 MHz, CDCl3): δ 7.89 (d, J = 16.0 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.46 – 7.39 

(m, 5H), 7.30 – 7.23 (m, 1H), 7.21 – 7.16 (m, 2H), 6.65 (d, J = 16.0 Hz, 1H); 
13

C-NMR (75 

MHz, CDCl3): δ 165.45, 150.82, 146.61, 134.19, 130.74, 129.48, 129.03, 128.34, 125.83, 

121.67, 117.33. 

 

(E)-benzyl cinnamate (168) 

 

A 250 mL flask equipped with a magnetic stir bar and a dropping funnel was charged with 

benzyl alcohol (4.33 g, 40.0 mmol, 1.00 equiv), NEt3 (7.76 mL, 56.0 mmol, 1.40 equiv) and 

DCM (80 mL). Cinnamoyl chloride (6.66 g, 40.0 mmol, 1.00 equiv) diluted with DCM 

(80 mL), was slowly added via dropping funnel. After stirring overnight, the mixture was 

transferred to a separating funnel and washed with KHSO4 (1.0 M, 160 mL) and H2O 

(160 mL). The combined organic layers were dried over Na2SO4, the solvent was removed in 

vacuo and the residue was purified by column chromatography on SiO2 (hexanes / EA, 12:1 

to 10:1) to obtain (E)-benzyl cinnamate as colorless oil (7.96 g, 33.4 mmol, 84%).  

Rf (hexanes / EA, 10:1 = 0.34; 
1
H-NMR (300 MHz, CDCl3): δ 7.74 (d, J = 16.0 Hz, 1H), 7.56 

– 7.50 (m, 2H), 7.46 – 7.34 (m, 8H), 6.50 (d, J = 16.0 Hz, 1H), 5.26 (s, 2H); 
13

C-NMR (101 

MHz, CDCl3): δ 166.83, 145.22, 136.10, 134.40, 130.39, 128.93, 128.64, 128.32, 128.30, 

128.15, 117.92, 66.40. 
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(E)-3-(trifluoromethyl)phenyl cinnamate (169) 

 

A 250 mL flask equipped with a magnetic stir bar and a dropping funnel was charged with (3-

(trifluoromethyl)phenyl)methanol (3.24 g, 20.0 mmol, 1.00 equiv), NEt3 (3.88 mL, 

28.0 mmol, 1.40 equiv) and DCM (40 mL). Cinnamoyl chloride (3.33 g, 20.0 mmol, 

1.00 equiv) diluted with DCM (40 mL), was slowly added via dropping funnel. After stirring 

overnight, the mixture was transferred to a separating funnel and washed with KHSO4 (1.0 M, 

80 mL) and H2O (80 mL). The combined organic layers were dried over Na2SO4, the solvent 

was removed in vacuo and the residue was recrystallized in EtOH (5 mL) to obtain (E)-3-

(trifluoromethyl)phenyl cinnamate as white powder (5.20 g, 17.8 mmol, 89%). 

1
H-NMR (400 MHz, CDCl3): δ 7.91 (d, J = 16.0 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.57 – 7.51 

(m, 2H), 7.49 – 7.42 (m, 4H), 7.42 – 7.37 (m, 1H), 6.64 (d, J = 16.0 Hz, 1H); 
13

C-NMR (101 

MHz, CDCl3): δ 164.95, 150.92, 147.42, 134.00, 132.00 (q, J = 32.9 Hz), 131.00, 130.02, 

129.09, 128.43, 125.32, 122.61 (q, J = 3.8 Hz), 119.02 (q, J = 3.9 Hz), 116.65; 
19

F-NMR (376 

MHz, CDCl3): δ -63.14. 

 

(E)-perfluorophenyl cinnamate (170) 

 

A 250 mL flask equipped with a magnetic stir bar and a dropping funnel was charged with 

2,3,4,5,6-pentafluorophenol (3.96 g, 21.5 mmol, 1.00 equiv), NEt3 (4.17 mL, 30.1 mmol, 

1.40 equiv) and DCM (40 mL). Cinnamoyl chloride (3.58 g, 21.5 mmol, 1.00 equiv) diluted 

with DCM (40 mL), was slowly added via dropping funnel. After stirring overnight, the 

mixture was transferred to a separating funnel and washed with KHSO4 (1.0 M, 80 mL) and 

H2O (80 mL). The combined organic layers were dried over Na2SO4, the solvent was removed 
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in vacuo and the residue was recrystallized in EtOH (5 mL) to obtain (E)-perfluorophenyl 

cinnamate as white powder (5.89 g, 18.8 mmol, 87%). 

1
H-NMR (300 MHz, CDCl3): δ 7.96 (d, J = 16.0 Hz, 1H), 7.64 – 7.58 (m, 2H), 7.49 – 7.42 

(m, 3H), 6.66 (d, J = 16.0 Hz, 1H); 
13

C-NMR (75 MHz, CDCl3): δ 162.67, 149.50, 133.54, 

131.51, 129.15, 128.65, 114.19; 
19

F-NMR (282 MHz, CDCl3): δ -152.99 (m, 2H), -158.69 (t, 

J = 21.7 Hz, 1H), -162.91 (m, 2H). 

 

phenyl 2-bromo-3-phenylacrylate (172) 

 

A 250 mL flask equipped with a magnetic stir bar was charged with (E)-phenyl 3-

phenylacrylate (167, 4.04 g, 18.0 mmol, 1.00 equiv), OXONE
®
 (13.3 g, 21.6 mmol, 

1.20 equiv) and DCM (90 mL). Subsequently, HBr (47%, 4.16 mL, 36.0 mmol, 2.00 equiv) 

was added in one portion resulting in a dark red colored solution. After stirring for 4 d at room 

temperature, NEt3 (12.5 mL, 90.0 mmol, 5.00 equiv) was carefully added. The reaction 

mixture was stirred for additional 12 h and subsequently transferred to a separating funnel and 

extracted with H2O (2 x 90 mL) and brine (90 mL). The combined organic layers were dried 

over Na2SO4, the solvent was removed in vacuo and the residue was purified by column 

chromatography on SiO2 (hexanes / EA, 10:1) to obtain phenyl 2-bromo-3-phenylacrylate as a 

mixture of E/Z = 45:55 as yellow oil (4.78 g, 15.8 mmol, 88%). 

Rf (hexanes / EA, 10:1) = 0.32; IR (neat): 3060, 3026, 1738, 1591, 1490, 1446, 1341, 1241, 

1170, 1026, 961, 849, 752, 685 cm
-1

; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 7.54 (s, 1H), 

7.49 – 7.20 (m, 8H), 7.04 – 7.01 (m, 2H); 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 8.45 (s, 

1H), 7.96 – 7.93 (m, 2H), 7.49 – 7.20 (m, 8H); 
13

C-NMR (75 MHz, CDCl3, both Isomers): δ 

162.79, 162.10, 151.04, 150.29, 142.56, 141.20, 134.77, 133.55, 130.66, 130.56, 129.60, 

129.52, 129.28, 128.62, 128.57, 128.36, 126.34, 126.26, 121.46, 121.05, 112.03, 110.74; 

HRMS (CI) m/z calculated for C15H12O2Br ([M+H]
+
) 303.0015, found 303.0010. 
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benzyl 2-bromo-3-phenylacrylate (173) 

 

A 250 mL flask equipped with a magnetic stir bar was charged with (E)-benzyl 3-

phenylacrylate (168, 4.29 g, 18.0 mmol, 1.00 equiv), OXONE
®
 (13.3 g, 21.6 mmol, 

1.20 equiv) and DCM (90 mL). Subsequently, HBr (47%, 4.16 mL, 36.0 mmol, 2.00 equiv) 

was added in one portion resulting in a dark red colored solution. After stirring for 4 d at room 

temperature, NEt3 (12.5 mL, 90.0 mmol, 5.00 equiv) was carefully added. The reaction 

mixture was stirred for additional 12 h and subsequently transferred to a separating funnel and 

extracted with H2O (2 x 90 mL) and brine (90 mL). The combined organic layers were dried 

over Na2SO4, the solvent was removed in vacuo and the residue was purified by column 

chromatography on SiO2 (hexanes / EA, 10:1) to obtain benzyl 2-bromo-3-phenylacrylate as a 

mixture of E/Z = 42:58 as yellow oil (3.56 g, 11.2 mmol, 62%). 

Rf (hexanes / EA, 10:1) = 0.30; IR (neat): 3063, 3030, 2955, 2885, 1710, 1610, 1490, 1446, 

1375, 1226, 1192, 1077, 1013, 928, 764, 689 cm
-1

; 
1
H-NMR (400 MHz, CDCl3, E isomer): δ 

7.38 – 7.36 (m, 2H), 7.32 – 7.30 (m, 3H), 7.30 – 7.27 (m, 1H), 7.24 (s, 1H), 7.22 – 7.18 (m, 

4H), 5.19 (s, 2H); 
1
H-NMR (400 MHz, CDCl3, Z isomer): δ 8.25 (s, 1H), 7.86 – 7.84 (m, 

2H), 7.46 – 7.41 (m, 7H), 7.39 – 7.38 (m, 1H), 5.34 (s, 2H); 
13

C-NMR (101 MHz, CDCl3, 

both isomers): δ 164.24, 163.27, 141.33, 140.03, 135.43, 134.77, 134.61, 134.49, 133.71, 

130.36, 130.31, 128.88, 128.69, 128.56, 128.50, 128.45, 128.28, 128.12, 112.80, 111.32, 

68.35, 67.98; HRMS (EI) m/z calculated for C16H13O2Br ([M]
+
) 316.0093, found 316.0090. 

 

3-(trifluoromethyl)phenyl 2-bromo-3-phenylacrylate (174) 

 

A 250 mL flask equipped with a magnetic stir bar was charged with (E)-3-

(trifluoromethyl)phenyl 3-phenylacrylate (169, 5.14 g, 17.6 mmol, 1.00 equiv), OXONE
®

 

(13.0 g, 21.1 mmol, 1.20 equiv) and DCM (90 mL). Subsequently, HBr (47%, 4.06 mL, 
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35.2 mmol, 2.00 equiv) was added in one portion resulting in a dark red colored solution. 

After stirring for 4 d at room temperature, NEt3 (12.2 mL, 87.9 mmol, 5.00 equiv) was 

carefully added. The reaction mixture was stirred for additional 12 h and subsequently 

transferred to a separating funnel and extracted with H2O (2 x 90 mL) and brine (90 mL). The 

combined organic layers were dried over Na2SO4, the solvent was removed in vacuo and the 

residue was purified by column chromatography on SiO2 (hexanes / EA, 10:1) to obtain 

3-(trifluoromethyl)phenyl 2-bromo-3-phenylacrylate as a mixture of E/Z = 41:59 as yellow oil 

(5.81 g, 15.7 mmol, 89%). 

Rf (hexanes / EA, 10:1) = 0.38; IR (neat): 3071, 3030, 1736, 1606, 1490, 1449, 1326, 1237, 

1162, 1121, 1066, 969, 928, 890, 797, 760, 693 cm
-1

; 
1
H-NMR (300 MHz, CDCl3, E isomer): 

δ 7.61 (s, 1H), 7.46 – 7.39 (m, 7H), 7.24 – 7.21 (m, 2H); 
1
H-NMR (300 MHz, CDCl3, Z 

isomer): δ 8.46 (s, 1H), 7.96 – 7.93 (m, 2H), 7.58 – 7.56 (m, 2H), 7.51 – 7.47 (m, 5H); 

13
C-NMR (75 MHz, CDCl3, both isomers): δ 162.25, 161.74, 151.03, 150.28, 143.26, 142.42, 

134.77, 133.34, 132.35, 131.92, 130.91, 130.64, 130.19, 130.10, 129.47, 128.67, 128.63, 

128.30, 125.15, 125.13, 124.72, 123.13 (t, J = 3.7 Hz), 118.90 (d, J = 3.7 Hz), 118.44, 118.39, 

118.34, 111.19, 110.20; 
19

F-NMR (282 MHz, CDCl3, both isomers): δ -63.14, -63.23; HRMS 

(ESI) m/z calculated for C16H10BrF3NaO2 ([M+Na]
+
) 392.9708, found 392.9709. 
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3 Synthesis of α-halo cinnamates (228a – 228u) 

 

General procedure (GP-A) for the synthesis of (Z)-α-halo cinnamates via titanium 

mediated olefination
[197]

 

 

A flame dried two-neck-flask equipped with a magnetic stir bar and a dropping funnel was 

charged with aromatic aldehyde (10.0 mmol, 1.00 equiv), α-halo acetate (13.0 mmol, 

1.30 equiv) and dry DCM (15 mL) under nitrogen atmosphere. Subsequently, TiCl4 

(14.0 mmol, 1.40 equiv) diluted with dry DCM (14 mL) was added dropwise over a period of 

10 min. After stirring for additional 30 min at room temperature, NEt3 (6.93 mL, 50.0 mmol, 

5.00 equiv) was cautiously added in drops within 10 min. The resulting brown mixture was 

then stirred overnight. Upon completion of the reaction, the mixture was diluted with DCM 

(20 mL) and washed with HClaq (1.0 M, 15 mL), H2O (15 mL) and brine (15 mL). The 

combined organic layers were dried over Na2SO4, the solvent was removed in vacuo and the 

residue was purified by column chromatography on SiO2 (hexanes / EA, 15:1) to obtain the 

pure product. 

 

ethyl (Z)-2-fluoro-3-phenylacrylate (228a-F) 

 

Following general procedure GP-A using benzaldehyde (1.01 mL, 10.0 mmol, 1.00 equiv), 

ethyl fluoroacetate (1.25 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 14.0 mmol, 

1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-fluoro-3-phenylacrylate 

(1.04 g, 5.36 mmol, 54%) as yellowish oil after purification on SiO2 (hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.42; 
1
H-NMR (400 MHz, CDCl3): δ 7.66 – 7.64 (m, 2H), 7.43 – 

7.35 (m, 3H), 6.92 (d, J = 35.3 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 



Experimental part 

 
110 

 

13
C-NMR (101 MHz, CDCl3): δ 161.48 (d, J = 34.2 Hz), 147.06 (d, J = 267.6 Hz), 131.19 (d, 

J = 4.4 Hz), 130.33 (d, J = 8.2 Hz), 129.72 (d, J = 2.7 Hz), 128.84, 117.53, 117.49, 61.93, 

14.26; 
19

F-NMR (376 MHz, CDCl3): δ -125.82. 

 

ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl) 

 

Following general procedure GP-A using benzaldehyde (1.01 mL, 10.0 mmol, 1.00 equiv), 

ethyl chloroacetate (1.40 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.53 mL, 14.0 mmol, 

1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-chloro-3-phenylacrylate 

(1.33 g, 6.31 mmol, 63%) as colorless oil after purification on SiO2 (hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.50; 
1
H-NMR (300 MHz, CDCl3): δ 7.91 (s, 1H), 7.87 – 7.82 (m, 

2H), 7.47 – 7.40 (m, 3H), 4.36 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 

13
C-NMR (75 MHz, CDCl3): δ 163.45, 136.92, 132.98, 130.66, 130.20, 128.56, 122.23, 

62.62, 14.26. 

 

ethyl (Z)-2-bromo-3-phenylacrylate (228a-Br) 

 

Following general procedure GP-A using benzaldehyde (1.01 mL, 10.0 mmol, 1.00 equiv), 

ethyl bromoacetate (1.45 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.53 mL, 14.0 mmol, 

1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-bromo-3-phenylacrylate 

(1.19 g, 4.66 mmol, 40%) as colorless oil after purification on SiO2 (hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.50; 
1
H-NMR (300 MHz, CDCl3): δ 8.22 (s, 1H), 7.87 – 7.84 (m, 

2H), 7.44 – 7.42 (m, 3H), 4.36 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 

13
C-NMR (75 MHz, CDCl3): δ 163.38, 140.80, 133.77, 130.21, 128.91, 128.44, 113.19, 

62.83, 14.26. 
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methyl (Z)-2-chloro-3-phenylacrylate (228b) 

 

Following general procedure GP-A using benzaldehyde (4.04 mL, 40.0 mmol, 1.00 equiv), 

ethyl chloroacetate (4.55 mL, 52.0 mmol, 1.30 equiv), TiCl4 (6.14 mL, 56.0 mmol, 

1.40 equiv), NEt3 (27.7 mL, 200 mmol, 5.00 equiv) gave methyl (Z)-2-chloro-3-

phenylacrylate (3.50 g, 17.8 mmol, 45%) as slighty yellow oil after purification on SiO2 

(hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.37; 
1
H-NMR (400 MHz, CDCl3): δ 7.92 (s, 1H), 7.86 – 7.83 (m, 

2H), 7.47 – 7.41 (m, 3H), 3.91 (s, 3H); 
13

C-NMR (101 MHz, CDCl3): δ 163.97, 137.28, 

132.93, 130.70, 130.29, 128.59, 121.82, 53.41. 

 

iso-propyl (Z)-2-chloro-3-phenylacrylate (228c) 

 

Preparation via GP-A failed. The title compound was thus synthesized by esterification of the 

free carboxylic acid. 

Methyl (Z)-2-chloro-3-phenylacrylate (228b, 1.00 g, 5.09 mmol, 1.00 equiv) and LiOH 

(244 mg, 10.2 mmol, 2.00 equiv) was dissolved in a mixture of MeOH (5 mL) and H2O 

(1 mL). The reaction mixture was heated to 35 °C for 1 h. Subsequently, methanol was 

evaporated and the mixture was diluted with H2O (20 mL) and washed with DCM 

(2 x 20 mL). The aqueous phase was acidified and washed with EA (3 x 20 mL). The 

combined organic layers were dried over Na2SO4, the solvent was removed in vacuo and 

(Z)-2-chloro-3-phenylacrylic acid (816 mg, 4.47 mmol, 88%) could be used without further 

purification. 
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1
H-NMR (300 MHz, CDCl3): δ 10.14 (s, 1H), 8.06 (s, 1H), 7.94 – 7.87 (m, 2H), 7.49 – 7.43 

(m, 3H); 
13

C-NMR (75 MHz, CDCl3): δ 168.69, 139.50, 132.58, 131.02, 130.86, 128.69, 

120.89. 

A 100 mL flask was charged with (Z)-2-chloro-3-phenylacrylic acid (704 mg, 3.86 mmol, 

1.00 equiv), 
i
PrOH (25.0 mL, 325 mmol, 84.0 equiv) and conc. H2SO4 (200 µL, 3.75 mmol, 

0.97 equiv). The reaction was heated to 100 °C and stirred overnight. The mixture was 

allowed to cool to room temperature, quenched with sat. NaHCO3 (15 mL) and washed with 

DCM (3 x 25 mL). The combined organic layers were dried over Na2SO4, the solvent was 

removed in vacuo and the residue was purified by column chromatography on SiO2 

(hexanes / EA, 15:1) to obtain pure iso-propyl (Z)-2-chloro-3-phenylacrylate as colorless oil 

(592 mg, 2.63 mmol, 68%).  

Rf (hexanes / EA, 6:1) = 0.48; IR (neat): 3060, 3030, 2981, 2937, 1714, 1617, 1490, 1446, 

1375, 1263, 1200, 1103, 1021, 916, 861, 831, 767, 689 cm
-1

; 
1
H-NMR (300 MHz, CDCl3): δ 

7.88 (s, 1H), 7.87 – 7.82 (m, 2H), 7.45 – 7.40 (m, 3H), 5.18 (sept, J = 6.3 Hz, 1H), 1.37 (d, J 

= 6.3 Hz, 6H); 
13

C-NMR (75 MHz, CDCl3): δ 162.90, 136.59, 133.06, 130.62, 130.10, 

128.53, 122.72, 70.43, 21.83; HRMS (ESI) m/z calculated for C12H14ClO2 ([M+H]
+
) 

225.0677, found 225.0677. 

 

tert-butyl (Z)-2-chloro-3-phenylacrylate (228d) 

 

Preparation via GP-A failed. The title compound was thus synthesized by esterification of the 

free carboxylic acid. 

Methyl (Z)-2-chloro-3-phenylacrylate (228b, 1.00 g, 5.09 mmol, 1.00 equiv) and LiOH (244 

mg, 10.2 mmol, 2.00 equiv) was dissolved in a mixture of MeOH (5 mL) and H2O (1 mL). 

The reaction mixture was heated to 35 °C for 1 h. Subsequently, methanol was evaporated 

and the mixture was diluted with H2O (20 mL) and washed with DCM (2 x 20 mL). The 

aqueous phase was acidified and washed with EA (3 x 20 mL). The combined organic layers 

were dried over Na2SO4, the solvent was removed in vacuo and (Z)-2-chloro-3-phenylacrylic 

acid (816 mg, 4.47 mmol, 88%) could be used without further purification. 
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1
H-NMR (300 MHz, CDCl3): δ 10.14 (s, 1H), 8.06 (s, 1H), 7.94 – 7.87 (m, 2H), 7.49 – 7.43 

(m, 3H); 
13

C-NMR (75 MHz, CDCl3): δ 168.69, 139.50, 132.58, 131.02, 130.86, 128.69, 

120.89. 

(Z)-2-chloro-3-phenylacrylic acid (465 mg, 2.55 mmol, 1.00 equiv), 4-DMAP (31.1 mg, 

255 µmol, 0.10 equiv), and 
t
BuOH (189 mg, 2.55 mmol, 1.00 equiv) was dissolved in DCM 

(10 mL). Subsequently, DCC (578 mg, 2.80 mmol, 1.10 equiv) was added at 0 °C. The 

reaction was stirred for additional 5 min at 0 °C. After stirring overnight at room temperature 

the reaction mixture was filtered, diluted with DCM (40 mL) and washed with HCl (0.5 M, 

2 x 20 mL) and sat. NaHCO3 (20 mL). The combined organic layers were dried over Na2SO4, 

the solvent was removed in vacuo and the residue was purified by column chromatography on 

SiO2 (hexanes / EA, 8:1) to obtain pure tert-butyl (Z)-2-chloro-3-phenylacrylate as yellow oil 

(453 mg, 1.90 mmol, 75%).  

Rf (hexanes / EA, 6:1) = 0.55; IR (neat): 3056, 2981, 2933, 1710, 1617, 1490, 1446, 1394, 

1367, 1282, 1252, 1203, 1151, 1077, 1043, 1013, 924, 842, 767, 609 cm
-1

; 
1
H-NMR (400 

MHz, CDCl3): δ 7.83 – 7.80 (m, 3H), 7.45 – 7.39 (m, 3H), 1.58 (s, 9H); 
13

C-NMR (101 MHz, 

CDCl3): δ 162.27, 135.94, 133.22, 130.53, 129.92, 128.49, 123.76, 82.98, 28.03; HRMS (EI) 

m/z calculated for C13H15ClO2 ([M]
+
) 238.0751, found 238.0754. 

 

ethyl (Z)-2-chloro-3-(4-chlorophenyl)acrylate (228e) 

 

Following general procedure GP-A using 4-chlorobenzaldehyde (1.41 g, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 

14.0 mmol, 1.40 equiv), NEt3 (2.77 mL, 20.0 mmol, 2.00 equiv) gave ethyl (Z)-2-chloro-3-(4-

chlorophenyl)acrylate (1.10 g, 4.49 mmol, 45%) as colorless oil after purification on SiO2 

(hexanes / EA, 15:1). 
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Rf (hexanes / EA, 10:1) = 0.40; 
1
H-NMR (300 MHz, CDCl3): δ 7.85 (s, 1H), 7.82 – 7.76 (m, 

2H), 7.43 – 7.38 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 

MHz, CDCl3): δ 163.20, 136.12, 135.55, 131.86, 131.40, 128.87, 122.80, 62.74, 14.24. 

 

ethyl (Z)-3-(4-bromophenyl)-2-chloroacrylate (228f) 

 

Following general procedure GP-A using 4-bromobenzaldehyde (1.85 g, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 

14.0 mmol, 1.40 equiv), NEt3 (2.77 mL, 20.0 mmol, 2.00 equiv) gave ethyl (Z)-3-(4-

bromophenyl)-2-chloroacrylate (511 mg, 1.76 mmol, 18%) as colorless oil after purification 

on SiO2 (hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.40; 
1
H-NMR (300 MHz, CDCl3): δ 7.83 (s, 1H), 7.74 – 7.69 (m, 

2H), 7.58 – 7.53 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 

13
C-NMR (75 MHz, CDCl3): δ 163.19, 135.62, 132.02, 131.84, 124.55, 122.94, 62.75, 14.24. 

 

ethyl (Z)-2-chloro-3-(4-fluorophenyl)acrylate (228g) 

 

Following general procedure GP-A using 4-fluorobenzaldehyde (1.05 mL, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 

14.0 mmol, 1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-chloro-3-(4-

fluorophenyl)acrylate (765 mg, 3.35 mmol, 34%) as colorless oil after purification on SiO2 

(hexanes / EA, 15:1). 
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Rf (hexanes / EA, 10:1) = 0.40; 
1
H-NMR (400 MHz, CDCl3): δ 7.88 – 7.84 (m, 3H), 7.15 – 

7.09 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); 
13

C-NMR (101 MHz, 

CDCl3): δ 164.72, 163.34, 162.21, 135.63, 132.83, 132.75, 129.22, 129.18, 121.93, 121.91, 

115.86, 115.65, 62.65, 14.24; 
19

F-NMR (376 MHz, CDCl3): δ -109.28. 

 

ethyl (Z)-2-chloro-3-(2-chlorophenyl)acrylate (228h) 

 

Following general procedure GP-A using 2-chlorobenzaldehyde (1.12 mL, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 

14.0 mmol, 1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-chloro-3-(2-

chlorophenyl)acrylate (931 mg, 3.80 mmol, 38%) as colorless oil after purification on SiO2 

(hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.49; 
1
H-NMR (400 MHz, CDCl3): δ 8.15 (s, 1H), 7.98 – 7.93 (m, 

1H), 7.47 – 7.43 (m, 1H), 7.36 – 7.31 (m, 2H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 

3H); 
13

C-NMR (101 MHz, CDCl3): δ 162.92, 134.78, 133.85, 131.54, 130.78, 130.70, 

129.67, 126.56, 125.01, 62.80, 14.22. 

 

ethyl (Z)-2-chloro-3-(3-chlorophenyl)acrylate (228i) 

 

Following general procedure GP-A using 3-chlorobenzaldehyde (1.12 mL, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 

14.0 mmol, 1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-chloro-3-(3-
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chlorophenyl)acrylate (887 mg, 3.62 mmol, 36%) as yellowish oil after purification on SiO2 

(hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.35; IR (neat): 3063, 2981, 1718, 1617, 1565, 1476, 1412, 1367, 

1241, 1196, 1095, 1039, 998, 902, 861, 782, 682 cm
-1

; 
1
H-NMR (300 MHz, CDCl3): δ 7.87 – 

7.82 (m, 2H), 7.71 – 7.66 (m, 1H), 7.39 – 7.35 (m, 2H), 4.36 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 

7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3): δ 163.05, 135.37, 134.65, 134.53, 130.21, 130.10, 

129.78, 128.73, 123.66, 62.80, 14.22; HRMS (EI) m/z calculated for C11H10Cl2O2 ([M]
+
) 

244.0052, found 244.0050. 

 

ethyl (Z)-3-(2-bromophenyl)-2-chloroacrylate (228j) 

 

Following general procedure GP-A using 2-bromobenzaldehyde (1.16 mL, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 

14.0 mmol, 1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-3-(2-

bromophenyl)-2-chloroacrylate (1.87 g, 6.64 mmol, 65%) as colorless oil after purification on 

SiO2 (hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.41; IR (neat): 3056, 2981, 2907, 1722, 1621, 1584, 1464, 1435, 

1367, 1237, 1200, 1118, 1039, 998, 849, 760, 719 cm
-1

; 
1
H-NMR (300 MHz, CDCl3): δ 8.09 

(s, 1H), 7.89 (dd, J = 7.8, 1.6 Hz, 1H), 7.64 (dd, J = 8.0, 1.2 Hz, 1H), 7.38 (td, J = 7.5, 1.0 Hz, 

1H), 7.25 (td, J = 7.7, 1.6 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H); 

13
C-NMR (75 MHz, CDCl3): δ 162.88, 136.32, 133.38, 132.87, 130.89, 130.87, 127.14, 

124.91, 124.88, 62.80, 14.22; HRMS (EI) m/z calculated for C11H10O2ClBr ([M]
+
) 287.9547, 

found 287.9551. 
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ethyl (Z)-2-chloro-3-(4-nitrophenyl)acrylate (228k) 

 

Following general procedure GP-A using 4-nitrobenzaldehyde (1.51 g, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 

14.0 mmol, 1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-chloro-3-(4-

nitrophenyl)acrylate (1.02 g, 3.99 mmol, 40%) as orange solid after purification on SiO2 

(hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.18; IR (neat): 3127, 3093, 3026, 2944, 2903, 2851, 1710, 1617, 

1509, 1345, 1263, 1200, 1110, 1032, 924, 853, 760, 682 cm
-1

; 
1
H-NMR (300 MHz, CDCl3): δ 

8.31 – 8.25 (m, 2H), 7.99 – 7.93 (m, 3H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H); 

13
C-NMR (75 MHz, CDCl3): δ 162.60, 147.99, 139.11, 134.27, 131.12, 126.11, 123.70, 

63.12, 14.20; HRMS (EI) m/z calculated for C11H10NO4Cl ([M]
+
) 255.0293, found 255.0295. 

 

ethyl (Z)-2-chloro-3-(p-tolyl)acrylate (228l) 

 

Following general procedure GP-A using 4-methylbenzaldehyde (1.18 mL, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 

14.0 mmol, 1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-chloro-3-

(p-tolyl)acrylate (1.40 g, 6.23 mmol, 62%) as yellow oil after purification on SiO2 

(hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.44; 
1
H-NMR (400 MHz, CDCl3): δ 7.88 (s, 1H), 7.76 (d, J = 8.2 

Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 4.35 (q, J = 7.1 Hz, 2H), 2.39 (s, 3H), 1.39 (t, J = 7.1 Hz, 
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3H); 
13

C-NMR (101 MHz, CDCl3): δ 163.60, 140.75, 136.92, 130.76, 130.24, 129.31, 

121.23, 62.50, 21.56, 14.27. 

 

ethyl (Z)-2-chloro-3-(o-tolyl)acrylate (228m) 

 

Following general procedure GP-A using 2-methylbenzaldehyde (1.16 mL, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 

14.0 mmol, 1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-chloro-3-

(o-tolyl)acrylate (1.83 g, 8.14 mmol, 82%) as colorless oil after purification on SiO2 

(hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.47; IR (neat): 3063, 2981, 1718, 1617, 1483, 1367, 1237, 1039, 

1095, 998, 883, 863, 805, 764, 663 cm
-1

; 
1
H-NMR (300 MHz, CDCl3): δ 8.05 (s, 1H), 7.79 – 

7.73 (m, 1H), 7.31 – 7.22 (m, 3H), 4.37 (q, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.40 (t, J = 7.1 Hz, 

3H); 
13

C-NMR (75 MHz, CDCl3): δ 163.28, 137.54, 136.15, 132.27, 130.23, 129.55, 129.02, 

125.69, 123.89, 62.61, 20.01, 14.24; HRMS (EI) m/z calculated for C12H13O2Cl ([M]
+
) 

224.0599, found 224.0598. 

 

ethyl (Z)-3-(4-(tert-butyl)phenyl)-2-chloroacrylate (228n) 

 

Following general procedure GP-A using 4-(tert-butyl)benzaldehyde (900 µL, 5.38 mmol, 

1.00 equiv), ethyl chloroacetate (745 µL, 7.00 mmol, 1.30 equiv), TiCl4 (831 µL, 14.0 mmol, 

1.40 equiv), NEt3 (3.73 mL, 27.0 mmol, 5.00 equiv) gave ethyl (Z)-3-(4-(tert-butyl)phenyl)-2-
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chloroacrylate (735 mg, 2.76 mmol, 51%) as yellow oil after purification on SiO2 

(hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.42; 
1
H-NMR (300 MHz, CDCl3): δ 7.89 (s, 1H), 7.84 – 7.79 (m, 

2H), 7.48 – 7.43 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H), 1.34 (s, 9H); 

13
C-NMR (101 MHz, CDCl3): δ 163.62, 153.80, 136.80, 130.65, 130.22, 125.56, 121.33, 

62.51, 34.96, 31.14, 14.27. 

 

ethyl (Z)-2-chloro-3-(4-methoxyphenyl)acrylate (228o) 

 

Following general procedure GP-A using 4-methoxybenzaldehyde (1.22 mL, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 

14.0 mmol, 1.40 equiv), NEt3 (2.77 mL, 20.0 mmol, 2.00 equiv) gave ethyl (Z)-2-chloro-3-(4-

methoxyphenyl)acrylate (2.19 g, 9.10 mmol, 91%) as colorless oil after purification on SiO2 

(hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.30; 
1
H-NMR (300 MHz, CDCl3): δ 7.90 – 7.84 (m, 3H), 6.97 – 

6.92 (m, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 

MHz, CDCl3): δ 163.77, 161.10, 136.51, 132.72, 125.65, 119.64, 114.01, 62.43, 55.40, 14.29. 

 

ethyl (Z)-2-chloro-3-(2-methoxyphenyl)acrylate (228p) 

 

Following general procedure GP-A using 2-methoxybenzaldehyde (1.20 mL, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 
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14.0 mmol, 1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-chloro-3-(2-

methoxyphenyl)acrylate (1.66 g, 6.90 mmol, 69%) as yellowish oil after purification on SiO2 

(hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.30; IR (neat): 3056, 2981, 2940, 2840, 1714, 1599, 1483, 1394, 

1367, 1233, 1192, 1110, 1025, 883, 849, 797, 752, 674 cm
-1

; 
1
H-NMR (300 MHz, CDCl3): δ 

8.24 (s, 1H), 8.08 (dd, J = 7.8, 1.5 Hz, 1H), 7.42 – 7.35 (m, 1H), 7.04 – 6.99 (m, 1H), 6.94 – 

6.91 (d, J = 8.3 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 3.88 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H); 

13
C-NMR (75 MHz, CDCl3): δ 163.57, 157.96, 132.09, 131.49, 130.17, 122.48, 122.01, 

120.22, 110.53, 62.46, 55.62, 14.27; HRMS (EI) m/z calculated for C12H13O3Cl ([M]
+
) 

240.0547, found 240.0553. 

 

ethyl (Z)-2-chloro-3-(furan-2-yl)acrylate (228r) 

 

Following general procedure GP-A using furan-2-carbaldehyde (828 µL, 10.0 mmol, 

1.00 equiv), ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 

14.0 mmol, 1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-chloro-3-

(furan-2-yl)acrylate (1.18 g, 5.88 mmol, 59%) as yellow solid after purification on SiO2 

(hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.44; 
1
H-NMR (300 MHz, CDCl3): δ 7.83 (s, 1H), 7.58 (dd, J = 

1.7, 0.6 Hz, 1H), 7.28 (d, J = 3.6 Hz, 1H), 6.57 (ddd, J = 3.6, 1.7, 0.6 Hz, 1H), 4.33 (q, J = 7.1 

Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3): δ 163.05, 149.31, 144.84, 

125.42, 119.18, 116.83, 112.72, 62.49, 14.24. 
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ethyl (Z)-2-chloro-3-(pyridin-2-yl)acrylate (228s) 

 

Following general procedure GP-A using picolinaldehyde (948 µL, 10.0 mmol, 1.00 equiv), 

ethyl chloroacetate (1.39 mL, 13.0 mmol, 1.30 equiv), TiCl4 (1.54 mL, 14.0 mmol, 

1.40 equiv), NEt3 (6.93 mL, 50.0 mmol, 5.00 equiv) gave ethyl (Z)-2-chloro-3-(pyridin-2-

yl)acrylate (50.0 mg, 236 µmol, 3%) as dark brown oil after purification on SiO2 

(hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.10; 
1
H-NMR (300 MHz, CDCl3): δ 8.54 – 8.50 (m, 1H), 7.66 (td, 

J = 7.7, 1.8 Hz, 1H), 7.24 – 7.17 (m, 2H), 6.95 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 

7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3): δ 164.53, 151.90, 149.20, 136.61, 131.15, 123.47, 

123.08, 62.18, 13.84. 

 

ethyl 2-chloroacrylate (228t)  

 

A 500 mL flask equipped with a magnetic stir bar was charged with ethyl acrylate (5.44 mL, 

50.0 mmol, 1.00 equiv), OXONE
®
 (36.9 g, 60.0 mmol, 1.20 equiv), NH4Cl (5.88 g, 

110 mmol, 2.20 equiv) and MeCN (250 mL). The reaction mixture was stirred for 24 h at 

room temperature before NEt3 (34.7 mL, 250 mmol, 5.00 equiv) was cautiously added. After 

stirring for additional 24 h, MeCN was evaporated and the residue was dissolved in DCM 

(250 mL) and washed with H2O (250 mL) and brine (250 mL). The pure product (202 mg, 

1.50 mmol, 3%) was obtained by distillation under reduced pressure as colorless liquid 

(55 °C / 25 mbar). 

1
H-NMR (300 MHz, CDCl3): δ 6.52 (d, J = 1.4 Hz, 1H), 6.00 (d, J = 1.4 Hz, 1H), 4.29 (q, J = 

7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3): δ 161.98, 131.68, 125.59, 

62.60, 14.11. 
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ethyl 2-chloro-5-phenylpent-2-enoate (228u) 

 

Preparation via GP-A failed. The title compound was thus synthesized in a Fe(0)-mediated 

synthesis.
[198]

 

A flame dried 250 mL two-neck-flask equipped with a magnetic stir bar and a reflux 

condenser was charged with 3-phenylpropanal (1.33 mL, 10.0 mmol, 1.00 equiv), ethyl 2,2,2-

trichloroacetate (1.51 mL, 11.0 mmol, 1.10 equiv) and Fe powder (5.58 g, 100 mmol, 

10.0 equiv) and dry THF (100 mL) under nitrogen atmosphere. The reaction mixture was 

heated to 55 °C for 14 h. Upon completion, the reaction was filtered at room temperature, and 

the crude product was purified by column chromatography on SiO2 (hexanes / EA, 15:1) to 

obtain ethyl 2-chloro-5-phenylpent-2-enoate as a mixture of E/Z = 15:85 as colorless oil 

(1.02 g, 4.27 mmol, 43%). 

Rf (hexanes / EA, 10:1) = 0.40; 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 7.34 – 7.27 (m, 

2H), 7.25 – 7.18 (m, 3H), 7.10 (t, J = 7.1 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 2.84 – 2.78 (m, 

2H), 2.72 – 2.64 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H); 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 

7.34 – 7.27 (m, 2H), 7.25 – 7.18 (m, 3H), 6.47 (t, J = 7.1 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 

2.93 – 2.85 (m, 2H), 2.84 – 2.78 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, 

CDCl3, Z Isomer): δ 162.46, 143.59, 141.08, 140.56, 128.57, 128.32, 126.33, 125.32, 62.24, 

33.70, 31.07, 14.18. 
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4 Synthesis of enol acetates (152a – 152m) 

 

General procedure (GP-B) for the synthesis of enol acetates
[200]

 

 

A 100 mL flask equipped with a magnetic stir bar, a reflux condenser and a drying tube was 

charged with ketone (50.0 mmol, 1.00 equiv), isopropenyl acetate (250 mmol, 5.00 equiv) and 

p-TsOH·H2O (4.00 mmol, 0.08 equiv). The reaction mixture was heated to 120 °C. After 24 h 

the reaction mixture was allowed to cool to room temperature and the remaining isopropenyl 

acetate was subsequently evaporated under reduced pressure. The residue was redissolved in 

Et2O (100 mL) and the resulting solution was washed with H2O (3 x 50 mL) and dried over 

Na2SO4. The solvent was evaporated in vacuo to give a dark red oil. The pure product was 

obtained by distillation under reduced pressure or by purification on SiO2 (DCM / hexanes). 

 

1-phenylvinyl acetate (152a) 

 

Following general procedure GP-B using acetophenone (5.83 mL, 50.0 mmol, 1.00 equiv), 

isopropenyl acetate (27.2 mL, 250 mmol, 5.00 equiv) and p-TsOH·H2O (761 mg, 4.00 mmol, 

0.08 equiv) gave 1-phenylvinyl acetate (4.70 g, 29.0 mmol, 58%) as colorless oil after 

distillation under reduced pressure (88 °C / 5.6 mbar). 

1
H-NMR (300 MHz, CDCl3): δ 7.48 – 7.46 (m, 2H), 7.38 – 7.32 (m, 3H), 5.48 (d, J = 2.2 Hz, 

1H), 5.03 (d, J = 2.1 Hz, 1H), 2.28 (s, 3H); 
13

C-NMR (75 MHz, CDCl3): δ 169.08, 152.97, 

134.28, 128.97, 128.54, 124.89, 102.15, 20.99.  
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1-(4-methoxyphenyl)vinyl acetate (152b) 

 

Following general procedure GP-B using 1-(4-methoxyphenyl)ethan-1-one (7.51 g, 

50.0 mmol, 1.00 equiv), isopropenyl acetate (27.2 mL, 250 mmol, 5.00 equiv) and 

p-TsOH·H2O (761 mg, 4.00 mmol, 0.08 equiv) gave 1-(4-methoxyphenyl)vinyl acetate 

(2.34 g, 12.2 mmol, 25%) as white solid after distillation under reduced pressure 

(97 °C / 0.9 mbar). 

1
H-NMR (300 MHz, CDCl3): δ 7.44 – 7.37 (m, 2H), 6.90 – 6.84 (m, 2H), 5.36 (d, J = 2.2 Hz, 

1H), 4.92 (d, J = 2.2 Hz, 1H), 3.81 (s, 3H), 2.27 (s, 3H); 
13

C-NMR (75 MHz, CDCl3): δ 

169.21, 160.18, 152.73, 126.84, 126.30, 113.92, 100.30, 55.33, 21.03. 

 

1-(4-acetoxyphenyl)vinyl acetate (152c) 

 

Following general procedure GP-B using 1-(4-hydroxyphenyl)ethan-1-one (2.72 g, 

20.0 mmol, 1.00 equiv), isopropenyl acetate (13.1 mL, 120 mmol, 6.00 equiv) and 

p-TsOH·H2O (304 mg, 1.60 mmol, 0.08 equiv) gave 1-(4-acetoxyphenyl)vinyl acetate 

(2.01 g, 9.13 mmol, 46%) as white solid after purification on SiO2 (DCM / hexanes, 1:1). 

Rf (hexanes / EA, 6:1) = 0.28; IR (neat): 3049, 2926, 2855, 1755, 1643, 1602, 1505, 1367, 

1267, 1189, 1088, 1043, 1013, 961, 909, 887, 849, 812 cm
-1

; 
1
H-NMR (300 MHz, CDCl3): δ 

7.50 – 7.45 (m, 2H), 7.11 – 7.06 (m, 2H), 5.45 (d, J = 2.3 Hz, 1H), 5.03 (d, J = 2.3 Hz, 1H), 

2.30 (s, 3H), 2.28 (s, 3H); 
13

C-NMR (75 MHz, CDCl3): δ 169.27, 169.02, 152.14, 151.10, 

132.06, 126.14, 121.72, 102.43, 21.17, 21.02; HRMS (EI) m/z calculated for C12H12O4 ([M]
+
) 

220.0730, found 220.0735. 
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1-(3-methoxyphenyl)vinyl acetate (152d) 

 

Following general procedure GP-B using 1-(3-methoxyphenyl)ethan-1-one (7.51 g, 

50.0 mmol, 1.00 equiv), isopropenyl acetate (27.2 mL, 250 mmol, 5.00 equiv) and 

p-TsOH·H2O (761 mg, 4.00 mmol, 0.08 equiv) gave 1-(3-methoxyphenyl)vinyl acetate 

(4.77 g, 24.8 mmol, 50%) as colorless oil after distillation under reduced pressure 

(110 °C / 2.5 mbar). 

1
H-NMR (400 MHz, CDCl3): δ 7.27 (t, J = 8.0 Hz, 1H), 7.07 (d, J = 7.8 Hz, 1H), 7.00 – 6.99 

(m, 1H), 6.88 (dd, J = 8.2, 2.3 Hz, 1H), 5.47 (d, J = 2.1 Hz, 1H), 5.03 (d, J = 2.0 Hz, 1H), 

3.82 (s, 3H), 2.28 (s, 3H); 
13

C-NMR (101 MHz, CDCl3): δ 169.08, 159.72, 152.77, 135.76, 

129.63, 117.45, 114.29, 110.85, 102.48, 55.31, 21.00. 

 

1-(2-methoxyphenyl)vinyl acetate (152e) 

 

Following general procedure GP-B using 1-(2-methoxyphenyl)ethan-1-one (7.51 g, 

50.0 mmol, 1.00 equiv), isopropenyl acetate (27.2 mL, 250 mmol, 5.00 equiv) and 

p-TsOH·H2O (761 mg, 4.00 mmol, 0.08 equiv) gave 1-(2-methoxyphenyl)vinyl acetate 

(5.60 g, 29.1 mmol, 58%) as colorless oil after purification on SiO2 (DCM / hexanes, 1:1). 

Rf (DCM) = 0.54; IR (neat): 3004, 2940, 2840, 1755, 1636, 1599, 1490, 1461, 1435, 1367, 

1282, 1244, 1192, 1125, 1073, 1017, 961, 887, 812, 752, 704 cm
-1

; 
1
H-NMR (400 MHz, 

CDCl3): δ 7.35 (dd, J = 7.6, 1.7 Hz, 1H), 7.32 – 7.27 (m, 1H), 6.96 – 6.91 (m, 2H), 5.59 (d, J 

= 1.3 Hz, 1H), 5.15 (d, J = 1.3 Hz, 1H), 3.87 (s, 3H), 2.21 (s, 3H); 
13

C-NMR (101 MHz, 

CDCl3): δ 169.08, 157.04, 150.27, 129.98, 128.46, 123.44, 120.47, 111.28, 106.59, 55.58, 

21.01; HRMS (EI) m/z calculated for C11H12O3 ([M]
+
) 192.0781, found 192.0785. 
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1-(p-tolyl)vinyl acetate (152f) 

 

Following general procedure GP-B using 1-(p-tolyl)ethan-1-one (6.71 g, 50.0 mmol, 

1.00 equiv), isopropenyl acetate (27.2 mL, 250 mmol, 5.00 equiv) and p-TsOH·H2O (761 mg, 

4.00 mmol, 0.08 equiv) gave 1-(p-tolyl)vinyl acetate (2.08 g, 11.8 mmol, 24%) as white solid 

after distillation under reduced pressure (83 °C / 1.6 mbar). 

1
H-NMR (300 MHz, CDCl3): δ 7.37 – 7.34 (m, 2H), 7.17 – 7.14 (m, 2H), 5.43 (d, J = 2.1 Hz, 

1H), 4.97 (d, J = 2.1 Hz, 1H), 2.35 (s, 3H), 2.28 (s, 3H);
 13

C-NMR (75 MHz, CDCl3): δ 

169.18, 153.03, 139.00, 131.43, 129.25, 124.79, 101.26, 21.26, 21.03. 

 

1-(o-tolyl)vinyl acetate (152g) 

 

Following general procedure GP-B using 1-(o-tolyl)ethan-1-one (4.63 g, 34.5 mmol, 

1.00 equiv), isopropenyl acetate (18.8 mL, 173 mmol, 5.00 equiv) and p-TsOH·H2O (525 mg, 

2.76 mmol, 0.08 equiv) gave 1-(o-tolyl)vinyl acetate (1.20 g, 6.81 mmol, 20%) as colorless oil 

after distillation under reduced pressure (73 °C / 2.7 mbar). 

1
H-NMR (300 MHz, CDCl3): δ 7.40 – 7.36 (m, 1H), 7.27 – 7.15 (m, 3H), 5.19 (d, J = 1.5 Hz, 

1H), 5.03 (d, J = 1.5 Hz, 1H), 2.42 (s, 3H), 2.15 (s, 3H);
 13

C-NMR (75 MHz, CDCl3): δ 

168.85, 153.80, 135.95, 135.38, 130.48, 129.10, 128.79, 125.67, 105.73, 21.05, 20.36. 
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1-(4-bromophenyl)vinyl acetate (152h) 

 

Following general procedure GP-B using 1-(4-bromophenyl)ethan-1-one (9.95 g, 50.0 mmol, 

1.00 equiv), isopropenyl acetate (27.2 mL, 250 mmol, 5.00 equiv) and p-TsOH·H2O (761 mg, 

4.00 mmol, 0.08 equiv) gave 1-(4-bromophenyl)vinyl acetate (7.56 g, 31.4 mmol, 63%) as 

slighty yellow solid after purification on SiO2 (DCM / hexanes, 1:1). 

Rf (DCM / hexanes, 1:1) = 0.26; 
1
H-NMR (400 MHz, CDCl3): δ 7.49 – 7.46 (m, 2H), 7.35 – 

7.31 (m, 2H), 5.47 (d, J = 2.4 Hz, 1H), 5.06 (d, J = 2.4 Hz, 1H), 2.27 (s, 3H); 
13

C-NMR (101 

MHz, CDCl3): δ 168.96, 152.04, 133.35, 131.74, 126.51, 123.10, 102.81, 20.98. 

 

1-(4-chlorophenyl)vinyl acetate (152i) 

 

Following general procedure GP-B using 1-(4-chlorophenyl)ethan-1-one (6.48 mL, 

50.0 mmol, 1.00 equiv), isopropenyl acetate (27.2 mL, 250 mmol, 5.00 equiv) and 

p-TsOH·H2O (761 mg, 4.00 mmol, 0.08 equiv) gave 1-(4-chlorophenyl)vinyl acetate (2.61 g, 

13.3 mmol, 27%) as colorless oil after distillation under reduced pressure (95 °C / 3.0 mbar). 

1
H-NMR (300 MHz, CDCl3): δ 7.41 – 7.37 (m, 2H), 7.34 – 7.29 (m, 2H), 5.46 (d, J = 2.4 Hz, 

1H), 5.05 (d, J = 2.4 Hz, 1H), 2.28 (s, 3H); 
13

C-NMR (75 MHz, CDCl3): δ 169.01, 151.95, 

134.86, 132.83, 128.78, 126.22, 102.74, 20.99. 
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1-(4-fluorophenyl)vinyl acetate (152j) 

 

Following general procedure GP-B using 1-(4-fluorophenyl)ethan-1-one (2.42 mL, 

20.0 mmol, 1.00 equiv), isopropenyl acetate (10.9 mL, 100 mmol, 5.00 equiv) and 

p-TsOH·H2O (304 mg, 1.60 mmol, 0.08 equiv) gave 1-(4-fluorophenyl)vinyl acetate (1.00 g, 

5.55 mmol, 28%) as yellow oil after purification on SiO2 (DCM / hexanes, 1:1). 

Rf (hexanes / EA, 10:1) = 0.30; 
1
H-NMR (300 MHz, CDCl3): δ 7.48 – 7.41 (m, 2H), 7.08 – 

7.00 (m, 2H), 5.41 (d, J = 2.3 Hz, 1H), 5.01 (d, J = 2.3 Hz, 1H), 2.28 (s, 3H); 
13

C-NMR (75 

MHz, CDCl3): δ 169.08, 164.75, 161.45, 152.05, 130.54, 130.49, 126.87, 126.76, 115.72, 

115.43, 102.06, 102.04, 21.02; 
19

F-NMR (282 MHz, CDCl3): δ -112.80. 

 

3,4-dihydronaphthalen-1-yl acetate (152k) 

 

Following general procedure GP-B using 3,4-dihydronaphthalen-1(2H)-one (7.24 mL, 

50.0 mmol, 1.00 equiv), isopropenyl acetate (27.2 mL, 250 mmol, 5.00 equiv) and 

p-TsOH·H2O (761 mg, 4.00 mmol, 0.08 equiv) gave 3,4-dihydronaphthalen-1-yl acetate 

(8.23 g, 43.7 mmol, 88%) as yellow solid after purification on SiO2 (DCM / hexanes, 2:1). 

Rf (DCM / hexanes, 2:1) = 0.42; 
1
H-NMR (300 MHz, CDCl3): δ 7.20 – 7.14 (m, 3H), 7.11 – 

7.07 (m, 1H), 5.71 (t, J = 4.7 Hz, 1H), 2.87 (t, J = 8.1 Hz, 2H), 2.50 – 2.41 (m, 2H), 2.30 (s, 

3H); 
13

C-NMR (75 MHz, CDCl3): δ 169.29, 145.61, 136.41, 130.41, 127.94, 127.61, 126.39, 

120.70, 115.52, 27.45, 22.04, 20.92. 
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3,3-dimethylbut-1-en-2-yl acetate (152l) 

 

Following general procedure GP-B using 3,3-dimethylbutan-2-one (6.26 mL, 50.0 mmol, 

1.00 equiv), isopropenyl acetate (27.2 mL, 250 mmol, 5.00 equiv) and p-TsOH·H2O (761 mg, 

4.00 mmol, 0.08 equiv) gave 3,3-dimethylbut-1-en-2-yl acetate (3.18 g, 22.4 mmol, 45%) as 

colorless oil after distillation under reduced pressure (45 °C / 100 mbar). 

1
H-NMR (300 MHz, CDCl3): δ 4.87 (d, J = 2.0 Hz, 1H), 4.63 (d, J = 2.0 Hz, 1H), 2.17 (s, 

3H), 1.09 (s, 9H); 
13

C-NMR (75 MHz, CDCl3): δ 169.26, 162.58, 99.11, 36.07, 27.76, 21.12. 

 

1-(thiophen-2-yl)vinyl acetate (152m) 

 

Following general procedure GP-B using 1-(thiophen-2-yl)ethan-1-one (5.39 mL, 50.0 mmol, 

1.00 equiv), isopropenyl acetate (27.2 mL, 250 mmol, 5.00 equiv) and p-TsOH·H2O (761 mg, 

4.00 mmol, 0.08 equiv) gave 1-(thiophen-2-yl)vinyl acetate (2.20 g, 13.1 mmol, 26%) as red 

oil after purification on SiO2 (DCM / hexanes, 3:1 to pure DCM). 

Rf (hexanes / EA, 10:1) = 0.30; 
1
H-NMR (300 MHz, CDCl3): δ 7.24 (dd, J = 5.0, 1.1 Hz, 

1H), 7.10 (dd, J = 3.7, 1.2 Hz, 1H), 6.98 (dd, J = 5.0, 3.7 Hz, 1H), 5.39 (d, J = 2.5 Hz, 1H), 

4.94 (d, J = 2.5 Hz, 1H), 2.28 (s, 3H); 
13

C-NMR (75 MHz, CDCl3): δ 168.83, 147.70, 138.20, 

127.51, 125.86, 124.72, 101.28, 20.95. 
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5 Photochemical functionalization of α-chloro cinnamates (229aa – 229ra) 

 

 

General procedure (GP-C) for the photochemical functionalization of α-chloro 

cinnamates 

 

A flame dried Schlenk tube equipped with a magnetic stir bar was charged with α-chloro 

cinnamate (500 µmol, 1.00 equiv), enol acetate (2.50 mmol, 5.00 equiv) and fac-Ir(ppy)3 

(10.0 µmol, 2.0 mol%). The flask was sealed with a plastic screw-cap, evacuated and 

backfilled with N2 (3x). Dry MeCN (5 mL) was added and the reaction was magnetically 

stirred for roughly 5 min under N2 atmosphere until a homogeneous solution was observed. 

The resulting mixture was degassed by freeze-pump-thaw (3 cycles) and the plastic screw-cap 

was replaced by another plastic screw-cap with a Teflon sealed inlet for a glass rod. A high 

power LED (λ = 455 nm) was attached to the top of the glass rod, which then could act as an 

optical fiber. After irradiation for 24 h the LED was removed, the solvent was evaporated in 

vacuo and the residue was directly purified by column chromatography on SiO2 

(hexanes / EA, 20:1 to 4:1) to obtain the separated E and Z isomers. 

Note: E and Z isomers were separated in all cases except for 229ma. 

 



Experimental part 

 
131 

 

ethyl 2-benzylidene-4-oxo-4-phenylbutanoate (229aa) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

105 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 5.00 equiv) 

and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229aa (68.2 mg, 231 µmol, 46%) 

and (Z)-229aa (76.9 mg, 260 µmol, 52%) as colorless oils as separated E and Z isomers after 

purification on SiO2 (hexanes / EA, 20:1 to 12:1). E/Z = 47:53. 

Rf (hexanes / EA, 10:1) = 0.30 (E Isomer), 0.27 (Z Isomer); IR (neat): 3060, 3026, 2981, 

2937, 2903, 1684, 1595, 1448, 1401, 1334, 1211, 1125, 1021, 991, 924, 842, 745, 693 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.04 – 7.98 (m, 3H), 7.63 – 7.55 (tt, J = 7.5, 1.3 

Hz, 1H), 7.52 – 7.44 (m, 2H), 7.40 – 7.27 (m, 5H), 4.24 (q, J = 7.1 Hz, 2H), 4.20 (d, J = 0.4 

Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 197.53, 167.47, 

142.03, 136.71, 135.35, 133.27, 128.78, 128.74, 128.66, 128.62, 128.30, 127.37, 61.16, 38.05, 

14.20; 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 8.03 – 8.00 (m, 2H), 7.63 – 7.55 (tt, J = 7.3, 

1.3 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.32 – 7.27 (m, 5H), 6.90 (s, 1H), 4.16 (d, J = 1.2 Hz, 2H), 

4.10 (q, J = 7.1 Hz, 2H), 1.04 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 

197.07, 168.08, 139.38, 136.44, 135.94, 133.36, 128.70, 128.64, 128.30, 128.06, 127.90, 

127.87, 60.78, 45.03, 13.63; HRMS (ESI) m/z calculated for C19H19O3 ([M+H]
+
) 295.1329, 

found 295.1331. 

 

methyl 2-benzylidene-4-oxo-4-phenylbutanoate (229ba) 

 

Following general procedure GP-C using methyl (Z)-2-chloro-3-phenylacrylate (228b, 

98.3 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ba (55.4 mg, 
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197 µmol, 40%) and (Z)-229ba (67.6 mg, 241 µmol, 48%) as yellowish oils as separated E 

and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 45:55. 

Rf (hexanes / EA, 6:1) = 0.28 (E Isomer), 0.21 (Z Isomer); IR (neat): 3060, 3026, 2952, 1710, 

1595, 1435, 1397, 1334, 1211, 1125, 998, 924, 834, 745, 689 cm
-1

; 
1
H-NMR (400 MHz, 

CDCl3, E Isomer): δ 8.04 – 7.99 (m, 3H), 7.61 – 7.57 (m, 1H), 7.51 – 7.46 (m, 2H), 7.36 – 

7.28 (m, 5H), 4.20 (s, 2H), 3.79 (s, 3H); 
13

C-NMR (101 MHz, CDCl3, E Isomer): δ 197.36, 

167.98, 142.32, 136.68, 135.29, 133.31, 128.80, 128.79, 128.68, 128.64, 128.31, 127.05, 

52.26, 38.13; 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 8.03 – 7.99 (m, 2H), 7.61 – 7.57 (m, 

1H), 7.51 – 7.46 (m, 2H), 7.34 – 7.28 (m, 5H), 6.89 (s, 1H), 4.16 (d, J = 1.0 Hz, 2H), 3.63 (s, 

3H); 
13

C-NMR (101 MHz, CDCl3, Z Isomer): δ 196.96, 168.58, 139.52, 136.41, 135.78, 

133.40, 128.72, 128.61, 128.29, 128.19, 128.01, 127.36, 51.70, 45.10; HRMS (ESI) m/z 

calculated for C18H17O3 ([M+H]
+
) 281.1172, found 281.1176.

 

 

iso-propyl 2-benzylidene-4-oxo-4-phenylbutanoate (229ca) 

 

Following general procedure GP-C using iso-propyl (Z)-2-chloro-3-phenylacrylate (228c, 

112 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 5.00 equiv) 

and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ca (58.8 mg, 189 µmol, 38%) 

and (Z)-229ca (66.3 mg, 214 µmol, 43%) as colorless oils as separated E and Z isomers after 

purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 47:53. 

Rf (hexanes / EA, 6:1) = 0.35 (E Isomer), 0.31 (Z Isomer); IR (neat): 3060, 3026, 2981, 2937, 

1684, 1595, 1494, 1446, 1375, 1334, 1311, 1289, 1211, 1133, 1103, 995, 838, 745, 693 cm
-1

; 

1
H-NMR (400 MHz, CDCl3, E Isomer): δ 8.01 – 8.00 (m, 3H), 7.58 (t, J = 7.4 Hz, 1H), 7.47 

(t, J = 7.6 Hz, 2H), 7.37 – 7.28 (m, 5H), 5.11 (sept, J = 6.2 Hz, 1H), 4.18 (s, 2H), 1.25 (d, J = 

6.3 Hz, 6H); 
13

C-NMR (101 MHz, CDCl3, E Isomer): δ 197.59, 166.92, 141.74, 136.87, 

135.47, 133.20, 128.80, 128.68, 128.65, 128.61, 128.28, 127.89, 68.61, 38.01, 21.83; 

1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 8.02 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 

7.48 (t, J = 7.6 Hz, 2H), 7.32 – 7.27 (m, 5H), 6.88 (s, 1H), 4.99 (sept, J = 6.2 Hz, 1H), 4.14 (s, 



Experimental part 

 
133 

 

2H), 1.05 (d, J = 6.3 Hz, 6H); 
13

C-NMR (101 MHz, CDCl3, Z Isomer): δ 197.05, 167.53, 

138.88, 136.58, 136.07, 133.29, 128.69, 128.68, 128.47, 128.31, 127.94, 127.87, 68.44, 45.07, 

21.31; HRMS (ESI) m/z calculated for C20H21O3 ([M+H]
+
) 309.1485, found 309.1489.

 

 

ethyl 2-benzylidene-4-(4-methoxyphenyl)-4-oxobutanoate (229ab) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

63.2 mg, 300 µmol, 1.00 equiv), 1-(4-methoxyphenyl)vinyl acetate (152b, 288 mg, 

1.50 mmol, 5.00 equiv) and fac-Ir(ppy)3 (3.93 mg, 6.00 µmol, 0.02 equiv) gave (E)-229ab 

(40.7 mg, 126 µmol, 42%) and (Z)-229ab (47.8 mg, 147 µmol, 49%) as yellowish oils as 

separated E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 6:1). E/Z = 46:54. 

Rf (hexanes / EA, 10:1) = 0.12 (E Isomer), 0.10 (Z Isomer); IR (neat): 3056, 2978, 2937, 

2840, 1708, 1677, 1599, 1509, 1446, 1420, 1371, 1319, 1259, 1218, 1170, 1092, 1025, 931, 

831, 760, 704 cm
-1

; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.01 – 7.97 (m, 3H), 7.33 – 

7.29 (m, 5H), 6.97 – 6.91 (m, 2H), 4.24 (q, J = 7.1 Hz, 2H), 4.15 (s, 2H), 3.88 (s, 3H), 1.27 (t, 

J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 195.99, 167.57, 163.61, 141.82, 

135.41, 130.60, 129.76, 128.84, 128.69, 128.58, 127.60, 113.77, 61.11, 55.52, 37.66, 14.22; 

1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 8.02 – 7.98 (m, 2H), 7.32 – 7.28 (m, 5H), 6.97 – 

6.93 (m, 2H), 6.88 (s, 1H), 4.14 – 4.06 (m, 4H), 3.87 (s, 3H), 1.03 (t, J = 7.1 Hz, 3H); 

13
C-NMR (75 MHz, CDCl3, Z Isomer): δ 195.58, 168.25, 163.67, 138.96, 136.02, 130.61, 

129.48, 128.61, 128.22, 127.99, 127.88, 113.82, 60.75, 55.52, 44.69, 13.64; HRMS (ESI) m/z 

calculated for C20H21O4 ([M+H]
+
) 325.1434, found 325.1439. 
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ethyl 4-(4-acetoxyphenyl)-2-benzylidene-4-oxobutanoate (229ac) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

105 mg, 500 µmol, 1.00 equiv), 1-(4-acetoxyphenyl)vinyl acetate (152c, 551 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ac (82.1 mg, 

234 µmol, 47%) and (Z)-229ac (88.9 mg, 252 µmol, 50%) as yellowish oils as separated 

E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 6:1). E/Z = 48:52. 

Rf (hexanes / EA, 4:1) = 0.18 (E Isomer), 0.16 (Z Isomer); IR (neat): 3060, 3026, 2981, 2907, 

1759, 1684, 1599, 1502, 1408, 1371, 1334, 1189, 1162, 1125, 995, 909, 849, 745, 697 cm
-1

; 

1
H-NMR (400 MHz, CDCl3, E Isomer): δ 8.06 – 8.01 (m, 3H), 7.35 – 7.28 (m, 5H), 7.22 – 

7.18 (m, 2H), 4.24 (q, J = 7.1 Hz, 2H), 4.17 (s, 2H), 2.33 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H); 

13
C-NMR (101 MHz, CDCl3, E Isomer): δ 196.20, 168.89, 167.41, 154.48, 142.12, 135.31, 

134.33, 129.94, 128.79, 128.76, 128.65, 127.21, 121.87, 61.17, 38.05, 21.18, 14.22; 
1
H-NMR 

(300 MHz, CDCl3, Z Isomer): δ 8.08 – 8.03 (m, 2H), 7.33 – 7.28 (m, 5H), 7.25 – 7.21 (m, 

2H), 6.90 (s, 1H), 4.14 – 4.06 (m, 4H), 2.34 (s, 3H), 1.04 (t, J = 7.1 Hz, 3H); 
13

C-NMR (101 

MHz, CDCl3, Z Isomer): δ 195.79, 168.83, 167.96, 154.54, 139.57, 135.91, 134.07, 129.95, 

128.65, 128.08, 127.90, 127.67, 121.90, 60.80, 44.94, 21.19, 13.63; HRMS (ESI) m/z 

calculated for C21H21O5 ([M+H]
+
) 353.1384, found 353.1386. 

 

ethyl 2-benzylidene-4-(3-methoxyphenyl)-4-oxobutanoate (229ad) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

105 mg, 500 µmol, 1.00 equiv), 1-(3-methoxyphenyl)vinyl acetate (152d, 481 mg, 
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2.50 mmol, 5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ad 

(64.4 mg, 199 µmol, 40%) and (Z)-229ad (75.6 mg, 234 µmol, 47%) as slightly yellow oils as 

separated E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 12:1). 

E/Z = 46:54. 

Rf (hexanes / EA, 6:1) = 0.21 (E Isomer), 0.17 (Z Isomer); IR (neat): 3060, 2981, 2836, 1684, 

1580, 1487, 1431, 1371, 1319, 1252, 1192, 1092, 1021, 981, 864, 782, 693 cm
-1

; 
1
H-NMR 

(400 MHz, CDCl3, E Isomer): δ 8.02 (s, 1H), 7.58 (d, J = 7.7 Hz, 1H), 7.55 – 7.52 (m, 1H), 

7.40 – 7.28 (m, 6H), 7.15 – 7.11 (m, 1H), 4.25 (q, J = 7.1 Hz, 2H), 4.18 (s, 2H), 3.85 (s, 3H), 

1.28 (t, J = 7.1 Hz, 3H); 
13

C-NMR (101 MHz, CDCl3, E Isomer): δ 197.30, 167.45, 159.89, 

141.97, 138.10, 135.36, 129.65, 128.80, 128.76, 128.63, 127.41, 120.93, 119.79, 112.50, 

61.14, 55.47, 38.21, 14.23; 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 7.60 (d, J = 7.7 Hz, 

1H), 7.56 – 7.52 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.33 – 7.28 (m, 5H), 7.13 (dd, J = 7.9, 2.3 

Hz, 1H), 6.90 (s, 1H), 4.14 (d, J = 0.8 Hz, 2H), 4.10 (q, J = 7.2 Hz, 2H), 3.86 (s, 3H), 1.04 (t, 

J = 7.1 Hz, 3H); 
13

C-NMR (101 MHz, CDCl3, Z Isomer): δ 196.87, 168.05, 159.91, 139.34, 

137.83, 135.97, 129.67, 128.63, 128.05, 127.90, 120.95, 119.95, 112.44, 60.77, 55.49, 45.12, 

13.64; HRMS (APCI) m/z calculated for C20H21O4 ([M+H]
+
) 325.1434, found 325.1440. 

 

ethyl 2-benzylidene-4-(2-methoxyphenyl)-4-oxobutanoate (229ae) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

105 mg, 500 µmol, 1.00 equiv), 1-(2-methoxyphenyl)vinyl acetate (152e, 481 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ae (63.5 mg, 

196 µmol, 39%) and (Z)-229ae (74.5 mg, 231 µmol, 46%) as slightly yellow oils as separated 

E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 12:1). E/Z = 46:54. 

Rf (hexanes / EA, 6:1) = 0.21 (E Isomer), 0.17 (Z Isomer); IR (neat): 3060, 2981, 2940, 2840, 

1703, 1669, 1595, 1483, 1371, 1323, 1244, 1177, 1088, 1021, 998, 909, 823, 756, 693 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 7.95 (s, 1H), 7.75 (dd, J = 7.7, 1.8 Hz, 1H), 7.50 – 



Experimental part 

 
136 

 

7.43 (m, 1H), 7.37 – 7.32 (m, 5H), 7.04 – 6.93 (m, 2H), 4.28 – 4.19 (m, 4H), 3.83 (s, 3H), 

1.28 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 199.46, 167.73, 158.63, 

141.31, 135.53, 133.63, 130.59, 129.04, 128.58, 128.48, 128.00, 127.97, 120.71, 111.46, 

60.99, 55.47, 43.34, 14.23; 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 7.78 (dd, J = 7.7, 1.8 

Hz, 1H), 7.51 – 7.45 (m, 1H), 7.33 – 7.28 (m, 5H), 7.04 – 6.96 (m, 2H), 6.84 (s, 1H), 4.16 (s, 

2H), 4.09 (q, J = 7.1 Hz, 2H), 3.94 (s, 3H), 1.05 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, 

CDCl3, Z Isomer): δ 198.76, 168.38, 158.83, 138.47, 136.17, 133.93, 130.76, 128.85, 128.61, 

127.86, 127.36, 120.75, 111.51, 60.60, 55.53, 50.40, 13.67; HRMS (APCI) m/z calculated for 

C20H21O4 ([M+H]
+
) 325.1434, found 325.1435. 

 

ethyl 2-benzylidene-4-oxo-4-(p-tolyl)butanoate (229af) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

105 mg, 500 µmol, 1.00 equiv), 1-(p-tolyl)vinyl acetate (152f, 441 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229af (56.8 mg, 

184 µmol, 37%) and (Z)-229af (75.2 mg, 243 µmol, 49%) as slightly yellow oils as separated 

E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 10:1). E/Z = 43:57. 

Rf (hexanes / EA, 6:1) = 0.32 (E Isomer), 0.28 (Z Isomer); IR (neat): 3056, 3030, 2981, 2922, 

1681, 1606, 1446, 1408, 1371, 1326, 1263, 1177, 1092, 1021, 909, 812, 790, 730, 700 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.02 (s, 1H), 7.94 – 7.89 (m, 2H), 7.34 – 7.26 (m, 

7H), 4.24 (q, J = 7.1 Hz, 2H), 4.18 (s, 2H), 2.42 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H); 
13

C-NMR 

(75 MHz, CDCl3, E Isomer): δ 197.10, 167.52, 144.08, 141.89, 135.39, 134.23, 129.33, 

128.81, 128.70, 128.59, 128.43, 127.52, 61.12, 37.93, 21.71, 14.21; 
1
H-NMR (400 MHz, 

CDCl3, Z Isomer): δ 7.91 (d, J = 8.2 Hz, 2H), 7.33 – 7.25 (m, 7H), 6.88 (s, 1H), 4.13 – 4.07 

(m, 4H), 2.42 (s, 3H), 1.04 (t, J = 7.1 Hz, 3H); 
13

C-NMR (101 MHz, CDCl3, Z Isomer): δ 

196.66, 168.13, 144.16, 139.14, 136.03, 134.03, 129.37, 128.64, 128.44, 128.11, 128.01, 

127.89, 60.74, 44.90, 21.71, 13.64; HRMS (ESI) m/z calculated for C20H21O3 ([M+H]
+
) 

309.1485, found 309.1488. 
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ethyl 2-benzylidene-4-oxo-4-(o-tolyl)butanoate (229ag) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

105 mg, 500 µmol, 1.00 equiv), 1-(o-tolyl)vinyl acetate (152g, 441 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ag (35.5 mg, 

115 µmol, 23%) and (Z)-229ag (40.1 mg, 129.9 µmol, 26%) as slightly yellow oils as 

separated E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 12:1). 

E/Z = 47:53. 

Rf (hexanes / EA, 6:1) = 0.38 (E Isomer), 0.30 (Z Isomer); IR (neat): 3060, 3026, 2981, 2929, 

2903, 1684, 1602, 1446, 1401, 1323, 1289, 1237, 1207, 1121, 1021, 984, 842, 752, 697 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.02 (s, 1H), 7.70 – 7.67 (m, 1H), 7.41 – 7.32 (m, 

6H), 7.28 – 7.25 (m, 2H), 4.26 (q, J = 7.1 Hz, 2H), 4.12 (s, 2H), 2.51 (s, 3H), 1.31 (t, J = 7.1 

Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 201.40, 167.47, 142.04, 138.21, 137.83, 

135.41, 131.93, 131.39, 128.78, 128.75, 128.62, 128.45, 127.52, 125.67, 61.18, 41.03, 21.14, 

14.25; 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 7.75 (d, J = 7.7 Hz, 1H), 7.39 (td, J = 7.5, 

1.4 Hz, 1H), 7.33 – 7.25 (m, 7H), 6.91 (s, 1H), 4.13 – 4.05 (m, 4H), 2.52 (s, 3H), 1.05 (t, J = 

7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 200.72, 167.98, 139.72, 138.55, 

137.25, 135.95, 132.02, 131.56, 128.70, 128.68, 128.06, 127.97, 127.89, 125.71, 60.76, 47.92, 

21.33, 13.66; HRMS (ESI) m/z calculated for C20H21O3 ([M+H]
+
) 309.1485, found 309.1487. 

 

ethyl 2-benzylidene-4-(4-bromophenyl)-4-oxobutanoate (229ah) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

63.2 mg, 300 µmol, 1.00 equiv), 1-(4-bromophenyl)vinyl acetate (152h, 362 mg, 1.50 mmol, 
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5.00 equiv) and fac-Ir(ppy)3 (3.93 mg, 6.00 µmol, 0.02 equiv) gave (E)-229ah (35.2 mg, 

94.1 µmol, 32%) and (Z)-229ah (28.8 mg, 77.0 µmol, 26%) as slightly yellow oils as 

separated E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 12:1). 

E/Z = 55:45. 

Rf (hexanes / EA, 10:1) = 0.30 (E Isomer), 0.27 (Z Isomer); IR (neat): 3060, 3026, 2981, 

2929, 1684, 1584, 1483, 1384, 1371, 1319, 1263, 1192, 1092, 995, 935, 812, 764, 700 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.02 (s, 1H), 7.91 – 7.82 (m, 2H), 7.65 – 7.59 (m, 

2H), 7.38 – 7.27 (m, 5H), 4.24 (q, J = 7.1 Hz, 2H), 4.14 (s, 2H), 1.27 (t, J = 7.1 Hz, 3H); 

13
C-NMR (75 MHz, CDCl3, E Isomer): δ 196.59, 167.34, 142.23, 135.43, 135.24, 131.97, 

129.83, 128.84, 128.73, 128.66, 128.46, 127.08, 61.22, 37.94, 14.22; 
1
H-NMR (300 MHz, 

CDCl3, Z Isomer): δ 7.91 – 7.84 (m, 2H), 7.66 – 7.59 (m, 2H), 7.34 – 7.27 (m, 5H), 6.91 (s, 

1H), 4.15 – 4.03 (m, 4H), 1.03 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 

196.09, 167.94, 139.73, 135.82, 135.15, 132.02, 129.83, 128.63, 128.57, 128.15, 127.92, 

127.46, 60.84, 44.90, 13.62; HRMS (ESI) m/z calculated for C19H18BrO3 ([M+H]
+
) 

373.0434, found 373.0441. 

 

ethyl 2-benzylidene-4-(4-chlorophenyl)-4-oxobutanoate (229ai) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

63.2 mg, 300 µmol, 1.00 equiv), 1-(4-chlorophenyl)vinyl acetate (152i, 295 mg, 1.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (3.93 mg, 6.00 µmol, 0.02 equiv) gave (E)-229ai (34.8 mg, 

106 µmol, 35%) and (Z)-229ai (26.2 mg, 80.0 µmol, 27%) as slightly yellow oils as separated 

E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 12:1). E/Z = 57:43. 

Rf (hexanes / EA, 10:1) = 0.30 (E Isomer), 0.26 (Z Isomer); IR (neat): 3080, 3026, 2981, 

2937, 2903, 1684, 1587, 1490, 1401, 1334, 1207, 1125, 1092, 991, 838, 749, 697 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.02 (s, 1H), 7.98 – 7.91 (m, 2H), 7.49 – 7.42 (m, 

2H), 7.37 – 7.27 (m, 5H), 4.24 (q, J = 7.1 Hz, 2H), 4.14 (s, 2H), 1.28 (t, J = 7.1 Hz, 3H); 
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13
C-NMR (75 MHz, CDCl3, E Isomer): δ 196.41, 167.36, 142.23, 139.73, 135.24, 135.01, 

129.73, 128.98, 128.84, 128.73, 128.66, 127.09, 61.23, 37.96, 14.21; 
1
H-NMR (300 MHz, 

CDCl3, Z Isomer): δ 8.00 – 7.90 (m, 2H), 7.51 – 7.41 (m, 2H), 7.33 – 7.27 (m, 5H), 6.91 (s, 

1H), 4.14 – 4.04 (m, 4H), 1.03 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 

195.90, 167.97, 139.82, 139.70, 135.83, 134.73, 129.73, 129.03, 128.63, 128.15, 127.92, 

127.49, 60.85, 44.94, 13.63; HRMS (ESI) m/z calculated for C19H18ClO3 ([M+H]
+
) 329.0939, 

found 329.0941. 

 

ethyl 2-benzylidene-4-(4-fluorophenyl)-4-oxobutanoate (229aj) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

63.2 mg, 300 µmol, 1.00 equiv), 1-(4-fluorophenyl)vinyl acetate (152j, 90.0 mg, 500 µmol, 

1.67 equiv) and fac-Ir(ppy)3 (3.93 mg, 6.00 µmol, 0.02 equiv) gave (E)-229aj (36.3 mg, 

116 µmol, 39%) and (Z)-229aj (37.8 mg, 121 µmol, 40%) as slightly yellow oils as separated 

E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 15:1). E/Z = 49:51. 

Rf (hexanes / EA, 10:1) = 0.30 (E Isomer), 0.26 (Z Isomer); IR (neat): 3060, 3026, 2981, 

2933, 1684, 1595, 1505, 1408, 1334, 1211, 1155, 1125, 1021, 998, 842, 738, 697 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.08 – 7.99 (m, 3H), 7.37 – 7.29 (m, 5H), 7.19 – 

7.10 (m, 2H), 4.24 (q, J = 7.1 Hz, 2H), 4.15 (s, 2H), 1.28 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 

MHz, CDCl3, E Isomer): δ 196.00, 167.55, 167.41, 164.18, 142.15, 135.28, 133.15, 133.11, 

131.02, 130.90, 128.80, 128.75, 128.64, 127.20, 115.91, 115.62, 61.20, 37.90, 14.21; 

19
F-NMR (282 MHz, CDCl3, E Isomer): δ -105.45; 

1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 

8.08 – 8.02 (m, 2H), 7.33 – 7.27 (m, 5H), 7.20 – 7.11 (m, 2H), 6.91 (s, 1H), 4.13 – 4.06 (m, 

4H), 1.03 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 195.50, 168.04, 

167.59, 164.21, 139.57, 135.86, 132.86, 132.82, 131.03, 130.91, 128.62, 128.12, 127.91, 

127.63, 115.98, 115.69, 60.83, 44.89, 13.62; 
19

F-NMR (282 MHz, CDCl3, Z Isomer): 

δ -105.22; HRMS (ESI) m/z calculated for C19H18FO3 ([M+H]
+
) 313.1234, found 313.1243. 
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ethyl 2-(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)-3-phenylacrylate (229ak) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

105 mg, 500 µmol, 1.00 equiv), 3,4-dihydronaphthalen-1-yl acetate (152k, 471 mg, 

2.50 mmol, 5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ak 

(15.4 mg, 48.0 µmol, 10%) and (Z)-229ak (23.1 mg, 72.0 µmol, 14%) as slightly yellow oils 

as separated E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 9:1). 

E/Z = 40:60. 

Rf (hexanes / EA, 10:1) = 0.17 (E Isomer), 0.10 (Z Isomer); IR (neat): 3060, 3026, 2937, 

2981, 2877, 1707, 1681, 1636, 1599, 1453, 1367, 1271, 1222, 1200, 1125, 902, 745, 700 

cm
-1

; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.08 (dd, J = 7.8, 1.3 Hz, 1H), 7.98 (s, 1H), 

7.46 (td, J = 7.5, 1.5 Hz, 1H), 7.41 – 7.28 (m, 6H), 7.23 – 7.18 (m, 1H), 4.20 (qd, J = 7.1, 1.6 

Hz, 2H), 3.88 (dd, J = 12.9, 4.8 Hz, 1H), 3.02 – 2.91 (m, 2H), 2.71 (ddd, J = 25.2, 12.7, 5.3 

Hz, 1H), 2.18 – 2.07 (m, 1H), 1.21 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, 

E Isomer): δ 197.36, 166.62, 143.65, 141.99, 135.50, 133.29, 132.99, 132.51, 128.64, 128.62, 

128.54, 127.62, 126.74, 60.92, 48.45, 29.38, 29.23, 14.10; 
1
H-NMR (300 MHz, CDCl3, 

Z Isomer): δ 8.07 (dd, J = 7.8, 1.3 Hz, 1H), 7.49 (td, J = 7.5, 1.5 Hz, 1H), 7.33 – 7.26 (m, 7H), 

6.82 (s, 1H), 4.10 (qd, J = 7.1, 0.7 Hz, 2H), 3.74 (ddd, J = 12.5, 4.6, 1.1 Hz, 1H), 3.18 – 3.03 

(m, 2H), 2.62 – 2.31 (m, 2H), 1.02 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, Z 

Isomer): δ 197.02, 168.63, 143.87, 136.76, 136.18, 133.53, 133.32, 132.42, 128.68, 128.51, 

127.93, 127.74, 126.80, 60.71, 54.23, 29.51, 29.40, 13.59; HRMS (ESI) m/z calculated for 

C21H20O3Na ([M+Na]
+
) 343.1305, found 343.1305. 
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ethyl 2-benzylidene-5,5-dimethyl-4-oxohexanoate (229al) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-phenylacrylate (228a-Cl, 

105 mg, 500 µmol, 1.00 equiv), 3,3-dimethylbut-1-en-2-yl acetate (152l, 356 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229al (11.1 mg, 

40.3 µmol, 8%) and (Z)-229al (11.1 mg, 40.3 µmol, 8%) as colorless oils as separated E and Z 

isomers after purification on SiO2 (hexanes / EA, 20:1 to 12:1). E/Z = 50:50. 

Rf (hexanes / EA, 6:1) = 0.35 (E Isomer), 0.28 (Z Isomer); IR (neat): 3056, 3026, 2970, 2873, 

1703, 1476, 1397, 1323, 1237, 1207, 1125, 1062, 1025, 935, 846, 816, 738, 697 cm
-1

; 

1
H-NMR (400 MHz, CDCl3, E Isomer): δ 7.95 (s, 1H), 7.38 – 7.31 (m, 3H), 7.24 – 7.21 (m, 

2H), 4.24 (q, J = 7.1 Hz, 2H), 3.71 (s, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.21 (s, 9H); 
13

C-NMR 

(101 MHz, CDCl3, E Isomer): δ 213.13, 167.46, 141.86, 135.54, 128.62, 128.52, 127.70, 

61.04, 44.54, 36.54, 26.75, 14.29; 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 7.31 – 7.27 (m, 

5H), 6.79 (s, 1H), 4.07 (q, J = 7.1 Hz, 2H), 3.68 (d, J = 0.9 Hz, 2H), 1.21 (s, 9H), 1.04 (t, J = 

7.1 Hz, 3H); 
13

C-NMR (101 MHz, CDCl3, Z Isomer): δ 212.76, 168.01, 139.28, 136.07, 

128.62, 128.18, 127.94, 127.85, 60.64, 44.20, 43.42, 26.49, 13.67; HRMS (APCI) m/z 

calculated for C17H23O3 ([M+H]
+
) 275.1642, found 275.1645. 

 

ethyl 2-(4-chlorobenzylidene)-4-oxo-4-phenylbutanoate (229ea) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-(4-chlorophenyl)acrylate 

(228e, 123 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ea (58.1 mg, 
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177 µmol, 36%) and (Z)-229ea (73.9 mg, 226 µmol, 45%) as slightly yellow oils as separated 

E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 44:56. 

Rf (hexanes / EA, 6:1) = 0.24 (E Isomer), 0.20 (Z Isomer); IR (neat): 3056, 2974, 2907, 1707, 

1677, 1591, 1487, 1379, 1341, 1297, 1241, 1125, 998, 849, 749, 685 cm
-1

;
 1

H-NMR (300 

MHz, CDCl3, E Isomer): δ 8.03 – 7.98 (m, 2H), 7.96 (s, 1H), 7.62 – 7.57 (m, 1H), 7.51 – 7.46 

(m, 2H), 7.33 – 7.23 (m, 4H), 4.24 (q, J = 7.1 Hz, 2H), 4.15 (s, 2H), 1.26 (t, J = 7.1 Hz, 3H); 

13
C-NMR (75 MHz, CDCl3, E Isomer): δ 197.38, 167.19, 140.75, 136.58, 134.76, 133.76, 

133.41, 130.07, 128.88, 128.72, 128.30, 128.01, 61.27, 37.92, 14.18; 
1
H-NMR (300 MHz, 

CDCl3, Z Isomer): δ 8.01 – 7.98 (m, 2H), 7.62 – 7.56 (m, 1H), 7.51 – 7.46 (m, 2H), 7.30 – 

7.24 (m, 4H), 6.83 (s, 1H), 4.14 – 4.07 (m, 4H), 1.07 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, 

CDCl3, Z Isomer): δ 196.92, 167.58, 138.34, 136.37, 134.35, 133.93, 133.44, 130.10, 128.73, 

128.48, 128.26, 128.10, 60.89, 45.00, 13.71; HRMS (ESI) m/z calculated for C19H18ClO3 

([M+H]
+
) 329.0939, found 329.0944. 

 

ethyl 2-(4-bromobenzylidene)-4-oxo-4-phenylbutanoate (229fa) 

 

Following general procedure GP-C using ethyl (Z)-3-(4-bromophenyl)-2-chloroacrylate 

(228f, 145 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229fa (72.2 mg, 

193 µmol, 39%) and (Z)-229fa (84.8 mg, 226 µmol, 45%) as slightly yellow oils as separated 

E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 46:54. 

Rf (hexanes / EA, 6:1) = 0.26 (E Isomer), 0.20 (Z Isomer); IR (neat): 3056, 2967, 2907, 1707, 

1677, 1580, 1483, 1375, 1341, 1297, 1237, 1125, 1103, 998, 924, 846, 812, 749, 689 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.03 – 7.98 (m, 2H), 7.94 (s, 1H), 7.63 – 7.57 (m, 

1H), 7.52 – 7.45 (m, 4H), 7.21 – 7.15 (m, 2H), 4.24 (q, J = 7.1 Hz, 2H), 4.15 (s, 2H), 1.27 (t, J 

= 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 197.35, 167.17, 140.78, 136.57, 

134.22, 133.41, 131.84, 130.30, 128.71, 128.30, 128.09, 123.03, 61.28, 37.93, 14.18; 
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1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 8.04 – 7.97 (m, 2H), 7.62 – 7.56 (m, 1H), 7.52 – 

7.41 (m, 4H), 7.23 – 7.14 (m, 2H), 6.81 (s, 1H), 4.16 – 4.06 (m, 4H), 1.07 (t, J = 7.1 Hz, 3H); 

13
C-NMR (75 MHz, CDCl3, Z Isomer): δ 195.83, 166.49, 137.31, 135.30, 133.75, 132.38, 

129.99, 129.29, 127.67, 127.50, 127.20, 121.11, 59.85, 43.93, 12.65; HRMS (ESI) m/z 

calculated for C19H18BrO3 ([M+H]
+
) 373.0434, found 373.0438. 

 

ethyl 2-(4-fluorobenzylidene)-4-oxo-4-phenylbutanoate (229ga) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-(4-fluorophenyl)acrylate 

(228g, 114 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ga (66.3 mg, 

212 µmol, 42%) and (Z)-229ga (58.8 mg, 188 µmol, 38%) as colorless oils as separated E and 

Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 53:47. 

Rf (hexanes / EA, 6:1) = 0.32 (E Isomer), 0.20 (Z Isomer); IR (neat): 3063, 2981, 2907, 1684, 

1599, 1505, 1446, 1379, 1334, 1304, 1211, 1159, 1125, 991, 842, 752, 689 cm
-1

; 
1
H-NMR 

(400 MHz, CDCl3, E Isomer): δ 8.02 – 7.99 (m, 2H), 7.98 (s, 1H), 7.61 – 7.58 (m, 1H), 7.50 – 

7.47 (m, 2H), 7.32 – 7.29 (m, 2H), 7.06 – 7.00 (m, 2H), 4.24 (q, J = 7.1 Hz, 2H), 4.16 (s, 2H), 

1.26 (t, J = 7.1 Hz, 3H); 
13

C-NMR (101 MHz, CDCl3, E Isomer): δ 197.47, 167.31, 162.86 

(d, J = 249.5 Hz), 140.94, 136.68, 133.37, 131.41 (d, J = 3.4 Hz), 130.69 (d, J = 8.3 Hz), 

128.71, 128.31, 127.38 (d, J = 1.0 Hz), 115.74 (d, J = 21.6 Hz), 61.21, 37.91, 14.19; 

19
F-NMR (376 MHz, CDCl3, E Isomer): δ -112.39; 

1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 

8.00 (d, J = 7.7 Hz, 2H), 7.59 (t, J = 7.3 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.34 – 7.28 (m, 

2H), 7.00 (t, J = 8.6 Hz, 2H), 6.85 (s, 1H), 4.17 – 4.07 (m, 4H), 1.07 (t, J = 7.1 Hz, 3H); 

13
C-NMR (101 MHz, CDCl3, Z Isomer): δ 197.01, 167.70, 162.53 (d, J = 248.0 Hz), 138.57, 

136.46, 133.40, 131.94 (d, J = 3.4 Hz), 130.62 (d, J = 8.2 Hz), 128.72, 128.28, 127.84 (d, J = 

0.9 Hz), 114.89 (d, J = 21.6 Hz), 60.83, 45.00, 13.71; 
19

F-NMR (376 MHz, CDCl3, 

Z Isomer): δ -113.76; HRMS (APCI) m/z calculated for C19H18FO3 ([M+H]
+
) 313.1234, 

found 313.1242. 
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ethyl 2-(2-chlorobenzylidene)-4-oxo-4-phenylbutanoate (229ha) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-(2-chlorophenyl)acrylate 

(228h, 123 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ha (49.6 mg, 

151 µmol, 30%) and (Z)-229ha (74.4 mg, 226 µmol, 46%) as colorless oils as separated E and 

Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 40:60. 

Rf (hexanes / EA, 6:1) = 0.29 (E Isomer), 0.20 (Z Isomer); IR (neat): 3063, 2981, 2907, 1684, 

1595, 1379, 1334, 1211, 1114, 1054, 1021, 991, 838, 752, 689 cm
-1

; 
1
H-NMR (400 MHz, 

CDCl3, E Isomer): δ 8.05 (s, 1H), 7.97 (d, J = 7.5 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.48 – 

7.41 (m, 3H), 7.29 – 7.25 (m, 2H), 7.20 – 7.17 (m, 1H), 4.26 (q, J = 7.1 Hz, 2H), 4.07 (s, 2H), 

1.28 (t, J = 7.1 Hz, 3H); 
13

C-NMR (101 MHz, CDCl3, E Isomer): δ 197.46, 166.92, 139.22, 

136.64, 134.05, 134.02, 133.31, 129.98, 129.75, 129.64, 129.22, 128.66, 128.29, 126.85, 

61.30, 38.21, 14.17; 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 8.04 – 8.01 (m, 2H), 7.61 – 

7.57 (m, 1H), 7.51 – 7.47 (m, 2H), 7.38 – 7.31 (m, 2H), 7.25 – 7.18 (m, 2H), 6.98 (s, 1H), 

4.18 (d, J = 0.9 Hz, 2H), 4.03 (q, J = 7.1 Hz, 2H), 0.96 (t, J = 7.1 Hz, 3H); 
13

C-NMR (101 

MHz, CDCl3, Z Isomer): δ 196.85, 167.08, 137.29, 136.49, 135.19, 133.35, 132.93, 130.41, 

129.82, 129.14, 129.01, 128.70, 128.33, 126.05, 60.78, 44.44, 13.56; HRMS (APCI) m/z 

calculated for C19H18ClO3 ([M+H]
+
) 329.0939, found 329.0945. 
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ethyl 2-(3-chlorobenzylidene)-4-oxo-4-phenylbutanoate (229ia) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-(3-chlorophenyl)acrylate 

(228i, 123 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ia (70.6 mg, 

215 µmol, 43%) and (Z)-229ia (76.4 mg, 232 µmol, 46%) as colorless oils as separated E and 

Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 48:52. 

Rf (hexanes / EA, 6:1) = 0.29 (E Isomer), 0.22 (Z Isomer); IR (neat): 3063, 2981, 2933, 1684, 

1643, 1595, 1476, 1391, 1326, 1263, 1192, 1021, 1000, 924, 790, 685 cm
-1

; 
1
H-NMR (400 

MHz, CDCl3, E Isomer): δ 8.01 – 7.99 (m, 2H), 7.94 (s, 1H), 7.62 – 7.57 (m, 1H), 7.50 – 7.47 

(m, 2H), 7.31 – 7.26 (m, 3H), 7.20 – 7.18 (m, 1H), 4.24 (q, J = 7.1 Hz, 2H), 4.15 (s, 2H), 1.27 

(t, J = 7.1 Hz, 3H); 
13

C-NMR (101 MHz, CDCl3, E Isomer): δ 197.34, 167.09, 140.46, 

137.15, 136.62, 134.57, 133.39, 129.93, 128.78, 128.76, 128.71, 128.32, 126.70, 61.34, 37.86, 

14.18; 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 8.01 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 7.4 Hz, 

1H), 7.49 (t, J = 7.7 Hz, 2H), 7.32 – 7.25 (m, 3H), 7.20 – 7.16 (m, 1H), 6.84 (s, 1H), 4.15 (s, 

2H), 4.11 (q, J = 7.1 Hz, 2H), 1.06 (t, J = 7.1 Hz, 3H); 
13

C-NMR (101 MHz, CDCl3, 

Z Isomer): δ 196.85, 167.57, 137.81, 137.74, 136.35, 133.76, 133.48, 129.31, 129.18, 128.75, 

128.65, 128.30, 128.03, 126.80, 60.99, 44.89, 13.63; HRMS (APCI) m/z calculated for 

C19H18ClO3 ([M+H]
+
) 329.0939, found 329.0940. 
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ethyl 2-(2-bromobenzylidene)-4-oxo-4-phenylbutanoate (229ja) 

 

Following general procedure GP-C using ethyl (Z)-3-(2-bromophenyl)-2-chloroacrylate 

(228j, 145 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229ja (31.9 mg, 

85.4 µmol, 17%) and (Z)-229ja (59.2 mg, 159 µmol, 32%) as colorless oils as separated E and 

Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 35:65. 

Rf (hexanes / EA, 6:1) = 0.27 (E Isomer), 0.22 (Z Isomer); IR (neat): 3060, 2981, 2903, 1684, 

1595, 1446, 1401, 1375, 1334, 1274, 1241, 1211, 1110, 1021, 991, 838, 749, 600 cm
-1

; 

1
H-NMR (400 MHz, CDCl3, E Isomer): δ 7.99 – 7.96 (m, 3H), 7.63 – 7.55 (m, 2H), 7.48 – 

7.45 (m, 2H), 7.29 – 7.23 (m, 2H), 7.22 – 7.16 (m, 1H), 4.26 (q, J = 7.1 Hz, 2H), 4.05 (s, 2H), 

1.28 (t, J = 7.1 Hz, 3H); 
13

C-NMR (101 MHz, CDCl3, E Isomer): δ 197.51, 166.93, 141.32, 

136.58, 135.88, 133.35, 132.81, 130.14, 129.82, 128.89, 128.68, 128.31, 127.49, 124.01, 

61.33, 38.19, 14.20; 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 8.05 – 8.02 (m, 2H), 7.62 – 

7.55 (m, 2H), 7.49 (t, J = 7.6 Hz, 2H), 7.31 (dd, J = 7.6, 1.5 Hz, 1H), 7.28 – 7.23 (m, 1H), 

7.16 (td, J = 7.7, 1.7 Hz, 1H), 6.94 (s, 1H), 4.18 (d, J = 0.8 Hz, 2H), 4.02 (q, J = 7.1 Hz, 2H), 

0.95 (t, J = 7.1 Hz, 3H); 
13

C-NMR (101 MHz, CDCl3, Z Isomer): δ 196.88, 167.00, 139.48, 

137.15, 136.45, 133.39, 132.12, 130.46, 129.48, 129.29, 128.72, 128.35, 126.67, 122.84, 

60.79, 44.30, 13.57; HRMS (APCI) m/z calculated for C19H18BrO3 ([M+H]
+
) 373.0434, 

found 373.0438. 
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ethyl 2-(4-methylbenzylidene)-4-oxo-4-phenylbutanoate (229la) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-(p-tolyl)acrylate (228l, 

112 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 5.00 equiv) 

and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229la (28.2 mg, 91.7 µmol, 18%) 

and (Z)-229la (31.8 mg, 103 µmol, 21%) as yellowish oils as separated E and Z isomers after 

purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 47:53. 

Rf (hexanes / EA, 10:1) = 0.20 (E Isomer), 0.13 (Z Isomer); IR (neat): 3056, 3026, 2981, 

2922, 1684, 1599, 1513, 1446, 1371, 1326, 1267, 1211, 1177, 1088, 1021, 916, 849, 812, 756, 

689 cm
-1

; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.04 – 7.99 (m, 3H), 7.61 – 7.56 (m, 1H), 

7.51 – 7.43 (m, 2H), 7.27 – 7.12 (m, 4H), 4.25 – 4.21 (m, 4H), 2.34 (s, 3H), 1.27 (t, J = 7.1 

Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 197.59, 167.61, 142.09, 138.92, 136.77, 

133.23, 132.44, 129.34, 128.86, 128.65, 128.29, 126.52, 61.08, 38.13, 21.35, 14.22; 
1
H-NMR 

(300 MHz, CDCl3, Z Isomer): δ 8.06 – 8.00 (m, 2H), 7.61 – 7.55 (m, 1H), 7.51 – 7.45 (m, 

2H), 7.24 – 7.11 (m, 4H), 6.85 (s, 1H), 4.17 – 4.07 (m, 4H), 2.35 (s, 3H), 1.08 (t, J = 7.1 Hz, 

3H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 197.17, 168.16, 139.51, 138.11, 136.49, 

133.32, 132.89, 128.76, 128.68, 128.61, 128.29, 126.87, 60.73, 45.17, 21.35, 13.73; HRMS 

(ESI) m/z calculated for C20H20NaO3 ([M+Na]
+
) 331.1305, found 331.1305. 

 

ethyl 2-(2-methylbenzylidene)-4-oxo-4-phenylbutanoate (229ma) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-(o-tolyl)acrylate (228m, 

112 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 5.00 equiv) 
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and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave ethyl 2-(2-methylbenzylidene)-4-oxo-

4-phenylbutanoate (46.3 mg, 150 µmol, 30%) as yellowish oil as a mixture of E/Z = 45:55 

after purification on SiO2 (hexanes / EA, 20:1 to 8:1). 

Rf (hexanes / EA, 6:1) = 0.30 (E Isomer), 0.24 (Z Isomer); IR (neat): 3063, 2981, 1684, 1599, 

1446, 1371, 1330, 1263, 1215, 1120, 1092, 1021, 998, 916, 846, 745, 689 cm
-1

; 
1
H-NMR 

(300 MHz, CDCl3, E Isomer): δ 8.05 – 8.02 (m, 3H), 7.62 – 7.54 (m, 1H), 7.52 – 7.43 (m, 

2H), 7.23 – 7.11 (m, 4H), 4.25 (q, J = 7.1 Hz, 2H), 4.17 (s, 2H), 2.32 (s, 3H), 1.27 (t, J = 7.1 

Hz, 3H); 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 7.96 – 7.94 (m, 2H), 7.62 – 7.56 (m, 1H), 

7.52 – 7.43 (m, 2H), 7.23 – 7.11 (m, 4H), 6.99 (s, 1H), 4.06 (s, 2H), 3.99 (q, J = 7.1 Hz, 2H), 

2.28 (s, 3H), 0.91 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, both Isomers): δ 197.59, 

197.21, 167.57, 167.30, 141.51, 140.11, 136.92, 136.74, 136.50, 136.30, 135.65, 134.67, 

133.32, 133.16, 130.10, 129.49, 128.69, 128.61, 128.59, 128.31, 128.24, 128.21, 128.06, 

127.99, 127.80, 125.89, 125.17, 61.10, 60.56, 44.32, 38.03, 19.96, 19.95, 14.19, 13.51; 

HRMS (ESI) m/z calculated for C20H21O3 ([M+H]
+
) 309.1485, found 309.1487. 

 

ethyl 2-(4-(tert-butyl)benzylidene)-4-oxo-4-phenylbutanoate (229na) 

 

Following general procedure GP-C using ethyl (Z)-3-(4-(tert-butyl)phenyl)-2-chloroacrylate 

(228n, 133 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229na (35.0 mg, 

99.8 µmol, 20%) and (Z)-229na (38.0 mg, 108 µmol, 22%) as yellowish oils as separated 

E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 48:52. 

Rf (hexanes / EA, 6:1) = 0.32 (E Isomer), 0.24 (Z Isomer); IR (neat): 3060, 3026, 2959, 2907, 

2870, 1688, 1599, 1509, 1449, 1379, 1334, 1267, 1211, 1110, 1021, 991, 842, 752, 689cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.05 – 8.00 (m, 3H), 7.62 – 7.56 (m, 1H), 7.51 – 

7.46 (m, 2H), 7.39 – 7.35 (m, 2H), 7.28 – 7.24 (m, 2H), 4.28 – 4.20 (m, 4H), 1.33 – 1.23 (m, 

12H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 197.53, 167.64, 152.06, 141.98, 136.80, 
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133.21, 132.42, 128.76, 128.65, 128.32, 126.53, 125.59, 61.08, 38.17, 34.75, 31.20, 14.22; 

1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 8.04 – 7.99 (m, 2H), 7.61 – 7.55 (m, 1H), 7.51 – 

7.45 (m, 2H), 7.36 – 7.26 (m, 4H), 6.87 (s, 1H), 4.16 – 4.08 (m, 4H), 1.32 (s, 9H), 1.05 (t, J = 

7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 197.17, 168.12, 151.32, 139.52, 

136.50, 133.30, 132.91, 128.68, 128.59, 128.30, 127.00, 124.82, 60.71, 45.16, 34.66, 31.28, 

13.64; HRMS (ESI) m/z calculated for C23H27O3 ([M+H]
+
) 351.1955, found 351.1964. 

 

ethyl 2-(4-methoxybenzylidene)-4-oxo-4-phenylbutanoate (229oa) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-(4-methoxyphenyl)acrylate 

(228o, 120 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229oa (25.6 mg, 

79.0 µmol, 16%) and (Z)-229oa (20.1 mg, 62.0 µmol, 12%) as yellowish oils as separated 

E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 56:44. 

Rf (hexanes / EA, 6:1) = 0.20 (E Isomer), 0.16 (Z Isomer); IR (neat): 3083, 2981, 2937, 2840, 

1688, 1606, 1513, 1446, 1371, 1304, 1256, 1215, 1174, 1092, 1028, 916, 834, 760, 693 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.03 – 8.01 (m, 3H), 7.61 – 7.57 (m, 1H), 7.51 – 

7.47 (m, 2H), 7.29 – 7.26 (m, 2H), 6.88 – 6.85 (m, 2H), 4.26 – 4.20 (m, 4H), 3.80 (s, 3H), 

1.27 (t, J = 7.1 Hz, 3H);
 13

C-NMR (101 MHz, CDCl3, E Isomer): δ 197.63, 167.72, 160.10, 

141.80, 136.85, 133.21, 130.58, 128.65, 128.32, 127.79, 125.37, 114.09, 61.02, 55.31, 38.14, 

14.23; 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 8.02 – 8.00 (m, 2H), 7.60 – 7.57 (m, 1H), 

7.50 – 7.46 (m, 2H), 7.33 – 7.30 (m, 2H), 6.85 – 6.81 (m, 3H), 4.16 – 4.11 (m, 4H), 3.82 (s, 

3H), 1.10 (t, J = 7.1 Hz, 3H);
 13

C-NMR (101 MHz, CDCl3, Z Isomer): δ 197.26, 168.13, 

159.66, 139.44, 136.58, 133.27, 130.57, 128.67, 128.29, 128.20, 125.65, 113.31, 60.70, 55.29, 

45.26, 13.81; HRMS (ESI) m/z calculated for C20H21O4 ([M+H]
+
) 325.1434, found 325.1433. 
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ethyl 2-(2-methoxybenzylidene)-4-oxo-4-phenylbutanoate (229pa) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-(2-methoxyphenyl)acrylate 

(228p, 120 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and fac-Ir(ppy)3 (6.55 mg, 10.0 µmol, 0.02 equiv) gave (E)-229pa (23.7 mg, 

72.9 µmol, 15%) and (Z)-229pa (40.3 mg, 124 µmol, 25%) as yellowish oil as separated 

E and Z isomer after purification on SiO2 (hexanes / EA, 20:1 to 6:1). E/Z = 37:63. 

Rf (hexanes / EA, 6:1) = 0.18 (E Isomer), 0.10 (Z Isomer); IR (neat): 3063, 2981, 2903, 2840, 

1684, 1599, 1487, 1326, 1300, 1287, 1211, 1092, 1021, 946, 916, 846, 790, 752, 689 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.08 (s, 1H), 8.01 – 7.97 (m, 2H), 7.60 – 7.54 (m, 

1H), 7.50 – 7.43 (m, 2H), 7.34 – 7.27 (m, 1H), 7.21 – 7.17 (m, 1H), 6.92 – 6.84 (m, 2H), 4.24 

(q, J = 7.1 Hz, 2H), 4.13 (s, 2H), 3.82 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, 

CDCl3, E Isomer): δ 197.84, 167.45, 157.45, 138.34, 136.85, 133.12, 130.35, 129.49, 128.59, 

128.24, 127.47, 124.35, 120.48, 110.58, 61.02, 55.47, 38.51, 14.21; 
1
H-NMR (300 MHz, 

CDCl3, Z Isomer): δ 8.05 – 8.00 (m, 2H), 7.62 – 7.54 (m, 1H), 7.52 – 7.44 (m, 2H), 7.31 – 

7.23 (m, 2H), 6.97 (s, 1H), 6.93 – 6.83 (m, 2H), 4.17 (d, J = 1.1 Hz, 2H), 4.07 (q, J = 7.1 Hz, 

2H), 3.80 (s, 3H), 1.02 (t, J = 7.1 Hz, 3H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 196.16, 

167.06, 155.77, 135.54, 134.67, 132.15, 129.18, 128.51, 127.85, 127.57, 127.25, 126.80, 

126.73, 124.14, 118.86, 109.20, 59.50, 54.34, 43.98, 12.61; HRMS (EI) m/z calculated for 

C20H20O4 ([M]
+
) 324.1356, found 324.1350. 
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3-(2-oxo-2-phenylethyl)-2H-chromen-2-one (229qa) 

 

Following general procedure GP-C using 3-chloro-2H-chromen-2-one (90.3 mg, 500 µmol, 

1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 5.00 equiv) and fac-Ir(ppy)3 

(6.55 mg, 10.0 µmol, 0.02 equiv) gave 3-(2-oxo-2-phenylethyl)-2H-chromen-2-one (34.1 mg, 

129 µmol, 26%) as white solid after purification on SiO2 (hexanes / EA, 10:1 to 6:1). 

Rf (hexanes / EA, 6:1) = 0.10; mp: 128 °C; IR (neat): 3071, 2926, 2855, 1710, 1606, 1449, 

1401, 1375, 1334, 1252, 1181, 1073, 991, 957, 924, 827, 752, 685 cm
-1

; 
1
H-NMR (300 MHz, 

CDCl3): δ 8.07 – 8.03 (m, 2H), 7.68 (s, 1H), 7.62 – 7.56 (m, 1H), 7.53 – 7.44 (m, 4H), 7.35 – 

7.23 (m, 2H), 4.26 (d, J = 0.7 Hz, 2H); 
13

C-NMR (75 MHz, CDCl3): δ 196.01, 161.61, 

153.52, 142.14, 136.32, 133.73, 133.62, 131.29, 130.19, 128.78, 128.47, 127.63, 124.49, 

123.11, 119.29, 116.61, 39.57; HRMS (APCI) m/z calculated for C17H13O3 ([M+H]
+
) 

265.0859, found 265.0862. 

 

ethyl 2-(furan-2-ylmethylene)-4-oxo-4-phenylbutanoate (229ra) 

 

Following general procedure GP-C using ethyl (Z)-2-chloro-3-(furan-2-yl)acrylate (228r, 

100 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 5.00 equiv) 

and fac-Ir(ppy)3 (3.27 mg, 5.00 µmol, 0.01 equiv) gave (E)-229ra (3.25 mg, 11.4 µmol, 

2.6%) and (Z)-229ra (1.75 mg, 6.16 µmol, 1.4%) as dark yellow oils as separated E and Z 

isomers after purification on SiO2 (hexanes / EA, 20:1 to 8:1). E/Z = 65:35. 

Rf (hexanes / EA, 6:1) = 0.24 (E Isomer), 0.20 (Z Isomer); IR (neat): 3063, 3123, 2981, 2933, 

1688, 1640, 1599, 1476, 1371, 1328, 1263, 1196, 1088, 1021, 916, 883, 797, 745, 689 cm
-1

; 
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1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.08 – 8.04 (m, 2H), 7.66 (s, 1H), 7.63 – 7.57 (m, 

1H), 7.53 – 7.47 (m, 2H), 7.38 (d, J = 1.7 Hz, 1H), 6.60 (d, J = 3.4 Hz, 1H), 6.43 (dd, J = 3.4, 

1.8 Hz, 1H), 4.53 (s, 2H), 4.24 (q, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H);
 13

C-NMR (75 

MHz, CDCl3, E Isomer): δ 197.15, 150.31, 143.35, 133.29, 128.68, 128.42, 128.25, 122.27, 

115.10, 112.26, 60.77, 45.11, 14.10; 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 8.01 – 7.98 

(m, 2H), 7.62 – 7.56 (m, 1H), 7.51 – 7.43 (m, 4H), 6.69 (s, 1H) ), 6.47 – 6.46 (m, 1H), 4.23 

(q, J = 7.1 Hz, 2H), 4.10 (s, 2H), 1.21 (t, J = 7.1 Hz, 3H);
 13

C-NMR (75 MHz, CDCl3, Z 

Isomer): δ 195.92, 166.71, 150.21, 143.67, 135.98, 131.98, 127.55, 127.19, 126.72, 121.39, 

115.38, 110.98, 60.10, 37.24, 13.21; HRMS (ESI) m/z calculated for C17H17O4 ([M+H]
+
) 

285.1121, found 285.1126. 
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6 Photochemical reaction setup for big scale synthesis of 229aa 

 

 

A 200 mL flame dried Schlenk tube equipped with a magnetic stir bar was charged with 

α-chloro ethyl cinnamate (228a, 4.21 g, 20.0 mmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 

16.2 g, 100 mmol, 5.00 equiv) and fac-Ir(ppy)3 (65.5 mg, 100 µmol, 0.5 mol%). The tube was 

evacuated, backfilled with N2 (3x) and subsequently completely filled with freshly degassed 

dry MeCN (~180 mL). The reaction mixture was magnetically stirred for roughly 15 min 

under N2 atmosphere until a homogeneous solution was observed. The tube was sealed with 

the photoapparatus, which was completely immersed in the reaction mixture. The 

photoapparatus consisted of a hollow glass cylinder containing a water-cooled metal block 

wrapped with 30 high power LEDs (λ = 455 nm). After irradiation for 48 h, the solvent was 

evaporated under reduced pressure and 1-phenylvinyl acetate was removed by distillation. 

The resulting residue was subsequently purified by column chromatography on SiO2 

(hexanes / EA, 20:1 to 12:1) to obtain the separated E and Z isomers of (E)-229aa (1.73 g, 

5.86 mmol, 29%) and (Z)-229aa (1.87 g, 6.34 mmol, 32%). E/Z = 48:52. 
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7 Enantioselective synthesis of α-alkylidene-γ-aryl-γ-butyrolactone (238) 

(R,E)-3-benzylidene-5-phenyldihydrofuran-2(3H)-one (R,E)-238) 

 

A flame dried 10 mL Schlenk flask equipped with a magnetic stir bar was charged with 

(S)-(-)-2-Methyl-CBS-oxazaborolidine (10.4 mg, 37.4 mmol, 10 mol%) and ethyl (E)-2-

benzylidene-4-oxo-4-phenylbutanoate ((E)-229aa, 110 mg, 374 µmol, 1.00 equiv), sealed 

with a septum and subsequently evacuated and backfilled with N2 (3x). Toluene (2 mL) was 

added and the solution was cooled to -15 °C. BH3·Me2S (2 M in THF, 243 µL, 486 µmol, 

1.30 equiv) was added and the reaction mixture was magnetically stirred for 23 h at -15 °C. 

Subsequently, MeOH (1 mL) was added and the mixture was acidified with HCl (1 M) to 

pH 1-2. After stirring for additional 30 minutes, the reaction mixture was diluted with H2O 

(15 mL) and washed with DCM (3 x 15 mL). The combined organic layers were dried over 

Na2SO4 and evaporated under reduced pressure. The residue was dissolved in DCM (3 mL) 

and TFA (46.9 mg, 411 µmol, 1.10 equiv) was added. After 2 h full lactonization was 

observed and the reaction was quenched with sat. NaHCO3 (10 mL) and washed with DCM 

(3 x 30 mL). The combined organic layers were dried over Na2SO4 and evaporated under 

reduced pressure. The residue was purified by column chromatography on SiO2 

(hexanes / EA, 6:1) to obtain (R,E)-3-benzylidene-5-phenyldihydrofuran-2(3H)-one as white 

solid (48.8 mg, 195 µmol, 52%). 

Rf (hexanes / EA, 4:1) = 0.28; mp: 85 °C; IR (neat): 3090, 3056, 3030, 2970, 1729, 1647, 

1494, 1319, 1226, 1189, 1066, 1021, 984, 764, 685 cm
-1

; 
1
H-NMR (300 MHz, CDCl3): δ 7.64 

(t, J = 2.9 Hz, 1H), 7.52 – 7.31 (m, 10H), 5.61 (dd, J = 8.3, 6.0 Hz, 1H), 3.70 (ddd, J = 17.6, 

8.3, 2.7 Hz, 1H), 3.16 (ddd, J = 17.6, 6.0, 3.1 Hz, 1H); 
13

C-NMR (75 MHz, CDCl3): δ 

172.04, 140.31, 137.02, 134.56, 130.09, 130.01, 128.98, 128.93, 128.59, 125.41, 124.11, 

78.20, 36.57; HRMS (EI) m/z calculated for C17H14O2 ([M]
+
) 250.0988, found 250.0992; 

Chiral HPLC performed on Chiralpak AS-H (n-heptane / i-PrOH = 70:30, λ = 215 nm, 0.5 

mL/min). tr (minor) = 40.0 min, tr (major) = 28.8 min; enantiomeric excess: 79%; 

[α]D
20

: -15.4 (c = 1.00, CHCl3). 
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(R,Z)-3-benzylidene-5-phenyldihydrofuran-2(3H)-one (R,Z)-238) 

 

A flame dried 25 mL Schlenk flask equipped with a magnetic stir bar was charged with 

(S)-(-)-2-Methyl-CBS-oxazaborolidine (27.7 mg, 100 µmol, 10 mol%) and ethyl (Z)-2-

benzylidene-4-oxo-4-phenylbutanoate ((Z)-229aa, 294 mg, 1.00 mmol, 1.00 equiv), sealed 

with a septum and subsequently evacuated and backfilled with N2 (3x). Toluene (6 mL) was 

added and the solution was cooled to -15 °C. BH3·Me2S (2 M in THF, 650 µL, 1.30 mmol, 

1.30 equiv) was added and the reaction mixture was magnetically stirred for 23 h at -15 °C. 

Subsequently, MeOH (3 mL) was added and the mixture was acidified with HCl (1 M) to 

pH 1-2. After stirring for additional 30 minutes, the reaction mixture was diluted with H2O 

(40 mL) and washed with DCM (3 x 40 mL). The combined organic layers were dried over 

Na2SO4 and evaporated under reduced pressure. The residue was dissolved in DCM (8 mL) 

and TFA (125 mg, 1.10 mmol, 1.10 equiv) was added. After 2 h full lactonization was 

observed and the reaction was quenched with sat. NaHCO3 (20 mL) and washed with DCM 

(3 x 20 mL). The combined organic layers were dried over Na2SO4 and evaporated under 

reduced pressure. The residue was purified by column chromatography on SiO2 

(hexanes / EA, 8:1) to obtain (R,Z)-3-benzylidene-5-phenyldihydrofuran-2(3H)-one as white 

solid (175 mg, 700 µmol, 70%). 

Rf (hexanes / EA, 4:1) = 0.30; mp: 123 °C; IR (neat): 3034, 2922, 1751, 1654, 1494, 1349, 

1215, 1170, 1099, 1023, 928, 730, 693 cm
-1

; 
1
H-NMR (400 MHz, CDCl3): δ 7.87 (d, J = 7.3 

Hz, 2H), 7.44 – 7.33 (m, 8H), 7.01 (s, 1H), 5.57 (t, J = 7.3 Hz, 1H), 3.52 (dd, J = 16.6, 7.1 Hz, 

1H), 3.12 (dd, J = 16.6, 7.1 Hz, 1H); 
13

C-NMR (101 MHz, CDCl3): δ 168.31, 139.88, 139.79, 

133.59, 130.72, 129.65, 128.85, 128.54, 128.21, 125.54, 124.38, 77.86, 40.32; HRMS (ESI) 

m/z calculated for C17H14O2 ([M]
+
) 250.0988, found 250.0993. Chiral HPLC performed on 

Phenomenex Lux Cellulose-1 (n-heptane / i-PrOH = 98:2, λ = 215 nm, 0.5 mL/min). 

tr (minor) = 77.5 min, tr (major) = 72.9 min; enantiomeric excess: 89%; [α]D
20

: +78.4 

(c = 1.00, CHCl3). 
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8 Synthesis of α-chloro cinnamonitriles (248a – 248h) 

 

General procedure (GP-D) for the synthesis of α-chloro cinnamonitriles
[198] 

 

A flame dried 250 mL two-neck-flask equipped with a magnetic stir bar was charged with 

aromatic aldehyde (10.0 mmol, 1.00 equiv), 2,2,2-trichloroacetonitrile (11.0 mmol, 

1.10 equiv) and Fe powder (100 mmol, 10.0 equiv) and dry THF (100 mL) under nitrogen 

atmosphere. The reaction mixture was magnetically stirred for 14 h. Upon completion, the 

reaction was filtered, THF was removed in vacuo and the crude product was purified by 

column chromatography on SiO2 (hexanes / EA, 15:1) to obtain the pure product as E/Z 

mixture. 

Note: Following this procedure gives the E isomer as major diastereomer which is in 

accordance to analytical data of the literature.
[198,261] 

 

2-chloro-3-phenylacrylonitrile (248a) 

 

Following general procedure GP-D using benzaldehyde (2.02 mL, 20.0 mmol, 1.00 equiv), 

2,2,2-trichloroacetonitrile (2.21 mL, 22.0 mmol, 1.10 equiv) and Fe powder (11.2 g, 

200 mmol, 10.0 equiv) gave 2-chloro-3-phenylacrylonitrile (1.51 g, 9.23 mmol, 46%) as 

colorless oil after purification on SiO2 (hexanes / EA, 15:1). E/Z = 83:17. 

Rf (hexanes / EA, 10:1) = 0.40; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 7.70 – 7.67 (m, 

2H), 7.48 – 7.43 (m, 3H), 7.37 (s, 1H); 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 7.76 – 7.73 

(m, 2H), 7.48 – 7.43 (m, 3H), 7.35 (s, 1H); 
13

C-NMR (75 MHz, CDCl3, both Isomers): δ 

145.35, 142.33, 131.38, 131.28, 130.42, 129.21, 128.89, 128.68, 115.12, 100.26. 
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2-chloro-3-(4-fluorophenyl)acrylonitrile (248b) 

 

Following general procedure GP-D using 4-fluorobenzaldehyde (1.05 mL, 10.0 mmol, 

1.00 equiv), 2,2,2-trichloroacetonitrile (1.10 mL, 11.0 mmol, 1.10 equiv) and Fe powder 

(5.58 g, 100 mmol, 10.0 equiv) gave 2-chloro-3-(4-fluorophenyl)acrylonitrile (665 mg, 

3.66 mmol, 37%) as yellow solid after purification on SiO2 (hexanes / EA, 15:1). E/Z = 74:26. 

Rf (hexanes / EA, 10:1) = 0.40; IR (neat): 3078, 3041, 2929, 2217, 1602, 1509, 1356, 1289, 

1241, 1207, 1166, 1107, 1058, 1017, 827, 711 cm
-1

; 
1
H-NMR (400 MHz, CDCl3, E Isomer): 

δ 7.72 – 7.68 (m, 2H), 7.32 (s, 1H), 7.17 – 7.11 (m, 2H); 
1
H-NMR (400 MHz, CDCl3, Z 

Isomer): δ 7.80 – 7.74 (m, 2H), 7.31 (s, 1H), 7.19 – 7.10 (m, 2H); 
13

C-NMR (101 MHz, 

CDCl3, both Isomers): δ 165.38, 162.86, 144.02, 140.98, 132.73, 132.64, 130.93, 130.84, 

127.70, 127.66, 116.63, 116.41, 116.34, 116.12, 115.01, 100.05, 100.02; 
19

F-NMR (376 

MHz, CDCl3, both Isomers): δ -106.91, -107.36; HRMS (ESI) m/z calculated for C9H5NFCl 

([M]
+
) 181.0089, found 181.0093. 

 

2-chloro-3-(4-chlorophenyl)acrylonitrile (248c) 

 

Following general procedure GP-D using 4-chlorobenzaldehyde (1.41 g, 10.0 mmol, 

1.00 equiv), 2,2,2-trichloroacetonitrile (1.10 mL, 11.0 mmol, 1.10 equiv) and Fe powder 

(5.58 g, 100 mmol, 10.0 equiv) gave 2-chloro-3-(4-chlorophenyl)acrylonitrile (1.25 g, 

6.31 mmol, 63%) as white solid after purification on SiO2 (hexanes / EA, 15:1). E/Z = 71:29. 

Rf (hexanes / EA, 10:1) = 0.30; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 7.65 – 7.60 (m, 

2H), 7.45 – 7.40 (m, 2H), 7.32 (s, 1H); 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 7.71 – 7.67 

(m, 2H), 7.45 – 7.40 (m, 2H), 7.30 (s, 1H); 
13

C-NMR (75 MHz, CDCl3, both Isomers): δ 

143.95, 140.97, 137.37, 131.59, 130.14, 129.88, 129.78, 129.55, 129.25, 116.17, 114.87, 

102.03, 100.87. 
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3-(4-bromophenyl)-2-chloroacrylonitrile (248d) 

 

Following general procedure GP-D using 4-bromobenzaldehyde (1.85 g, 10.0 mmol, 

1.00 equiv), 2,2,2-trichloroacetonitrile (1.10 mL, 11.0 mmol, 1.10 equiv) and Fe powder 

(5.58 g, 100 mmol, 10.0 equiv) gave 3-(4-bromophenyl)-2-chloroacrylonitrile (1.60 g, 

6.60 mmol, 66%) as yellow solid after purification on SiO2 (hexanes / EA, 15:1). E/Z = 71:29. 

Rf (hexanes / EA, 10:1) = 0.36; 
1
H-NMR (400 MHz, CDCl3, E Isomer): δ 7.62 – 7.54 (m, 

4H), 7.30 (s, 1H); 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 7.76 – 7.68 (m, 1H), 7.62 – 7.54 

(m, 3H), 7.28 (s, 1H); 
13

C-NMR (101 MHz, CDCl3, both Isomers): δ 144.07, 141.09, 132.53, 

132.49, 132.24, 131.72, 131.02, 130.56, 130.21, 130.03, 125.90, 125.81, 116.20, 114.88, 

102.18, 101.00. 

 

2-chloro-3-(3-chlorophenyl)acrylonitrile (248e) 

 

Following general procedure GP-D using 3-chlorobenzaldehyde (1.13 mL, 10.0 mmol, 

1.00 equiv), 2,2,2-trichloroacetonitrile (1.10 mL, 11.0 mmol, 1.10 equiv) and Fe powder 

(5.58 g, 100 mmol, 10.0 equiv) gave 2-chloro-3-(3-chlorophenyl)acrylonitrile (1.23 g, 

6.21 mmol, 62%) as colorless oil after purification on SiO2 (hexanes / EA, 15:1). E/Z = 76:24. 

Rf (hexanes / EA, 10:1) = 0.40; IR (neat): 3063, 2221, 1561, 1479, 1416, 1341, 1282, 1207, 

1103, 1013, 920, 875, 779, 674 cm
-1

; 
1
H-NMR (400 MHz, CDCl3, E Isomer): δ 7.61 – 7.57 

(m, 2H), 7.44 – 7.36 (m, 2H), 7.29 (s, 1H); 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 7.73 – 

7.72 (m, 1H), 7.61 – 7.57 (m, 1H), 7.44 – 7.36 (m, 2H), 7.28 (s, 1H); 
13

C-NMR (101 MHz, 

CDCl3, both isomers): δ 143.74, 140.87, 135.23, 134.91, 133.24, 132.98, 131.23, 130.52, 

130.19, 129.95, 128.68, 128.56, 126.53, 116.01, 114.66, 102.95, 101.88; HRMS (EI) m/z 

calculated for C9H5NCl2 ([M]
+
) 196.9794, found 196.9798. 
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2-chloro-3-(2-chlorophenyl)acrylonitrile (248f) 

 

Following general procedure GP-D using 2-chlorobenzaldehyde (1.12 mL, 10.0 mmol, 

1.00 equiv), 2,2,2-trichloroacetonitrile (1.10 mL, 11.0 mmol, 1.10 equiv) and Fe powder 

(5.58 g, 100 mmol, 10.0 equiv) gave 2-chloro-3-(2-chlorophenyl)acrylonitrile (1.39 g, 

7.02 mmol, 70%) as white solid after purification on SiO2 (hexanes / EA, 15:1). E/Z = 75:25. 

Rf (hexanes / EA, 10:1) = 0.40; IR (neat): 3194, 3097, 3071, 3041, 2221, 1587, 1464, 1431, 

1282, 1207, 1159, 1051, 1010, 950, 887, 864, 831, 745, 693 cm
-1

; 
1
H-NMR (400 MHz, 

CDCl3, E Isomer): δ 7.92 – 7.89 (m, 1H), 7.72 (s, 1H), 7.48 – 7.45 (m, 1H), 7.41 – 7.33 (m, 

2H); 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 7.92 – 7.89 (m, 1H), 7.69 (s, 1H), 7.48 – 7.45 

(m, 1H), 7.41 – 7.33 (m, 2H); 
13

C-NMR (101 MHz, CDCl3, both Isomers): δ 142.01, 139.14, 

134.71, 134.27, 132.15, 131.94, 130.49, 130.14, 130.05, 129.95, 129.82, 128.91, 127.50, 

126.86, 115.88, 114.46, 104.05, 103.20; HRMS (EI) m/z calculated for C9H5NCl2 ([M]
+
) 

196.9794, found 196.9794. 

 

2-chloro-3-(p-tolyl)acrylonitrile (248g) 

 

Following general procedure GP-D using 4-methylbenzaldehyde (1.18 mL, 10.0 mmol, 

1.00 equiv), 2,2,2-trichloroacetonitrile (1.10 mL, 11.0 mmol, 1.10 equiv) and Fe powder 

(5.58 g, 100 mmol, 10.0 equiv) gave 2-chloro-3-(p-tolyl)acrylonitrile (1.07 g, 6.02 mmol, 

60%) as colorless oil after purification on SiO2 (hexanes / EA, 15:1). E/Z = 74:26. 

Rf (hexanes / EA, 10:1) = 0.40; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 7.60 – 7.57 (m, 

2H), 7.32 (s, 1H), 7.26 – 7.23 (m, 2H), 2.40 (s, 3H); 
1
H-NMR (300 MHz, CDCl3, Z Isomer): 

δ 7.67 – 7.64 (m, 2H), 7.30 (s, 1H), 7.26 – 7.23 (m, 2H), 2.40 (s, 3H); 
13

C-NMR (75 MHz, 

CDCl3, both Isomers): δ 145.34, 142.25, 142.09, 142.02, 130.50, 129.91, 129.62, 128.69, 

115.36, 99.01, 21.66, 21.62. 
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(E)-2-chloro-3-(4-methoxyphenyl)acrylonitrile (248h) 

 

Note: Reaction had to be heated to 55 °C. 

Following general procedure GP-D at 55 °C using 4-methoxybenzaldehyde (1.22 mL, 

10.0 mmol, 1.00 equiv), 2,2,2-trichloroacetonitrile (1.10 mL, 11.0 mmol, 1.10 equiv) and Fe 

powder (5.58 g, 100 mmol, 10.0 equiv) gave (E)-2-chloro-3-(4-methoxyphenyl)acrylonitrile 

(440 mg, 2.27 mmol, 23%) as yellow solid after purification on SiO2 (hexanes / EA, 15:1). 

Rf (hexanes / EA, 10:1) = 0.14; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 7.70 – 7.64 (m, 

2H), 7.27 (s, 1H), 6.97 – 6.92 (m, 2H), 3.86 (s, 3H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 

161.90, 144.87, 130.61, 124.07, 114.60, 97.24, 55.49. 
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9 Photochemical functionalization of α-chloro cinnamonitriles (249aa – 249ga) 

 

General procedure (GP-E) for the photochemical functionalization of α-chloro 

cinnamates 

 

A flame dried Schlenk tube equipped with a magnetic stir bar was charged with α-chloro 

cinnamonitrile (500 µmol, 1.00 equiv), enol acetate (2.50 mmol, 5.00 equiv) and 

Ir(ppy)2(dtbbpy)PF6 (10.0 µmol, 2.0 mol%). The flask was sealed with a plastic screw-cap, 

evacuated and backfilled with N2 (3x). DMF (2.5 mL) was added and the reaction was 

magnetically stirred for roughly 5 min under N2 atmosphere until a homogeneous solution 

was observed. The resulting mixture was degassed by freeze-pump-thaw (3 cycles) and the 

plastic screw-cap was replaced by another plastic screw-cap with a Teflon sealed inlet for a 

glass rod. A high power LED (λ = 455 nm) was attached to the top of the glass rod, which 

then could act as an optical fiber. After irradiation for 24 h the LED was removed, the mixture 

was diluted with H2O (30 mL) and washed with DCM (3 x 25 mL). The combined organic 

layers were dried over Na2SO4, the solvent was removed in vacuo and the residue was 

purified by column chromatography on SiO2 (hexanes / EA, 8:1) to obtain the separated E and 

Z isomers. 

Note: In some cases it was not possible to separate both isomers completely. 
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2-benzylidene-4-oxo-4-phenylbutanenitrile (249aa) 

 

Following general procedure GP-E using 2-chloro-3-phenylacrylonitrile (248a, 32.7 mg, 

200 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 162 mg, 1.00 mmol, 5.00 equiv) and 

Ir(ppy)2(dtbbpy)PF6 (3.66 mg, 4.00 µmol, 0.02 equiv) gave (E)-249aa (20.2 mg, 81.2 µmol, 

41%) as yellow solid and (Z)-249aa (12.4 mg, 49.8 µmol, 25%) as yellow oil as separated E 

and Z isomers after purification on SiO2 (hexanes / EA, 8:1 to 4:1). E/Z = 62:38. 

Rf (hexanes / EA, 6:1) = 0.18 (E Isomer), 0.13 (Z Isomer); mp (E Isomer): 90 °C; IR (neat): 

3060, 3030, 2212, 1751, 1684, 1625, 1446, 1328, 1215, 991, 749, 689 cm
-1

; 
1
H-NMR (300 

MHz, CDCl3, E Isomer): δ 7.98 – 7.94 (m, 2H), 7.66 – 7.59 (m, 1H), 7.57 (s, 1H), 7.54 – 7.47 

(m, 2H), 7.39 – 7.34 (m, 3H), 7.27 – 7.22 (m, 2H), 4.14 (d, J = 0.7 Hz, 2H); 
13

C-NMR (75 

MHz, CDCl3, E Isomer): δ 194.50, 147.83, 135.72, 134.00, 133.45, 129.74, 128.94, 128.93, 

128.63, 128.33, 119.97, 108.63, 39.78; 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 8.03 – 7.98 

(m, 2H), 7.81 – 7.76 (m, 2H), 7.66 – 7.59 (m, 1H), 7.55 – 7.48 (m, 2H), 7.45 – 7.40 (m, 3H), 

7.05 (s, 1H), 4.08 (d, J = 1.0 Hz, 2H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 194.59, 

147.41, 135.81, 133.92, 133.30, 130.53, 128.93, 128.91, 128.87, 128.33, 118.50, 104.07, 

44.71; HRMS (ESI) m/z calculated for C17H13NO ([M]
+
) 247.0992, found 247.0985.

 

 

4-(3-cyano-4-phenylbut-3-enoyl)phenyl acetate (249ab) 

 

Following general procedure GP-E using 2-chloro-3-phenylacrylonitrile (248a, 81.8 mg, 

500 µmol, 1.00 equiv), 1-(4-acetoxyphenyl)vinyl acetate (152c, 551 mg, 2.50 mmol, 

5.00 equiv) and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249ab (71.7 

mg, 216 µmol, 47%) as yellow solid and (Z)-249ab (40.3 mg, 121 µmol, 26%) as yellow oil 



Experimental part 

 
163 

 

as separated E and Z isomers after purification on SiO2 (hexanes / EA, 8:1 to 2:1). 

E/Z = 64:36. 

Rf (hexanes / EA, 2:1) = 0.40 (E Isomer), 0.30 (Z Isomer); mp (E Isomer): 115 °C; IR (neat): 

3063, 2937, 2214, 1769, 1684, 1599, 1502, 1446, 1412, 1367, 1326, 1189, 1162, 998, 909, 

853, 740, 697 cm
-1

; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.02 – 7.97 (m, 2H), 7.57 (s, 

1H), 7.40 – 7.36 (m, 3H), 7.26 – 7.20 (m, 4H), 4.11 (d, J = 0.7 Hz, 2H), 2.34 (s, 3H); 

13
C-NMR (75 MHz, CDCl3, E Isomer): δ 193.25, 168.82, 154.99, 147.92, 133.38, 133.23, 

130.01, 129.80, 128.98, 128.60, 122.18, 119.92, 108.43, 39.78, 21.19; 
1
H-NMR (300 MHz, 

CDCl3, Z Isomer): δ 8.06 – 8.01 (m, 2H), 7.81 – 7.76 (m, 2H), 7.44 – 7.41 (m, 3H), 7.27 – 

7.23 (m, 2H), 7.04 (s, 1H), 4.06 (d, J = 1.0 Hz, 2H), 2.34 (s, 3H); 
13

C-NMR (75 MHz, CDCl3, 

Z Isomer): δ 193.36, 168.78, 154.94, 147.50, 133.34, 133.24, 130.57, 129.99, 128.92, 128.88, 

122.17, 118.46, 103.87, 44.67, 21.20; HRMS (EI) m/z calculated for C19H15NO3 ([M]
+
) 

305.1046, found 305.1043.
 

 

2-benzylidene-4-(4-methoxyphenyl)-4-oxobutanenitrile (249ac) 

 

Following general procedure GP-E using 2-chloro-3-phenylacrylonitrile (248a, 81.8 mg, 

500 µmol, 1.00 equiv), 1-(4-methoxyphenyl)vinyl acetate (152b, 481 mg, 2.50 mmol, 

5.00 equiv) and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249ac 

(55.7 mg, 200 µmol, 40%) as yellow solid and (Z)-249ac (38.7 mg, 139 µmol, 28%) as 

yellow oil as separated E and Z isomers after purification on SiO2 (hexanes / EA, 6:1 to 4:1). 

E/Z = 59:41. 

Rf (hexanes / EA, 6:1) = 0.10 (E Isomer), 0.08 (Z Isomer); mp (E Isomer): 110 °C; IR (neat): 

3056, 3011, 2963, 2840, 2214, 1763, 1673, 1595, 1505, 1446, 1420, 1319, 1259, 1218, 1170, 

1114, 1028, 831, 745, 697 cm
-1

; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 7.95 – 7.90 (m, 

2H), 7.53 (s, 1H), 7.38 – 7.33 (m, 3H), 7.27 – 7.22 (m, 2H), 6.98 – 6.92 (m, 2H), 4.08 (d, J = 

0.8 Hz, 2H), 3.87 (s, 3H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 192.99, 164.17, 147.58, 
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133.50, 130.70, 129.71, 128.91, 128.77, 128.70, 120.13, 114.08, 108.94, 55.62, 39.42; 

1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 8.01 – 7.95 (m, 2H), 7.80 – 7.75 (m, 2H), 7.45 – 

7.38 (m, 3H), 7.04 (s, 1H), 7.00 – 6.94 (m, 2H), 4.02 (d, J = 1.0 Hz, 2H), 3.88 (s, 3H); 

13
C-NMR (75 MHz, CDCl3, Z Isomer): δ 193.09, 164.10, 147.19, 133.37, 130.72, 130.45, 

128.88, 128.85, 118.61, 114.08, 104.41, 55.59, 44.37; HRMS (ESI) m/z calculated for 

C18H16NO2 ([M+H]
+
) 278.1176, found 278.1178. 

 

2-benzylidene-4-(3-methoxyphenyl)-4-oxobutanenitrile (249ad) 

 

Following general procedure GP-E using 2-chloro-3-phenylacrylonitrile (248a, 81.8 mg, 

500 µmol, 1.00 equiv), 1-(3-methoxyphenyl)vinyl acetate (152d, 481 mg, 2.50 mmol, 

5.00 equiv) and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249ad 

(61.6 mg, 222 µmol, 45%) and (Z)-249ad (27.7 mg, 99.8 µmol, 20%) as yellow oils as 

separated E and Z isomers after purification on SiO2 (hexanes / EA, 10:1 to 4:1). E/Z = 69:31. 

Rf (hexanes / EA, 4:1) = 0.24 (E Isomer), 0.20 (Z Isomer); IR (neat): 3060, 3004, 2940, 2836, 

2214, 1684, 1580, 1487, 1431, 1319, 1256, 1102, 1080, 1043, 1013, 928, 875, 775, 685 cm
-1

; 

1
H-NMR (400 MHz, CDCl3, E Isomer): δ 7.55 (s, 1H), 7.51 – 7.48 (m, 2H), 7.41 – 7.35 (m, 

4H), 7.26 – 7.22 (m, 2H), 7.16 (ddd, J = 8.2, 2.5, 0.9 Hz, 1H), 4.12 (d, J = 0.5 Hz, 2H), 3.85 

(s, 3H); 
13

C-NMR (101 MHz, CDCl3, E Isomer): δ 194.36, 160.05, 147.77, 137.08, 133.46, 

129.91, 129.77, 128.96, 128.66, 120.87, 120.51, 119.98, 112.55, 108.67, 55.54, 39.91; 

1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 7.80 – 7.76 (m, 2H), 7.58 – 7.52 (m, 2H), 7.44 – 

7.39 (m, 4H), 7.16 (ddd, J = 8.2, 2.5, 0.7 Hz, 1H), 7.04 (s, 1H), 4.06 (s, 2H), 3.87 (s, 3H); 

13
C-NMR (101 MHz, CDCl3, Z Isomer): δ 194.46, 160.06, 147.37, 137.17, 133.33, 130.53, 

129.91, 128.92, 128.89, 120.90, 120.45, 118.51, 112.54, 104.14, 55.54, 44.84; HRMS (APCI) 

m/z calculated for C18H19N2O2 ([M+NH4]
+
) 295.1441, found 295.1448.
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2-benzylidene-4-(2-methoxyphenyl)-4-oxobutanenitrile (249ae) 

 

Following general procedure GP-E using 2-chloro-3-phenylacrylonitrile (248a, 81.8 mg, 

500 µmol, 1.00 equiv), 1-(2-methoxyphenyl)vinyl acetate (152e, 481 mg, 2.50 mmol, 

5.00 equiv) and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave 249ae (113 mg, 

407 µmol, 82%) as orange oil as combined mixture of E and Z isomers after purification on 

SiO2 (hexanes / EA, 10:1 to 4:1). E/Z = 64:36. 

Rf (hexanes / EA, 4:1) = 0.32; IR (neat): 3060, 3026, 2944, 2840, 2214, 1669, 1595, 1483, 

1435, 1244, 1223, 1192, 1110, 1054, 1021, 995, 928, 894, 816, 152, 693 cm
-1

; 
1
H-NMR (400 

MHz, CDCl3, E Isomer): δ 7.80 (dd, J = 7.7, 1.7 Hz, 1H), 7.76 (dd, J = 7.4, 1.8 Hz, 1H), 7.55 

– 7.49 (m, 1H), 7.47 (s, 1H), 7.42 – 7.40 (m, 1H), 7.38 – 7.35 (m, 2H), 7.29 – 7.27 (m, 1H), 

7.07 – 6.99 (m, 2H), 4.17 (s, 2H), 3.86 (s, 3H); 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 

7.85 (dd, J = 7.8, 1.7 Hz, 1H), 7.55 – 7.49 (m, 1H), 7.42 – 7.40 (m, 1H), 7.38 – 7.35 (m, 2H), 

7.29 – 7.27 (m, 1H), 7.07 – 6.99 (m, 3H), 6.96 (s, 1H), 4.08 (d, J = 0.8 Hz, 2H), 3.98 (s, 3H); 

13
C-NMR (75 MHz, CDCl3, both Isomers): δ 196.23, 196.16, 159.03, 158.93, 147.10, 146.65, 

134.67, 134.61, 133.70, 133.57, 131.07, 130.99, 130.25, 129.57, 128.87, 128.84, 128.80, 

128.77, 126.58, 126.42, 120.97, 120.41, 118.85, 111.63, 111.56, 109.31, 105.10, 55.62, 55.53, 

49.65, 44.97; HRMS (APCI) m/z calculated for C18H16NO2 ([M+H]
+
) 278.1176, found 

278.1179.
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2-benzylidene-4-oxo-4-(p-tolyl)butanenitrile (249af) 

 

Following general procedure GP-E using 2-chloro-3-phenylacrylonitrile (248a, 81.8 mg, 

500 µmol, 1.00 equiv), 1-(p-tolyl)vinyl acetate (152f, 441 mg, 2.50 mmol, 5.00 equiv) and 

Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249af (57.8 mg, 221 µmol, 

44%) and (Z)-249af (24.8 mg, 94.8 µmol, 19%) as yellow oils as separated E and Z isomers 

after purification on SiO2 (hexanes / EA, 10:1 to 4:1). E/Z = 70:30. 

Rf (hexanes / EA, 4:1) = 0.31 (E Isomer), 0.25 (Z Isomer); IR (neat): 3030, 2922, 2214, 1677, 

1602, 1494, 1446, 1408, 1364, 1326, 1222, 1181, 1110, 1077, 1032, 998, 931, 894, 812, 779, 

745, 697 cm
-1

; 
1
H-NMR (400 MHz, CDCl3, E Isomer): δ 7.85 (d, J = 8.2 Hz, 2H), 7.55 (s, 

1H), 7.39 – 7.34 (m, 3H), 7.29 (d, J = 8.0 Hz, 2H), 7.26 – 7.23 (m, 2H), 4.10 (d, J = 0.6 Hz, 

2H), 2.43 (s, 3H); 
13

C-NMR (101 MHz, CDCl3, E Isomer): δ 194.09, 147.67, 145.00, 133.52, 

133.32, 129.71, 129.61, 128.93, 128.67, 128.47, 120.05, 108.85, 39.69, 21.77; 
1
H-NMR (400 

MHz, CDCl3, Z Isomer): δ 7.90 (d, J = 8.1 Hz, 2H), 7.80 – 7.76 (m, 2H), 7.45 – 7.40 (m, 3H), 

7.31 (d, J = 8.0 Hz, 2H), 7.04 (s, 1H), 4.04 (s, 2H), 2.44 (s, 3H); 
13

C-NMR (101 MHz, 

CDCl3, Z Isomer): δ 194.19, 147.27, 144.90, 133.40, 133.37, 130.48, 129.62, 128.91, 128.86, 

128.49, 118.55, 104.30, 44.59, 21.76; HRMS (EI) m/z calculated for C18H15NO ([M]
+
) 

261.1148, found 261.1141.
 

 

2-benzylidene-4-oxo-4-(o-tolyl)butanenitrile (249ag) 

 

Following general procedure GP-E using 2-chloro-3-phenylacrylonitrile (248a, 81.8 mg, 

500 µmol, 1.00 equiv), 1-(o-tolyl)vinyl acetate (152g, 441 mg, 2.50 mmol, 5.00 equiv) and 
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Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249ag (47.2 mg, 181 µmol, 

36%) and (Z)-249ag (31.4 mg, 120 µmol, 24%) as yellow oils as separated E and Z isomers 

after purification on SiO2 (hexanes / EA, 15:1 to 8:1). E/Z = 60:40. 

Rf (hexanes / EA, 4:1) = 0.31 (E Isomer), 0.25 (Z Isomer); IR (neat): 3063, 3026, 2967, 2929, 

2214, 1684, 1602, 1572, 1487, 1449, 1312, 1211, 1138, 984, 909, 730, 697, 667 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 7.63 – 7.59 (m, 1H), 7.54 (s, 1H), 7.47 – 7.36 (m, 

4H), 7.32 – 7.24 (m, 4H), 4.08 (s, 2H), 2.55 (s, 3H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 

197.70, 147.68, 139.43, 136.00, 133.50, 132.47, 132.35, 129.77, 128.94, 128.80, 128.64, 

125.93, 120.02, 108.85, 42.25, 21.63; 
1
H-NMR (300 MHz, CDCl3, Z Isomer): δ 7.81 – 7.76 

(m, 2H), 7.75 – 7.71 (m, 1H), 7.47 – 7.37 (m, 4H), 7.35 – 7.27 (m, 2H), 7.04 (s, 1H), 4.02 (d, 

J = 1.0 Hz, 2H), 2.56 (s, 3H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 197.81, 147.36, 

139.39, 136.07, 133.32, 132.45, 132.29, 130.51, 128.90, 128.87, 128.84, 125.96, 118.53, 

104.36, 47.23, 21.70; HRMS (APCI) m/z calculated for C18H19N2O ([M+NH4]
+
) 279.1492, 

found 279.1497.
 

 

2-benzylidene-4-(4-chlorophenyl)-4-oxobutanenitrile (249ah) 

 

Following general procedure GP-E using 2-chloro-3-phenylacrylonitrile (248a, 81.8 mg, 

500 µmol, 1.00 equiv), 1-(4-chlorophenyl)vinyl acetate (152i, 491 mg, 2.50 mmol, 5.00 

equiv) and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249ah (47.5 mg, 

168 µmol, 34%) and (Z)-249ah (25.5 mg, 90.7 µmol, 18%) as orange oils as separated E and 

Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 10:1). E/Z = 65:35. 

Rf (hexanes / EA, 4:1) = 0.31 (E Isomer), 0.25 (Z Isomer); IR (neat): 3060, 3026, 2926, 2855, 

2214, 1751, 1684, 1625, 1587, 1487, 1449, 1401, 1367, 1330, 1289, 1211, 995, 943, 902, 812, 

752, 682 cm
-1

; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 7.92 – 7.86 (m, 2H), 7.57 (s, 1H), 

7.49 – 7.44 (m, 2H), 7.40 – 7.35 (m, 3H), 7.25 – 7.21 (m, 2H), 4.10 (d, J = 0.8 Hz, 2H); 

13
C-NMR (75 MHz, CDCl3, E Isomer): δ 193.36, 148.00, 140.58, 133.99, 133.34, 129.84, 
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129.73, 129.28, 128.99, 128.60, 119.84, 108.29, 39.71; 
1
H-NMR (400 MHz, CDCl3, Z 

Isomer): δ 7.95 (d, J = 8.6 Hz, 2H), 7.78 (dd, J = 6.5, 2.9 Hz, 2H), 7.49 (d, J = 8.6 Hz, 2H), 

7.43 (dd, J = 5.0, 1.8 Hz, 3H), 7.05 (s, 1H), 4.04 (s, 2H); 
13

C-NMR (101 MHz, CDCl3, Z 

Isomer): δ 193.39, 147.58, 140.51, 134.13, 133.20, 130.65, 129.74, 129.31, 128.92, 118.40, 

103.69, 44.68; HRMS (APCI) m/z calculated for C17H16ClN2O ([M+NH4]
+
) 299.0946, found 

299.0946.
 

 

2-benzylidene-4-(4-bromophenyl)-4-oxobutanenitrile (249ai) 

 

Following general procedure GP-E using 2-chloro-3-phenylacrylonitrile (248a, 81.8 mg, 

500 µmol, 1.00 equiv), 1-(4-bromophenyl)vinyl acetate (152h, 603 mg, 2.50 mmol, 

5.00 equiv) and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249ai 

(46.8 mg, 144 µmol, 29%) and (Z)-249ai (38.3 mg, 118 µmol, 23%) as orange oils as 

separated E and Z isomers after purification on SiO2 (hexanes / EA, 15:1 to 10:1). 

E/Z = 55:45. 

Rf (hexanes / EA, 4:1) = 0.31 (E Isomer), 0.25 (Z Isomer); IR (neat): 3060, 3030, 2922, 2855, 

2214, 1684, 1584, 1487, 1446, 1397, 1323, 1211, 1069, 991, 909, 808, 730, 697 cm
-1

; 

1
H-NMR (400 MHz, CDCl3, E Isomer): δ 7.83 – 7.78 (m, 2H), 7.65 – 7.62 (m, 2H), 7.56 (s, 

1H), 7.40 – 7.35 (m, 3H), 7.25 – 7.21 (m, 2H), 4.09 (d, J = 0.7 Hz, 2H); 
13

C-NMR (101 MHz, 

CDCl3, E Isomer): δ 193.54, 148.00, 134.43, 133.37, 132.29, 129.84, 129.80, 129.36, 128.99, 

128.60, 119.81, 108.30, 39.70; 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 7.88 – 7.84 (m, 2H), 

7.80 – 7.76 (m, 2H), 7.68 – 7.64 (m, 2H), 7.45 – 7.41 (m, 3H), 7.04 (s, 1H), 4.04 (d, J = 1.0 

Hz, 2H); 
13

C-NMR (101 MHz, CDCl3, Z Isomer): δ 193.61, 147.59, 134.53, 133.19, 132.30, 

130.65, 129.81, 129.26, 128.92, 128.60, 118.39, 103.66, 44.65; HRMS (APCI) m/z calculated 

for C17H16BrN2O ([M+NH4]
+
) 343.0441, found 343.0448.
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2-benzylidene-5,5-dimethyl-4-oxohexanenitrile (249aj) 

 

Following general procedure GP-E using 2-chloro-3-phenylacrylonitrile (248a, 81.8 mg, 

500 µmol, 1.00 equiv), 3,3-dimethylbut-1-en-2-yl acetate (152l, 356 mg, 2.50 mmol, 

5.00 equiv) and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249aj 

(35.6 mg, 157 µmol, 32%) and (Z)-249aj (18.3 mg, 80.9 µmol, 16%) as colorless oils as 

separated E and Z isomers after purification on SiO2 (hexanes / EA, 20:1 to 12:1). 

E/Z = 66:34. 

Rf (hexanes / EA, 4:1) = 0.40 (E Isomer), 0.30 (Z Isomer); IR (neat): 3060, 3030, 2967, 2873, 

2214, 1736, 1707, 1625, 1476, 1367, 1312, 1237, 1062, 1006, 931, 894, 782, 745, 697 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 7.48 (s, 1H), 7.40 – 7.35 (m, 3H), 7.21 – 7.17 (m, 

2H), 3.63 (d, J = 0.8 Hz, 2H), 1.19 (s, 9H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 210.45, 

147.50, 133.55, 129.63, 128.82, 128.41, 119.88, 109.32, 44.61, 38.05, 26.30; 
1
H-NMR (300 

MHz, CDCl3, Z Isomer): δ 7.77 – 7.73 (m, 2H), 7.44 – 7.39 (m, 3H), 6.94 (s, 1H), 3.59 (d, J = 

1.0 Hz, 2H), 1.23 (s, 9H); 
13

C-NMR (101 MHz, CDCl3, Z Isomer): δ 210.26, 147.18, 133.37, 

130.40, 128.86, 128.82, 118.47, 104.55, 44.47, 42.89, 26.23; HRMS (EI) m/z calculated for 

C15H17NO ([M]
+
) 227.1305, found 227.1302. 

 

2-(4-fluorobenzylidene)-4-oxo-4-phenylbutanenitrile (249ba) 

 

Following general procedure GP-E using 2-chloro-3-(4-fluorophenyl)acrylonitrile (248b, 

90.8 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249ba 

(43.3 mg, 163 µmol, 33%) as yellow solid and (Z)-249ba (20.4 mg, 76.8 µmol, 15%) as 
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yellow oil as separated E and Z isomers after purification on SiO2 (hexanes / EA, 6:1 to 4:1). 

E/Z = 68:32. 

Rf (hexanes / EA, 4:1) = 0.30 (E Isomer), 0.20 (Z Isomer); mp (E Isomer): 95 °C; IR (neat): 

3067, 2952, 2922, 2214, 1751, 1681, 1599, 1505, 1446, 1401, 1334, 1237, 1211, 1159, 1099, 

998, 827, 752, 689 cm
-1

; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 7.94 – 7.89 (m, 2H), 7.62 

– 7.56 (m, 1H), 7.50 – 7.43 (m, 3H), 7.23 – 7.17 (m, 2H), 7.05 – 6.98 (m, 2H), 4.06 (d, J = 0.8 

Hz, 2H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 194.41, 164.98, 161.65, 146.69, 135.64, 

134.12, 130.75, 130.64, 129.57, 129.52, 128.98, 128.35, 119.85, 116.32, 116.03, 108.57, 

108.55, 39.72; 
19

F-NMR (282 MHz, CDCl3, E Isomer): δ -110.28; 
1
H-NMR (300 MHz, 

CDCl3, Z Isomer): δ 8.02 – 7.98 (m, 2H), 7.82 – 7.76 (m, 2H), 7.66 – 7.60 (m, 1H), 7.55 – 

7.48 (m, 2H), 7.15 – 7.08 (m, 2H), 7.01 (s, 1H), 4.07 (d, J = 1.0 Hz, 2H); 
13

C-NMR (75 MHz, 

CDCl3, Z Isomer): δ 194.52, 165.38, 162.04, 146.07, 135.75, 133.98, 131.08, 130.97, 129.59, 

129.54, 128.95, 128.31, 118.42, 116.20, 115.91, 103.79, 103.76, 44.58; 
19

F-NMR (282 MHz, 

CDCl3, Z Isomer): δ -109.02; HRMS (ESI) m/z calculated for C17H13FNO ([M+H]
+
) 

266.0976, found 266.0981. 

 

2-(4-chlorobenzylidene)-4-oxo-4-phenylbutanenitrile (249ca) 

 

Following general procedure GP-E using 2-chloro-3-(4-chlorophenyl)acrylonitrile (248c, 

99.0 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249ca 

(71.7 mg, 255 µmol, 51%) as yellow oil and (Z)-249ca (45.9 mg, 163 µmol, 33%) as yellow 

solid as separated E and Z isomers after purification on SiO2 (hexanes / EA, 15:1 to 4:1). 

E/Z = 61:39. 

Rf (hexanes / EA, 4:1) = 0.20 (E Isomer), 0.16 (Z Isomer); mp: 110 °C (Z Isomer); IR (neat): 

3086, 3034, 2967, 2914, 2221, 1681, 1591, 1487, 1435, 1356, 1326, 1211, 1092, 995, 894, 

834, 752, 685 cm
-1

; 
1
H-NMR (400 MHz, CDCl3, E Isomer): δ 7.97 – 7.94 (m, 2H), 7.66 – 
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7.61 (m, 1H), 7.53 – 7.48 (m, 3H), 7.36 – 7.32 (m, 2H), 7.20 – 7.18 (m, 2H), 4.10 (s, 2H); 

13
C-NMR (101 MHz, CDCl3, E Isomer): δ 194.35, 146.55, 135.92, 135.60, 134.17, 131.83, 

129.95, 129.26, 129.01, 128.36, 119.74, 109.30, 39.77; 
1
H-NMR (400 MHz, CDCl3, Z 

Isomer): δ 8.00 – 7.97 (m, 2H), 7.73 – 7.70 (m, 2H), 7.65 – 7.60 (m, 1H), 7.53 – 7.48 (m, 2H), 

7.40 – 7.36 (m, 2H), 6.99 (s, 1H), 4.08 (d, J = 0.8 Hz, 2H); 
13

C-NMR (101 MHz, CDCl3, Z 

Isomer): δ 194.47, 146.00, 136.43, 135.72, 134.03, 131.74, 130.17, 129.16, 128.98, 128.31, 

118.29, 104.82, 44.67; HRMS (APCI) m/z calculated for C17H16ClN2O ([M+NH4]
+
) 

299.0946, found 299.0945. 

 

2-(4-bromobenzylidene)-4-oxo-4-phenylbutanenitrile (249da) 

 

Following general procedure GP-E using 3-(4-bromophenyl)-2-chloroacrylonitrile (248d, 

121 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 5.00 equiv) 

and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249da (55.6 mg, 

171 µmol, 34%) as yellow solid and (Z)-249da (27.4 mg, 84.1 µmol, 17%) as yellow solid as 

separated E and Z isomers after purification on SiO2 (hexanes / EA, 15:1 to 4:1). E/Z = 67:33. 

Rf (hexanes / EA, 4:1) = 0.24 (E Isomer), 0.17 (Z Isomer); mp (E Isomer): 133 °C; mp (Z 

Isomer): 120 °C; IR (neat): 3090, 3034, 2967, 2911, 2221, 1681, 1580, 1483, 1405, 1356, 

1326, 1211, 1073, 995, 916, 834, 752, 685 cm
-1

; 
1
H-NMR (300 MHz, CDCl3, E Isomer): δ 

7.97 – 7.93 (m, 2H), 7.66 – 7.60 (m, 1H), 7.53 – 7.46 (m, 5H), 7.13 – 7.10 (m, 2H), 4.10 (s, 

2H); 
13

C-NMR (75 MHz, CDCl3, E Isomer): δ 194.25, 146.57, 135.64, 134.14, 132.28, 

132.23, 130.11, 129.00, 128.34, 124.23, 119.67, 109.42, 39.78; 
1
H-NMR (300 MHz, CDCl3, 

Z Isomer): δ 8.02 – 7.97 (m, 2H), 7.68 – 7.60 (m, 3H), 7.58 – 7.48 (m, 4H), 6.98 (s, 1H), 4.07 

(d, J = 1.0 Hz, 2H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 194.33, 146.04, 135.75, 134.01, 

132.15, 130.33, 128.98, 128.32, 124.87, 118.21, 104.97, 44.64; HRMS (APCI) m/z calculated 

for C17H16BrN2O ([M+NH4]
+
) 343.0441, found 343.0445. 
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2-(3-chlorobenzylidene)-4-oxo-4-phenylbutanenitrile (249ea) 

 

Following general procedure GP-E using 2-chloro-3-(3-chlorophenyl)acrylonitrile (248e, 

99.0 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249ea 

(67.3 mg, 239 µmol, 48%) and (Z)-249ea (34.7 mg, 123 µmol, 24%) as yellow oils as 

separated E and Z isomers after purification on SiO2 (hexanes / EA, 15:1 to 4:1). E/Z = 66:34. 

Rf (hexanes / EA, 4:1) = 0.22 (E Isomer), 0.17 (Z Isomer); IR (neat): 3063, 2918, 2217, 1684, 

1595, 1565, 1476, 1416, 1329, 1215, 1080, 998, 898, 782, 685 cm
-1

; 
1
H-NMR (400 MHz, 

CDCl3, E Isomer): δ 7.96 – 7.93 (m, 2H), 7.65 – 7.61 (m, 1H), 7.52 – 7.48 (m, 3H), 7.36 – 

7.28 (m, 2H), 7.25 – 7.23 (m, 1H), 7.13 – 7.11 (m, 1H), 4.10 (s, 2H); 
13

C-NMR (101 MHz, 

CDCl3, E Isomer): δ 194.30, 146.24, 135.62, 135.07, 134.98, 134.14, 130.27, 129.78, 128.99, 

128.59, 128.35, 126.58, 119.51, 110.24, 39.67; 
1
H-NMR (400 MHz, CDCl3, Z Isomer): δ 

8.00 (d, J = 7.6 Hz, 2H), 7.73 – 7.63 (m, 3H), 7.52 (t, J = 7.6 Hz, 2H), 7.41 – 7.31 (m, 2H), 

6.99 (s, 1H), 4.09 (s, 2H); 
13

C-NMR (101 MHz, CDCl3, Z Isomer): δ 194.30, 145.74, 135.71, 

134.96, 134.84, 134.04, 130.46, 130.19, 128.99, 128.32, 126.71, 117.99, 105.98, 44.66; 

HRMS (APCI) m/z calculated for C17H16ClN2O ([M+NH4]
+
) 299.0946, found 299.0945. 

 

2-(2-chlorobenzylidene)-4-oxo-4-phenylbutanenitrile (249fa) 

 

Following general procedure GP-E using 2-chloro-3-(2-chlorophenyl)acrylonitrile (248f, 

99.0 mg, 500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 

5.00 equiv) and Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-248fa 
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(73.7 mg, 261 µmol, 52%) and (Z)-248fa (36.3 mg, 129 µmol, 26%) as yellow oils as 

separated E and Z isomers after purification on SiO2 (hexanes / EA, 15:1 to 4:1). E/Z = 67:33. 

Rf (hexanes / EA, 4:1) = 0.25 (E Isomer), 0.20 (Z Isomer); IR (neat): 3063, 2918, 2221, 1755, 

1684, 1595, 1468, 1326, 1278, 1215, 1181, 1129, 1054, 998, 954, 909, 752, 685 cm
-1

; 

1
H-NMR (300 MHz, CDCl3, E Isomer): δ 8.11 – 8.06 (m, 1H), 8.04 – 7.99 (m, 2H), 7.67 – 

7.61 (m, 1H), 7.56 – 7.48 (m, 2H), 7.46 – 7.34 (m, 4H), 4.15 (d, J = 1.0 Hz, 2H); 
13

C-NMR 

(75 MHz, CDCl3, E Isomer): δ 194.27, 143.99, 135.72, 134.12, 133.98, 131.75, 131.37, 

129.75, 129.51, 128.95, 128.31, 127.26, 117.79, 107.72, 44.58; 
1
H-NMR (300 MHz, CDCl3, 

Z Isomer): δ 7.94 – 7.90 (m, 2H), 7.65 – 7.59 (m, 2H), 7.51 – 7.43 (m, 3H), 7.36 – 7.29 (m, 

1H), 7.25 – 7.15 (m, 2H), 4.03 (d, J = 0.8 Hz, 2H); 
13

C-NMR (75 MHz, CDCl3, Z Isomer): δ 

194.42, 144.98, 135.58, 134.07, 133.92, 131.84, 130.99, 130.06, 129.54, 128.93, 128.30, 

127.06, 119.29, 110.72, 39.88; HRMS (APCI) m/z calculated for C17H16ClN2O ([M+NH4]
+
) 

299.0946, found 299.0954. 

 

2-(4-methylbenzylidene)-4-oxo-4-phenylbutanenitrile (249ga) 

 

Following general procedure GP-E using 2-chloro-3-(p-tolyl)acrylonitrile (248g, 88.8 mg, 

500 µmol, 1.00 equiv), 1-phenylvinyl acetate (152a, 405 mg, 2.50 mmol, 5.00 equiv) and 

Ir(ppy)2(dtbbpy)PF6 (9.14 mg, 10.0 µmol, 0.02 equiv) gave (E)-249ga (33.6 mg, 129 µmol, 

26%) as yellow solid and (Z)-249ga (18.1 mg, 69.3 µmol, 14%) as yellow oil as separated 

E and Z isomers after purification on SiO2 (hexanes / EA, 15:1 to 4:1). E/Z = 65:35. 

Rf (hexanes / EA, 4:1) = 0.22 (E Isomer), 0.16 (Z Isomer); mp (E Isomer): 101 °C; IR (neat): 

3030, 2963, 2217, 1684, 1621, 1509, 1446, 1405, 1360, 1326, 1211, 1110, 1021, 998, 902, 

831, 752, 682 cm
-1

; 
1
H-NMR (400 MHz, CDCl3, E Isomer): δ 7.98 – 7.94 (m, 2H), 7.65 – 

7.60 (m, 1H), 7.53 – 7.47 (m, 3H), 7.19 – 7.13 (m, 4H), 4.14 (s, 2H), 2.35 (s, 3H); 
13

C-NMR 

(101 MHz, CDCl3, E Isomer): δ 194.56, 147.85, 140.17, 135.82, 133.95, 130.69, 129.66, 

128.93, 128.73, 128.34, 120.23, 107.60, 39.87, 21.40; 
1
H-NMR (400 MHz, CDCl3, Z 
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Isomer): δ 8.01 – 7.99 (m, 2H), 7.70 – 7.68 (m, 2H), 7.64 – 7.60 (m, 1H), 7.53 – 7.49 (m, 1H), 

7.24 – 7.22 (m, 2H), 7.18 – 7.13 (m, 1H), 7.01 (s, 1H), 4.05 (s, 2H), 2.39 (s, 3H); 
13

C-NMR 

(101 MHz, CDCl3, Z Isomer): δ 194.73, 147.38, 141.04, 135.88, 133.87, 130.64, 129.58, 

128.94, 128.92, 128.35, 118.75, 102.71, 44.70, 21.54; HRMS (APCI) m/z calculated for 

C18H19N2O ([M+NH4]
+
) 279.1492, found 279.1496. 
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G Appendix 

1 Reduction potentials of α-halo cinnamates 

 

Cyclic voltammetry measurements were carried out on an Autolab PGSTAT 302N set-up at 

20 °C in MeCN, containing tetrabutyl ammonium tetrafluoroborate as supporting electrolyte. 

A conventional undivided electrochemical cell equipped with a glassy carbon working 

electrode, platinum wire as the counter electrode and silver wire as the reference electrode 

was used. The solvent was degassed by vigorous nitrogen bubbling prior to the measurement. 

Redox potentials were referenced against ferrocene as an internal standard. All values are 

reported in reference to the SCE electrode. 

Table 15. Reduction potentials of α-halo cinnamates. 

Entry Compound Reduction potential vs SCE [V] in MeCN 

1 228a-F -1.93 

2 228a-Cl -1.64 

3 228a-Br -1.54 

4 228b -1.66 

5 228c -1.66 

6 228d -1.71 

7 228e -1.54 

8 228f -1.56 

9 228g -1.67 

10 228h -1.56 

11 228i -1.56 

12 228j -1.55 

13 228k -1.01 

14 228l -1.67 

15 228m -1.65 

16 228n -1.71 

17 228o -1.73 

18 228p -1.70 

19 228q -1.60 

20 228r n.d. 

21 228s n.d. 

22 228t n.d. 

23 228u -2.09 
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2 NMR spectra of new compounds 

 

The upper images show the 
1
H-NMR spectra whereas the lower images describe the 

13
C-NMR spectra. 

All compounds were dissolved in CDCl3 unless otherwise stated. 
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3 Chiral HPLC chromatograms 

(E)-3-benzylidene-5-phenyldihydrofuran-2(3H)-one ((E)-238) 

 

(R,E)-3-benzylidene-5-phenyldihydrofuran-2(3H)-one ((R,E)-238) 
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(Z)-3-benzylidene-5-phenyldihydrofuran-2(3H)-one ((Z)-238) 

 

(R,Z)-3-benzylidene-5-phenyldihydrofuran-2(3H)-one ((R,Z)-238) 
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4 X-ray crystallography data 

 

(R,Z)-3-benzylidene-5-phenyldihydrofuran-2(3H)-one ((R,Z)-238) 

 

Table 16. Crystal data and structure refinement for (R,Z)-238. 

Empirical formula C17H14O2 

Formula weight 250.28 

Temperature /K 123.01(10) 

Crystal system orthorhombic 

Space group P212121 

a/Å 5.9605(4)  

b/Å 9.7758(9)  

c/Å 22.163(2)  

α/° 90  

β/° 90  

γ/° 90  

Volume/Å
3
 1291.39(19)  

Z 4 

ρcalcg/cm
3
 1.287 

µ/mm
-1

 0.665 

F(000) 528.0 

Crystal size/mm
3
 0.22×0.09×0.06 

Radiation CuKα (λ = 1.54184) 

2ϴ range for data collection/° 3.989 to 74.300 
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Index ranges -7 ≤ h ≤ 7, -11 ≤ k ≤ 12, -26 ≤ l ≤ 27 

Reflections collected 5343 

Independent reflections 2556 [Rint = 0.0804, Rsigma = 0.0868] 

Data/restraints/parameters 2556/0/172 

Goodness-of-fit on F
2
 1.058 

Final R indexes [I>=2σ (I)] R1 = 0.0655, wR2 = 0.1625 

Final R indexes [all data] R1 = 0.0794, wR2 = 0.1776 

Largest diff. peak/hole / e Å
-3

 0.274/-0.412 

Flack parameter -0.4(3) 

 

Table 17. Fractional Atomic Coordinates (x10
4
) and Equivalent Isotropic Displacement Parameters (Å

2
x10

3
) 

for (R,Z)-238. Ueq is defined as 1/3 of the trace of the orthogonalised Uij tensor. 
Atom x y z Ueq                

O1 5017(4) 7652(3) 3606.4(12) 23.5(6) 

O2 2178(5) 6297(3) 3361.3(14) 31.1(7) 

C5 4078(6) 6400(4) 3554.6(16) 21.2(8) 

C1 7965(6) 8784(4) 4174.1(17) 21.3(7) 

C7 4409(6) 3011(4) 3349.5(16) 20.0(8) 

C2 7354(6) 7535(4) 3809.0(15) 19.4(7) 

C4 5684(6) 5351(4) 3779.4(16) 19.7(7) 

C3 7399(6) 6159(4) 4130.3(17) 23.7(8) 

C8 2266(7) 3290(4) 3106.8(17) 24.3(8) 

C6 5789(6) 3995(4) 3684.7(16) 22.0(8) 

C12 5299(7) 1703(4) 3269.6(17) 23.9(8) 

C17 9962(6) 9460(4) 4049.7(16) 23.6(8) 

C13 6554(6) 9263(4) 4629.1(19) 27.0(8) 

C10 2051(7) 1002(4) 2703.1(17) 28.4(9) 

C15 9130(7) 11106(4) 4820.7(18) 27.8(9) 

C9 1119(7) 2285(4) 2788.2(18) 27.3(8) 

C16 10545(7) 10624(5) 4372(2) 29.8(9) 

C11 4168(7) 715(5) 2947.7(18) 28.7(9) 

C14 7138(8) 10413(5) 4949.6(19) 31.6(10) 

 

Table 18. Anisotropic Displacement Parameters (x10
4
) for (R,Z)-238. The anisotropic displacement factor exponent 

takes the form: -2π
2
[h

2
a*

2
U11+...+2hka*b*U12]. 

Atom U11 U22 U33 U23 U13 U12 

O1 15.2(12) 26.2(13) 29.3(14) -1.1(10) -9.8(10) 2.0(11) 

O2 15.5(13) 36.2(16) 41.4(17) -8.8(13) -11.2(11) 8.6(12) 

C5 13.9(16) 29.5(19) 20.1(17) -3.0(14) -1.2(12) 3.9(15) 

C1 12.6(15) 29.2(18) 22.2(17) 5.3(14) 0.2(13) -0.7(15) 

C7 14.3(16) 27.0(18) 18.7(16) 6.4(13) 0.2(12) 0.6(15) 

C2 9.7(15) 27.6(17) 20.9(16) 2.4(13) -1.4(11) 2.1(14) 

C4 11.3(15) 26.3(17) 21.6(17) 2.2(13) -3.0(11) 0.6(14) 

C3 16.3(17) 29.2(18) 25.6(18) 2.2(14) -6.0(13) 0.2(15) 

C8 17.7(17) 31.7(19) 23.5(18) 4.3(14) -3.9(14) -0.7(16) 

C6 14.3(16) 32(2) 19.9(17) 3.7(14) -3.6(12) 0.8(15) 

C12 19.0(17) 28.7(18) 24.1(19) 6.9(14) 2.9(13) 4.1(15) 

C17 15.4(16) 32.4(19) 23.1(18) 6.5(14) 3.0(13) 0.9(16) 

C13 19.8(18) 32(2) 29(2) 2.4(17) 9.4(14) -2.9(16) 

C10 29(2) 34(2) 21.5(19) 1.5(15) -0.6(15) -10.1(18) 

C15 30(2) 24.7(18) 29(2) 3.2(15) -0.2(15) -6.1(17) 
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Table 18. Anisotropic Displacement Parameters (x10
4
) for (R,Z)-238. The anisotropic displacement factor exponent 

takes the form: -2π
2
[h

2
a*

2
U11+...+2hka*b*U12]. 

Atom U11 U22 U33 U23 U13 U12 

C9 20.0(17) 35(2) 26.5(19) 6.3(16) -3.2(14) -5.7(17) 

C16 19.0(18) 37(2) 33(2) 8.5(16) -2.1(14) -5.4(18) 

C11 31(2) 26.9(19) 28(2) 0.9(15) 0.1(15) -1.6(18) 

C14 32(2) 36(2) 27(2) -2.9(15) 8.3(16) -3(2) 

 

Table 19. Bond Lengths for (R,Z)-238. 

Atom Atom Length/Å Atom Atom Length/Å 
O1 C5 1.350(5) O2 C5 1.215(5) 

O1 C2 1.468(4) C5 C4 1.489(5) 

C1 C2 1.510(5) C8 C9 1.390(6) 

C1 C17 1.388(5) C12 C11 1.377(6) 

C1 C13 1.394(5) C17 C16 1.388(6) 

C7 C8 1.413(5) C13 C14 1.374(6) 

C7 C6 1.467(5) C10 C9 1.384(6) 

C7 C12 1.396(6) C10 C11 1.402(6) 

C2 C3 1.522(5) C15 C16 1.386(6) 

C4 C3 1.508(5) C15 C14 1.397(6) 

C4 C6 1.344(6)    

 

Table 20. Bond Angles for (R,Z)-238. 

Atom Atom Atom Angle/° Atom Atom Atom Angle/° 

C5 O1 C2 110.4(3) C6 C4 C5 131.1(3) 

O1 C5 C4 109.2(3) C6 C4 C3 124.4(3) 

O2 C5 O1 119.5(4) C4 C3 C2 102.1(3) 

O2 C5 C4 131.3(4) C9 C8 C7 120.1(4) 

C17 C1 C2 119.0(3) C4 C6 C7 134.4(4) 

C17 C1 C13 120.1(4) C11 C12 C7 121.5(4) 

C13 C1 C2 120.9(3) C16 C17 C1 120.2(4) 

C8 C7 C6 125.0(4) C14 C13 C1 119.7(4) 

C12 C7 C8 118.2(4) C9 C10 C11 119.4(4) 

C12 C7 C6 116.9(3) C16 C15 C14 119.9(4) 

O1 C2 C1 109.3(3) C10 C9 C8 120.8(4) 

O1 C2 C3 103.2(3) C15 C16 C17 119.7(4) 

C1 C2 C3 117.4(3) C12 C11 C10 120.0(4) 

C5 C4 C3 104.4(3) C13 C14 C15 120.4(4) 

 

Table 21. Hydrogen Fractional Atomic Coordinates (x10
4
) and Equivalent Isotopic Displacement Parameters 

(Å
2
x10

3
) for (R,Z)-238. 

Atom x y z Ueq 

H2 8333.3 7488.5 3454.39 23 

H3A 8871.6 5739.72 4106.5 28 

H3B 6970.3 6249.5 4550.62 28 

H8 1621.21 4147.74 3160.29 29 

H6 7010.25 3588.5 3874.4 26 

H12 6687.53 1493.65 3437.57 29 

H17 10910.18 9131.6 3749.62 28 

H13 5223.1 8806.87 4715.44 32 

H10 1279.92 337.89 2485.91 34 

H15 9507.56 11889.98 5035.59 33 

H9 -292.18 2475.96 2630.17 33 

H16 11879.77 11078.09 4288.02 36 
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H11 4808.77 -143.26 2892.48 34 

H14 6200.17 10732.07 5254.06 38 
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(E)-2-(4-bromobenzylidene)-4-oxo-4-phenylbutanenitrile (E)-249da) 

 

Table 22. Crystal data and structure refinement for (E)-249da. 

Empirical formula C17H12BrNO 

Formula weight 326.19 

Temperature /K 123.00(10) 

Crystal system monoclinic 

Space group P21/n 

a/Å 6.06350(10)  

b/Å 15.3114(3)  

c/Å 14.8777(4)  

α/° 90  

β/° 94.303(2)  

γ/° 90  

Volume/Å
3
 1377.36(5)  

Z 4 

ρcalcg/cm
3
 1.573 

µ/mm
-1

 4.011 

F(000) 656.0 

Crystal size/mm
3
 0.36×0.09×0.06 

Radiation CuKα (λ = 1.54184) 

2ϴ range for data collection/° 4.149 to 73.419 

Index ranges -7 ≤ h ≤ 7, -18 ≤ k ≤ 19, -17 ≤ l ≤ 18 

Reflections collected 18463 

Independent reflections 2679 [Rint = 0.0926, Rsigma = 0.0453] 
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Data/restraints/parameters 2679/0/181 

Goodness-of-fit on F
2
 1.052 

Final R indexes [I>=2σ (I)] R1 = 0.0379, wR2 = 0.0969 

Final R indexes [all data] R1 = 0.0466, wR2 = 0.1024 

Largest diff. peak/hole / e Å
-3

 0.592/-0.623 

 

Table 23. Fractional Atomic Coordinates (x10
4
) and Equivalent Isotropic Displacement Parameters (Å

2
x10

3
) 

for (E)-249da. Ueq is defined as 1/3 of the trace of the orthogonalised Uij tensor. 
Atom x y z Ueq                

Br01 -1087.3(5) 8857.96(16) 5451.6(2) 29.04(14) 

O002 8928(3) 5582.6(13) 6854.9(16) 37.0(5) 

N003 9772(4) 5815.7(15) 9168.3(19) 35.4(6) 

C004 4655(4) 8371.9(14) 7064(2) 25.0(6) 

C005 506(4) 7631.1(15) 6771(2) 24.5(6) 

C006 5937(4) 7171.8(15) 8093.5(19) 22.7(6) 

C007 1057(4) 8379.6(15) 6307.1(19) 23.0(6) 

C008 2061(4) 7242.8(15) 7365.5(19) 23.9(6) 

C009 7077(4) 5272.1(15) 6853(2) 25.0(6) 

C00A 5445(4) 5616.2(14) 7493(2) 24.5(6) 

C00B 6446(4) 6320.7(16) 8101.8(19) 22.9(6) 

C00C 3122(5) 8761.1(15) 6457(2) 25.4(6) 

C00D 4186(4) 7597.1(14) 7503.4(19) 22.6(6) 

C00E 6367(4) 4556.6(14) 6210.0(19) 22.8(6) 

C00F 7829(5) 4312.4(16) 5582(2) 28.7(6) 

C00G 4342(5) 4128.5(16) 6222(2) 27.0(6) 

C00H 8298(5) 6047.0(15) 8706(2) 23.9(6) 

C00I 5263(5) 3232.1(17) 4974(2) 32.8(7) 

C00J 3814(5) 3463.7(17) 5605(2) 32.4(7) 

C00K 7279(6) 3659.5(18) 4962(2) 34.3(7) 

 

Table 24. Anisotropic Displacement Parameters (x10
4
) for (E)-249da. The anisotropic displacement factor exponent 

takes the form: -2π
2
[h

2
a*

2
U11+...+2hka*b*U12]. 

Atom U11 U22 U33 U23 U13 U12 

Br01 25.8(2) 28.69(19) 31.8(2) 4.92(10) -3.07(15) 2.38(9) 

O002 29.1(11) 36.6(10) 46.1(15) -13.3(9) 8.2(10) -11.1(8) 

N003 36.4(15) 29.4(11) 38.6(16) 0.4(11) -8.8(13) -0.6(10) 

C004 21.1(13) 19.6(10) 33.9(18) -6.1(10) 0.3(12) -1.5(9) 

C005 22.0(13) 21.0(10) 30.4(17) -3.6(10) 1.1(12) -1.0(9) 

C006 21.7(13) 24.1(11) 22.0(16) -2.7(10) 0.2(11) -1.5(9) 

C007 22.5(13) 22.6(11) 23.8(16) -1.6(10) 0.5(12) 4.3(9) 

C008 26.1(14) 20.3(10) 25.4(16) -1.1(10) 2.9(12) -1.3(9) 

C009 26.4(14) 20.1(10) 28.0(17) 2.8(10) -1.8(12) -0.9(10) 

C00A 24.7(14) 20.7(10) 27.6(17) -1.8(10) -2.0(12) -3.2(9) 

C00B 21.8(13) 25.6(11) 21.0(16) 0.9(11) -0.5(12) -0.3(10) 

C00C 26.9(15) 20.7(10) 28.2(18) 0.9(10) -0.2(13) -1.2(9) 

C00D 22.8(13) 20.1(10) 24.8(16) -4.3(10) 0.5(12) 2.6(9) 

C00E 26.0(14) 17.4(10) 24.0(16) 2.6(10) -4.5(12) -0.2(9) 

C00F 27.2(15) 27.3(12) 31.5(18) 1.0(11) 2.1(13) -0.3(10) 

C00G 26.9(14) 28.4(11) 25.7(17) -3.5(11) 2.0(12) -2.2(10) 

C00H 26.0(15) 22.1(11) 23.3(16) -0.9(10) -0.5(13) -2.1(10) 

C00I 46.4(18) 24.8(12) 25.6(18) -5.2(11) -7.6(15) 3.0(11) 

C00J 32.8(16) 27.8(13) 35(2) -2.1(11) -7.8(15) -7.1(10) 

C00K 41.6(18) 34.8(13) 26.8(19) -3.3(12) 3.9(14) 5.3(12) 
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Table 25. Bond Lengths for (E)-249da. 

Atom Atom Length/Å Atom Atom Length/Å 
Br01 C007 1.897(3) C009 C00A 1.518(4) 

O002 C009 1.219(3) C009 C00E 1.497(3) 

N003 C00H 1.142(4) C00A C00B 1.506(3) 

C004 C00C 1.381(4) C00B C00H 1.447(4) 

C004 C00D 1.394(4) C00E C00F 1.386(4) 

C005 C007 1.391(4) C00E C00G 1.393(4) 

C005 C008 1.378(4) C00F C00K 1.385(4) 

C006 C00B 1.339(3) C00G C00J 1.392(4) 

C006 C00D 1.477(4) C00I C00J 1.380(5) 

C007 C00C 1.385(4) C00I C00K 1.388(5) 

C008 C00D 1.399(4)       

 

Table 26. Bond Angles for (E)-249da. 

Atom Atom Atom Angle/° Atom Atom Atom Angle/° 

C00D C004 C00C 121.5(2) C007 C00C C004 118.6(2) 

C008 C005 C007 119.7(2) C006 C00D C004 119.4(2) 

C00D C006 C00B 126.1(2) C008 C00D C004 118.6(2) 

C005 C007 Br01 118.21(19) C008 C00D C006 122.0(2) 

C00C C007 Br01 120.7(2) C00F C00E C009 117.4(2) 

C00C C007 C005 121.1(2) C00G C00E C009 123.2(3) 

C00D C008 C005 120.3(2) C00G C00E C00F 119.4(2) 

C00A C009 O002 120.5(2) C00K C00F C00E 120.7(3) 

C00E C009 O002 120.5(3) C00J C00G C00E 119.7(3) 

C00E C009 C00A 119.0(2) C00B C00H N003 178.3(3) 

C00B C00A C009 111.9(2) C00K C00I C00J 119.6(3) 

C00A C00B C006 127.5(2) C00I C00J C00G 120.7(3) 

C00H C00B C006 117.1(2) C00I C00K C00F 120.0(3) 

C00H C00B C00A 115.2(2)         

 

Table 27. Hydrogen Fractional Atomic Coordinates (x10
4
) and Equivalent Isotopic Displacement Parameters 

(Å
2
x10

3
) for (E)-249da. 

Atom x y z Ueq 

H004 6031(4) 8632.7(14) 7182(2) 29.9(7) 

H005 -905(4) 7393.9(15) 6680(2) 29.4(7) 

H006 6763(4) 7528.6(15) 8497.1(19) 27.2(7) 

H008 1695(4) 6742.9(15) 7676.6(19) 28.6(7) 

H00a 4158(4) 5848.3(14) 7146(2) 29.4(7) 

H00b 4958(4) 5138.6(14) 7858(2) 29.4(7) 

H00C 3471(5) 9268.8(15) 6155(2) 30.4(8) 

H00F 9192(5) 4589.9(16) 5578(2) 34.4(8) 

H00G 3348(5) 4286.2(16) 6641(2) 32.4(7) 

H00I 4891(5) 2792.4(17) 4558(2) 39.3(9) 

H00J 2471(5) 3172.4(17) 5619(2) 38.9(9) 

H00K 8261(6) 3507.4(18) 4537(2) 41.2(9) 
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