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ABSTRACT. Road and building extraction from aerial images has many applications in
various fields, for example in urban planning, automatic map making, and land use anal-
ysis. However, commonly this extraction task is still done by human experts manually, so
the process is very erpensive and time-consuming. On the other hand, semantic segmen-
tation is the process of classifying each pizel of an image as a class label to understand
the image at a pizel level. This paper proposed an algorithm of semantic segmentation
based on deep learning, namely Segmentation Networks (SatNet), for automatically seg-
menting buildings and roads. Our SatNet model is based on Residual Networks (ResNet)
for image feature extraction. Finally, we compared the proposed algorithm to the state-
of-the-art and our segmentation results have improved significantly.
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1. Introduction. Satellite imagery and aerial imagery have many applications in agri-
culture, landscaping, cartography and regional planning. These images can be in visible
colors and other spectra. There is also an elevation imagery, usually made with radar or
lidar images. Together with the development of aerial and satellite imagery, a field called
remote sensing is also developing. Remote sensing is the data acquisition and analysis
from remote object by a device that does not physically contact the object [1]. Recently,
to perform data analysis and interpretation is still relying on human experts.

In our research, we would like to extract the buildings and roads from aerial imagery.
The extraction results have many applications in various fields including automatic map
making, city planning, and land use analysis. Nevertheless, this task is still done by hu-
man experts manually, so the process is a very expensive and time-consuming process.
Moreover, accurate pixel labeling on a large scale is a complex task for humans, because
the terrestrial objects have many variations in shapes, and can be occluded by other ob-
jects such as trees or buildings [2]. Therefore, automatic object extraction of aerial images
is highly demanded, and much effort has been put forward in the remote sensing litera-
ture. The objective of this research is to develop algorithm for automatically extracting
the locations of objects, especially roads and buildings directly from aerial images.

There are many previous works that have attempted to extract terrestrial objects from
aerial imagery. Approaches utilizing Neural Networks (NNs) to solve aerial imagery ex-
traction problems have already been proposed and have achieved good performance. The
earliest work [2] proposed a road extraction by using Restricted Boltzmann Machines
(RBMs). It formulated the problem of road extraction from aerial images as a patch-
based semantic segmentation on pixel level. Furthermore, the authors [3] improved the
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neural networks for dealing with label noises by using Convolutional Neural Networks
(CNNs) and modified loss functions. Finally, in his Ph.D. thesis [4], he concluded that
label noise has a negative effect, but its effect of predictions by using neural networks is
relatively small because of CNNs strong representation ability.

Recently, there are several works related to road and building extraction from aeri-
al imagery. Xu et al. [5] proposed a segmentation model based on Densely Connected
Convolutional Networks (DenseNet) and elaborated the local and global attention units.
The aim of the paper is just focused on road extraction method from aerial imagery. Its
results for road extraction are comparably same with ours. Furthermore, Liang et al. [6]
design a model for road boundary extraction from LiDAR and camera imagery. They
used FCNs for extracting deep features of road boundaries and then, CNNs for producing
a polyline representation of road boundary. For building extraction, Ji et al. [7] proposed
a model based on Mask R-CNN for object-based instance segmentation, and a multi-scale
full convolutional network for pixel-based semantic segmentation. Its results for building
extraction are slightly higher than ours, but the computational complexity is much higher.
Furthermore, Feng et al. used building extraction for cartographic generalization, which
is the process of producing small-scale representations of large-scale spatial data [8].

In our research, to solve semantic segmentation, we utilized Fully Convolutional Net-
works (FCNs) approach [9], which uses CNNs to transform image pixels to pixel lab-
els. Our approach repurposes the renown deep learning architecture, Residual Networks
(ResNet) [10] to solve semantic segmentation problems. We trained and tested our ar-
chitecture, called as Segmentation Networks (SatNet) on a publicly available large aerial
imagery dataset. We showed that our architecture can classify all pixels in aerial imagery
into buildings and roads more accurately than Semantic Segmentation for Aerial Imagery
(SSAI) algorithm [11], which we used as benchmark.

The remainder of the paper is composed as follows. First we discuss semantic segmen-
tation in Section 2, and then is followed by explanation of SatNet, in Section 3. In Section
4, we discuss experiment results of SatNet for road and building extraction. Finally, we
concluded our work with suggestions for the future research in Section 5.

2. Semantic Segmentation. Semantic segmentation is understanding images at the
pixel level where we want to assign each pixel in the image as a label. For example, see
the following image from Stanford background dataset [12]. In addition to recognizing
the cow and houses behind them in Figure 1, semantic segmentation must also determine
the boundaries of each object. Therefore, unlike classification, semantic segmentation
needs pixel-wise predictions from images. Before CNNs were used in computer vision, re-
searchers used machine learning approaches such as Random Forest classifiers for semantic

FIGURE 1. Input image (left), its semantic segmentation (right)
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segmentation. One of the early CNNs approaches is the patch classification where each
pixel is separately classified into labels using image patches around it. The main reason
for using image patches is that classification networks usually have a fully connected layer
and therefore a fixed size image is required.

In 2015, fully convolutional networks or FCNs [9] by Long et al., promote the CNNs
architecture for semantic segmentation without fully connected layers. This approach
allows segmentation maps to be created for any size images much faster than the patch
classification approach. Almost all recent researches in semantic segmentation adopt this
paradigm. The main problem of CNNs for semantic segmentation is the pooling layers. In
CNNs architecture, a pooling layer can increase the field of view and cope with the image
context by scarifying the exact object position in image. However, semantic segmentation
requires the proper alignment between an image and its segmentation map. It means
semantic segmentation requires exact position to be preserved. One approach to overcome
this problem is encoder-decoder architecture. The encoder gradually decreases the spatial
dimensions with the pooling layer. Sometimes the pooling is omitted to preserve the image
details. And the decoder gradually increases the spatial dimensions. One of popular
encoder-decoder architectures is U-Net [13]. The architecture consists of shrinking layers
to capture context and symmetric expanding layers which allow exact object position in
image. There is a shortcut connection from the encoder to the decoder to help the decoder
recover the object details. For our research, we also use encoder-decoder architecture
to extract buildings and roads from aerial images. Our encoder is based on ResNet
architecture [10], which has no pooling layers at all. For ResNet, its skip connections
enable very deep networks and then can gradually decrease the spatial dimensions without
pooling layers.

3. Segmentation Networks (SatNet). In the beginning of the research, we explore
the idea of transfer learning [14]. Transfer learning is a machine learning method, in which
a model developed for certain task is reused as the starting point for a model on another
task. The goal of transfer learning is for accelerating the training process. We first tried
to reuse pre-trained ImageNet models for ResNet [10] and Xception [15] networks for our
semantic segmentation problem. However, this approach failed, and even significant train
times after tuning in several ways cannot lead to modest results. It could be that the
high-level features in pre-trained models which needed to distinguish pixel-wise labels for
semantic segmentation are not available.

Therefore, we decided to train our architecture without any transfer learning. We
design our architecture, which inspired by ResNet and will be referred as Segmentation
Network (SatNet) model. This architecture (see Figure 2) is full pre-activation with
18 layers, including the deconvolution layers. Our architecture is based on the FCNs
paradigm, so it no longer uses fully connected layers and sigmoid activation functions to
make predictions. Pooling layers are also removed and there are only convolution layers
here. All convolution layers use Same Padding parameter, which means output size is
same to input size when stride parameter equals 1. Because the architecture is a full pre-
activation architecture, each layer will pass batch-normalization and rectified linear unit
(ReLu) activation function. Furthermore, dropout regularization is only used in encoder
part. Before training step, there are several parameters that must be determined, that
is learning rate, normalization coefficient and dropout rate. We also performed image
augmentation before training step, by rotating each image and its label with random
degrees of rotation. By this image augmentation, the resulted model does not favor
objects with certain orientations.

The roads and buildings dataset used for our research is the Massachusetts City dataset
from Mnih’s Ph.D. thesis [4]. The dataset is made from images released officially by the
Massachusetts City Government. Labels for these images are made using data from the
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FIGURE 2. SatNet architecture

OpenStreetMap project. This data is limited to areas with average noise level of around
5% or less. The Massachusetts road dataset consists of 1171 aerial photographs from the
state of Massachusetts. Each image is 1500 x 1500 pixels, which covers an area of 2.25
square kilometers. The data were randomly divided into a training set of 1108 images, an
evaluation set of 14 images, and a test set of 49 images. The dataset covers a variety of
urban, suburban, and rural areas and covers an area of more than 2600 square kilometers.
It is the largest and most challenging aerial image label data collection.

While the Massachusetts building dataset consists of 151 aerial photos of the Boston
area, with each image measuring 1500 x 1500 pixels for area of 2.25 square kilometers.
All datasets cover approximately 340 square kilometers. The data were randomized into
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137 images for training set, a test set of 10 images, and an evaluation set of 4 images. In
the training stage, we conduct the training process on above training datasets and adjust
the model parameters to obtain optimum results. The best model in the training stage is
then evaluated using the related test dataset.

As the comparison model, we used state of the art in semantic segmentation on aerial
imagery called, that is SSAT model [11]. Besides having impressive results, SSAI also
provides the implementation code. It is also based on the Fully Convolutional Networks
(FCNs) paradigm. The SSAI model (see Figure 3) has six layers, including the pooling
layer and deconvolution convolution for up-sampling process. The first convolution layer
is done with 2 x 2 max pooling with stride 1 to speed up the training process. In SSAI
model, each layer goes through batch-normalization and ReLu activation function. After
ReLu, dropout regularization is performed to get rid of unused neurons.
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FIGURE 3. SSAI architecture

4. Experiment Results. First, we evaluate the training stage. Figure 4 shows the
comparison of training loss values in road segmentation using SSAI and SatNet models.

Semantic segmentation can be considered as binary classification on pixel-wise level. To
evaluate the model performance of binary classification, we usually use accuracy values
in both training and testing stage. By comparing the highest training accuracy and the
testing accuracy, it can be detected whether there is overfitting in the developed model.
Table 1 shows the comparison of model accuracy of SSAI and SatNet models in training
and testing stage for road dataset.

From accuracy results in Table 1, the SatNet has a slightly higher level of accuracy
than the SSAI model. Both models can be considered as good models for road extraction
problem, because of their high accuracy. There is also no significant difference from the
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FIGURE 4. (color online) Training loss comparison of SSAI and SatNet
models on road dataset
TABLE 1. Model accuracy of SSAI and SatNet in road dataset
Model |Step |Learning Rate|Highest Training Accuracy|Testing Accuracy
SSAT | 3400 0.0125 96.66% 96.33%
SatNet | 3300 0.0125 97.06% 96.76%

()

FIGURE 5. (a) Road image in dataset, (b) ground truth, (c) SSAI result,
(d) SatNet result
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accuracy of training and testing stage. It means there is no overfitting issue in developed
models. As illustration, Figure 5 displays one of road images in dataset, together with its
label ground-truth, the SSAI and SatNet result for the road image.

Next, Figure 6 shows the comparison of training loss values in building segmentation
using SSAI and SatNet models. Furthermore, Table 2 shows the comparison of model
accuracy of SSAI and SatNet models in training and testing stage for building dataset.
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FIGURE 6. (color online) Training loss comparison of SSAI and SatNet
models on building dataset

TABLE 2. Model accuracy of SSAI and SatNet in building dataset

Model |Step |Learning Rate|Highest Training Accuracy|Testing Accuracy
SSAT | 3500 0.0125 82.51% 78.56%
SatNet | 4100 0.00625 89.20% 82.26%

From accuracy results in Table 2, SatNet accuracy is much higher than SSAI. Neverthe-
less, both models can be considered just modest models for building extraction problem,
because their accuracy is just around 85%. Furthermore, the accuracy of training has
significant difference to the testing accuracy. It means there is overfitting issue here. We
can handle this issue by adding new amounts of training data. As illustration, Figure 7
shows one of building images in dataset, together with its label ground-truth, the SSAI
and SatNet result for the road image.

5. Conclusions. As conclusions, both SSAI and SatNet models can be used for semantic
segmentation of aerial and satellite imagery. Overall, the SatNet model is better than the
SSAI model to extract road and building from aerial imagery due to its higher accuracy.
Based on our analyses, we can suggest for future research to add new amounts of training
building data in order to overcome overfitting issue and to improve accuracy of the SatNet
model.
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