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Abstract

With around 1.2 million cases per year, prostate cancer is the second most common cancer

among men. It is usually a slow growing disease that affects older men. It is also a cancer that

is heterogenous, often multifocal, and rarely show symptoms as long as it is localized. All these

things make the disease difficult to detect, diagnose and study. The objective of this thesis is to

develop and improve technologies for prostate cancer diagnostics and to acquire knowledge

related to these technologies that directly translate to clinical utility.

In Study I, we extended analysis of the multivariable diagnostic prediction model S3M by

exploring the relative contribution from the individual predictors and evaluating the model in

reflex setting where the test is only given to men positive on a PSA test. We also updated the

list of included predictors and refitted the model to more data.

In Study II, we digitized a substantial part of the biopsy cores collected from the men in study

I. These images were used to develop and validate an AI for prostate cancer diagnostics by

detecting, grading, and measuring the extent of cancer in the biopsies. The AI achieved nearly

perfect detection of cancer and expert pathologist level grading of the biopsies. It also well

predicted the total tumor burden of the patient.

In Study III, we focused our attention on perineural invasion, a common finding in prostate

biopsies. This study has added to the evidence that there is substantial and independent prog-

nostic information in this finding and argued that it should be included as a compulsory part

in pathology reporting guidelines for prostate biopsies.

In Study IV, we developed an AI for detection and localization of perineural invasion in biop-

sies. The AI achieved high discriminative ability on an independent test set. We are currently

collecting external data to validate these results in another environment and to compare the

results of the AI against expert pathologists.

In conclusion, the technologies developed in this thesis has shown promise in streamlining

the clinical workload around prostate cancer detection and diagnostics. The thesis has also

contributed to pieces of information related to these technologies.
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Chapter 1

Aims of the thesis

Due to the common use of the imprecise PSA screening test and the complexity and
subjective nature of the diagnosis of prostate cancer, this disease is known for both
high overtreatment and undertreatment leading to unnecessary anxiety, unpleasant
and risky operational procedures, and, in the worst case, death. By making use of
modern computation, high quality data and advanced prediction models, this thesis
aims to improve the screening of patients, develop efficient diagnostic algorithms and
improve prognostication.

Specifically, the aims were to:

• Further develop the Stockholm-3 model (S3M) for prostate cancer risk prediction,
and to evaluate its use as a reflex test to PSA with to avoid unnecessary biopsies
and decrease overdiagnosis of indolent disease.

• Develop an artificial intelligence (AI) for pathology assessment of prostate biop-
sies to automatically detect cancer, grade the cancer and to estimate the amount
of cancer in the biopsy.

• Estimate the prognostic value of perineural invasion (PNI) in prostate biopsies
among men undergoing radical prostatectomy.

• Develop an AI for prostate biopsies to automatically detect PNI with clinically
acceptable diagnostic accuracy.
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Chapter 2

Background

2.1 Prostate Epidemiology

Prostate cancer is the most common cancer among men in the Western world, and it
is estimated that 1 in 8 men will develop the disease within his lifetime and that 1 in
5 diagnosed cancers originate from the prostate. [1] It is the second most common
cause of cancer death among men in Europe and North America. There is not so much
known about the causes of prostate cancer, and the main known risk factors are high age
(most cancers occur after age 60), ethnicity (higher incidents among African descent
and lower among men of Asian descent), and family history of the disease.

2.2 Screening

2.2.1 PSA and other blood markers

For prostate cancer, as for most cancers, it is crucial to diagnose the disease in a certain
window of the cancer’s natural history - with too early testing a present cancer may too
small to be possible to diagnose and with too late testing the disease may no longer be
curable. For decades, Prostate-Specific Antigen (PSA) has been the primary marker for
early detection of prostate cancer, for assessing the prognosis and to monitor actively
treated patients or patients with a diagnosed low-risk cancer who are undergoing active
surveillance.

PSA’s biological role is believed to involve cleavage of seminal proteins and thereby
liquefying the seminal fluid. [2] In a young and healthy prostate, the PSA is largely
contained within the prostate, but with older age there may be leakage of PSA into
the blood. [3] This can be caused by prostate cancer or non-malignant disease such
as benign prostatic hyperplasia (BPH) or inflammation. However, prostate cancer can
be present also without elevated PSA in the blood. The fact that PSA can be elevated
for other reasons than prostate cancer and that prostate cancer can be present without
leading to elevated PSA leads to poor test characteristics when using PSA as a screening
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tool. Therefore, no government has introduced a national screening program based on
PSA despite its low cost and non-invasive sampling procedure. The PSA test measures
the total PSA (tPSA) in the blood, but this can be divided into complexed- and free
PSA (cPSA and fPSA). The fraction of fPSA to tPSA has been shown to have significant
better ability to discriminate between BPH and prostate cancer than total PSA alone
and is therefore sometime used in combination with PSA in evaluating the patients’ risk
profile. [4] fPSA can be found in various forms, and some of these provide additional
value as predictive markers. Four of these that have shown to discriminate between
prostate cancer and either healthy tissue or BPH are inactive PSA (ProPSA), intact PSA
(iPSA), nicked PSA and BPSA. [5]

2.2.2 S3M

The STHLM3 study was designed to develop and validate a novel prediction model for
clinically relevant prostate cancer. [6] It was a prospective study were men in the ages
50-69 from the Stockholm county were invited to participate between May 2012, and
December 2014. The diagnostic prediction model, the Stockholm-3 Model (S3M), was
developed on the first 11,130 participants, and later evaluated on 47,688 independent
men. The S3M is a logistic regression model which predicts the risk of having clinically
significant prostate cancer (for S3M defined as ISUP grade 2 or higher, see Section
2.3.4). It uses a wide range of predictors such as age, first-degree family member with
history of prostate cancer, and if the patient has had a previous biopsy, findings from
digital rectal examination and the prostate volume. It also contains molecular informa-
tion: blood-based protein biomarkers in the form of PSA and its derivatives, total PSA,
free PSA, intact PSA, the ratio of free to total PSA, hK2 (human kallikrein 2), MIC1
(Macrophage inhibitory cytokine-1), MSMB (microseminoprotein-beta), and genetic
markers in the form of a genetic score based on 254 single-nucleotide polymorphisms
(SNPs). In a later modification of the S3M, intact PSA was removed and instead the
HOXB13 SNP was used as an individual marker due to its relatively high prevalence in
the population and particularly for its high influence on the risk for developing prostate
cancer.

When validating S3M, it was compared against PSA. Specifically, the evaluation was
such that both PSA and S3M by design would detect equally many cancer patients
(with grade ISUP2 or higher), and the outcome of interest was how many men each
test would need to refer to a biopsy to find those cancers. Men with serum PSA 1
ng/mL or higher were assessed for the predictors needed to evaluate S3M. Prostate
biopsy referral was then based on positivity on either PSA above 3 ng/mL or S3M score
above 10%. The study concluded that S3M could reduce the number of men referred
to biopsy by 32 percent, as well as reduce the number of diagnosed indolent cancers
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(ISUP 1, which are typically considered overdiagnosed cancers) by 17%.

2.2.3 Other diagnostic prediction models

Several statistical diagnostic tools have demonstrated improvement relative to PSA in
discriminating between clinically relevant prostate cancer and healthy men or men
with nearly harmless cancer. The four-kallikrein (4Kscore) blood based multivariate
prediction model combines measures of tPSA, fPSA, iPSA, and human kallikrein 2 (hK2)
with age, digital rectal examination, and indication of previous prostate biopsy. [7] The
Prostate Health Index (PHI) is another well known and clinically used risk model. [8] It
uses PSA, ProPSA and fPSA to calculate a risk score based on the deterministic formula

ProPSA
fPSA

×
p

PSA.

Non-blood-based approaches are the urinary based PCA3-test which measures over-
expression of the mRNA PCA3, and the RC3-test which make use of clinical pre-biopsy
information (PSA, digital rectal examination and prostate volume) to predict clinically
relevant cancer. [9, 10] These tests have also shown improvements in discrimination
(AUC) and clinical test characteristics (avoided biopsies and reduced number of diag-
nosed men with indolent cancer) compared to the use of PSA alone.

2.3 Diagnosis

2.3.1 Importance of the diagnosis

Prostate cancer almost exclusively affects older men and often has a very slow devel-
opment. It is also very heterogeneous, with low grade disease rarely causing any harm
to the patient while high-grade often ultimately lead to the death of the patient. With
high risk of severe side effects such as incontinence and impotence from radical prosta-
tectomy or radiotherapy, it therefore not obvious to perform treatment with curative
intent after diagnosing the cancer. Things to consider are the non-cancer related life
expectancy, the preference of the patient (e.g. anxiety of untreated cancer and incon-
venience of repeated biopsies to monitor the disease), and not least the pathological
grade of the cancer, which is the main prognostic information.

2.3.2 Prostate biopsies

In suspicion of prostate cancer, typically 10 or 12 needles are inserted in the prostate
for tissue sampling from the most common locations of cancer lesions in the prostate
(the peripheral zone). The histological evaluation of these samples provides the basis
for diagnosis. Even though the aim is to get a representative sample of the prostate, it is
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possible that the needles miss present cancer. This is more likely to happen with small
tumours. Therefore, pre-biopsy magnetic resonance imaging (MRI) of the prostate has
become increasingly common. MRI permits the use of targeted biopsies, where needles
are directed towards areas identified as suspicious by the MRI. MRI and targeted
biopsies have been shown to both increase the sensitivity and specificity of prostate
biopsies. [11]

2.3.3 The Gleason and ISUP grading system

In 1966 the first version of the well know Gleason scoring system of histopathological
tissue of the prostate was presented. It has since then been the primary prognostic tool
for prostate cancer patients. Today, the Gleason grading system is used by 99.5 percent
of european uro-pathologist. [12] Each cancerous region is graded 1-5 according to
morphological pattern of the glands, where 5 corresponds to the least differentiated
cells (i.e. limited or no glandular structure remaining), see Figure 2.1. Originally, the
most common and second most common grade was combined to a score (e.g. 4 + 3
= 7). In 2005, this was changed to the most common and either the highest of the
remaining grades (if higher than the dominant grade) or the second most common
grade. The second most common grade must either be higher than the dominant or
with a prevalence of >5% to be counted. [13] Further, it was recommended not to
include grade 1 and 2. In 2014, the same group (International Society of Urological
Pathology) decided on a new score (ISUP grade 1-5) based on the Gleason score. [14]
ISUP 1 and 2 are the most common scores and corresponds to Gleason score 3 + 3
and 3 + 4, respectively. For prostatectomies it is the most common and second most
common (with the 5% rule) that forms the Gleason Score.

2.3.4 Cancer length

Although the ISUP (or Gleason) score is the main information used for prognostication
and for deciding on treatment, it is also of value to estimate the extent of the tumor.
There is no consensus of how the extent is to be measured, but it is often discussed
at pathology conferences (personal communication with Prof. Lars Egevad (L.E.)). All
measures of cancer extent in this thesis was assessed by a single pathologist (L.E.)
and the linear cancer extent was generally measured from end to end in cases with
discontinuous cancer. However, in cases with 1 or 2 cores infiltrated by low grade
discontinuous cancer with a benign gap exceeding 3 mm, benign tissue was subtracted
in the reporting of total cancer extent. This measure was performed with a ruler under
the microscope and measured in the direction of the biopsy core. The smallest reported
size was <0.5 mm.
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6 2. Background

Figure 2.1: Examples of Gleason patterns. (A) Benign prostate glands have a distinct folded shape with
small nuclei and pale cytoplasm. (B) Gleason pattern 3, glands become smaller with darker cytoplasm
and larger nuclei. The glands are separated. (C) Gleason pattern 4, the glands show loss of differentiation
and fuse together. (D) Gleason pattern 5 (and 4), even more loss of differentiation and often difficult
to distinguish the gland from the connective tissue. These are not unique representations from each
Gleason pattern. All examples are eosin and hematoxylin stained biopsy cores from the STHLM3 study
taken with microscope at 20X resolution. Photograph: L. Egevad and P. Ström.

2.3.5 Staging

Staging is used to quantify how far the tumor has developed. Together with information
of PSA and microscopic findings (primarily Gleason/ISUP grade), this is the foundation
for primary treatment decisions. The T stage aims to capture the size of the tumor:

• T1: The tumor is not palpable or noticeable by ultrasound or imaging.

• T2: The tumor is palpable but still fully contained within the prostate.
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• T3: The tumor has now broken through the capsule and possibly grown into the
seminal vesicles.

• T4: The tumor has grown into nearby organs.

In addition to the T staging, there are also N and M stages (referred to as TNM staging).
N is for regional spread to the lymph nodes, and M is for metastasis i.e. for spread to
distant organs in the body:

• N0: No spread after evacuation of nearby lymph.

• Nx: No assessment.

• N1: Shown regional lymph spread.

and

• M0: No metastasis.

• M1: Metastasis.

2.4 Prognosis

The prognosis after a prostate cancer diagnosis is relatively good. The relative 10-year
survival is 88%. Particularly good is the prognosis for low grade diseases, which are
slow growing and very seldom shortens the patient’s life even without curative treat-
ment. [15] The Swedish national guidelines categorize the patients into risk groups
to facilitate treatment decisions, see Table 2.1. [16] In addition to this there are other

Table 2.1: The Swedish national guidelines for categorizing patients into risk groups.

Risk Definition Treatment

Low
T1-T2a and Gleason 6 and PSA <
10 ng/mL

Active surveillance

Intermediate
T2b or Gleason = 7 or 10 ≤ PSA ≤
19 ng/mL

Possibly radiology or surgery

High
T2c-T3 or extensive Gleason= 3+4
or higher or PSA ≥ 20 ng/mL

Recommended radiology or
surgery

factors to consider, such as the general health status of the patient and other findings
from the microscopic assessment of the biopsy. For example, cribriform, intraductal can-
cer and perineural invasion has shown to be associated with poorer prognosis. [17][18]

Without curative treatment about 1% to 10% of the low risk patients will die from
the cancer within 10 to 15 years.[19][20] In one study, 8 of 545 men on active surveil-
lance died within 10 years. [19] For the intermediate risk group, the corresponding
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8 2. Background

risk is 20%. It should be noted that these estimates are based on diagnoses from be-
fore 2005 and today more than half of the low risk patients would be categorized as
intermediate risk. For the high-risk group, the prognosis is a lot worse: between 20%
and 30% die within 5 years from diagnosis. [20][21]

2.5 Initial Treatment

There are several options for treatment after prostate cancer diagnosis, depending on
the stage at which the prostate cancer is diagnosed.

2.5.1 Active Surveillance

A Gleason score of 3 + 3 (i.e. only containing Gleason pattern 3) is defined as cancer
and is therefore malignant. However, prostate cancer is typically slow growing and
occurring in relatively old men. Since this Gleason score is associated with the most
favorable prognosis, there may not be any need for treatment. Also, these cancers
likely lack the potential to metastasize. [22]What makes these patients such a difficult
group is that the cancer may potentially be able to migrate to a higher grade, and higher
grade lesions could be missed by the biopsy sampling procedure. [23] This means that
these patients are recommended active surveillance which mean repeated PSA testing,
biopsies and the anxiety of living with cancer.

2.5.2 Radical Prostatectomy and Radiation

In Sweden, radical prostatectomy (i.e. surgical removal of the entire prostate gland) is
the most common treatment for clinically relevant prostate cancer. According to guide-
lines, it is the recommended treatment for mid-risk prostate cancer if life expectancy
is at least 10 years. Radical prostatectomy is not without side effects. For example,
70% of the treated men experience erectile dysfunction and 20% are incontinent one
year after the surgery. [24] Radiation of the prostate is also used to treat men with
intermediate/high-risk prostate cancer. During this procedure, high-energy radiation
beams are aimed at the prostate gland with the goal of destroying the cancer cells.
If there are signs of metastases, the radical prostatectomy or radiation are typically
combined with systemic treatment.
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Chapter 3

Material

3.1 Overview of STHLM3

This thesis is centered around data generated from the STHLM3 study conducted be-
tween May 28, 2012, and Dec 30, 2014. [6] STHLM3 was a population based and
prospective diagnostic trial where a random selection of 145,905 subjects aged 50 to
69 from the Stockholm county were invited to participate, out of which 59,159 subjects
accepted. They had an initial PSA test, and subjects with PSA above >1ng/mL were
also assessed for the variables included in the S3M (see Background). Any subject posi-
tive on either PSA≥3ng/mL or an S3M probability of high-grade prostate cancer above
10% were referred to biopsy. The urologist performing the biopsy and the pathologist
were blinded to the tests outcomes and other clinical information related to the patient.
In total, 7,406 subjects were biopsied.

Later, we initiated a project of digitizing biopsy cores from this study. Since each biopsy
in the study consisted of either 10 or 12 needle cores, the total number of cores were
about 84,000. The time and cost to digitize them all were not within the scope of this
project, so we prioritized a subset stratified on ISUP grade to get a large selection of
all ISUP grades, including rare high-grade cases.

3.2 Slide preparation and digitization

The biopsy cores were fixated in formalin and stained with Hematoxylin and Eosin
(HE). The staining is used to highlight the interesting parts of the tissue for aiding the
pathological assessment. After the fixation, the formalin blocks are cut in thin slices
of about 5µm. In the STHLM3 study, two of these sections were placed on a single
microscope glass slide. The reason for using two sections is that some regions can be
damaged (e.g. the slice of tissue folds when mounted on the glass slide) or that the
morphology in a region of interest is difficult to judge and it helps to consider a second
slice of that region (see Figure 3.1).
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Figure 3.1: A macro image of a digitized slide from a STHLM3 biopsy core. Two sections of the same core
was mounted on the glass slide. On top of the cover glass the pathologist has highlighted the cancer foci
with with black ink next to the tissue. The tissue was stained with HE and the scanner was Hamamatsu.
The original image size was 51,200x27,392 pixels.

In recent years, digital pathology (i.e. assessing digital images of the tissue on a com-
puter rather than using a microscope) has exploded in popularity. It is mainly due to
improved quality of high-resolution pathology scanners. There are several advantages
with digitalization, it allows for very precise annotations on the images, easy distribu-
tion to other labs or countries if the expertise or labor is of shortage, more suitable for
collaboration and research, and most importantly for the theme of this thesis, it opens
up for algorithmic solutions to aid and possibly improve the clinical workflow and diag-
nosis. But there is still a need for microscopes as they arguably still have much preferred
optical qualities, mainly the possibility to focus deep into the tissue (i.e. 3D instead of a
2D scanned image). Even if there are scanners that to some degree manages this today,
the already large image size (often hundreds of megabytes) become difficult to manage.

There are several manufacturers of pathology scanners I this thesis, we have mainly
worked with Hamamastu (Hamamatsu, Japan) and Aperio (Leica, Germany). We have
also started a project digitizing a much larger set of images than what is presented in
this thesis using the IntelliSite Ultra Fast Scanner (Philips, Netherlands). At the time-
point of writing this we have digitized more than 30,000 biopsy cores from prostate
biopsies, both from Sweden and other countries.
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Chapter 4

Methods

4.1 Evaluation of Prediction models

Receiver operating characteristics (ROC) curves and its Area Under the Curve (AUC) are
usually the primary (and often the only) endpoints for evaluating medical diagnostic
prediction models. There are good reasons for this. The ROC is a function of TPF (true
positive fraction) and FPF (false positive fraction) for all possible positivity thresholds
of the predictions, and these two parameters are important for evaluating the usefulness
regarding a population. If D̂ is indicator for model classification of Disease (D) given
a certain threshold for positivity, then:

T PF = P(D̂|D)

F PF = P(D̂|notD).

Since these parameters condition on disease status they give the most obvious informa-
tion for evaluating the test: the proportion of the diseased subjects correctly identified
as such (which we want to be high) and the proportion of healthy subjects who are
wrongly identified as diseased (which we want to be low). TPF and FPF are classifica-
tion probabilities and are used when we want to describe how well a test discriminate
between healthy and diseased subjects. [25]

The AUC of the ROC gives a summary measure of TPF(c) and FPF(c) evaluated over
all c, where c is the cutoff value for deciding whether a test is positive or negative.
Not only does it reduce to a single number, it also has a useful interpretable character-
istic. It can be interpreted as the probability that two randomly picked subjects, one
healthy and one diseased, are correctly ranked. However, the AUC as an endpoint for
model-development and comparisons have been criticized on several grounds. Among
others, for being too insensitive for model improvements (i.e. small model improve-
ments may not be reflected in the AUC). It summarizes the model over all probabilities
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12 4. Methods

even though only a relatively small range of probabilities may be of clinical interest.
Also, comparing AUC for models evaluated on distinct populations may be misleading,
for example, if one population has been previously screened and therefore possibly
thinned out of true positives. This latter property is not specific for the AUC but is a
general shortcoming when comparing medical tests - some populations are easier to
discriminate than others with respect to the disease status of interest.

If the true outcome is continuous, say a survival time, then the Harrell’s c can be
used to evaluate predictive performance. [26] It is a generalization of the AUC in the
sense that if the outcome it dichotomized the two parameters are equivalent, and when
continuous it compares the rank of the predictions to the rank of the outcome among
all pairs where it is possible to rank the outcome (e.g. it is not possible in survival data
if none of the subjects yet have had the outcome).

4.2 Neural networks

Deep learning has been used since the 1960s, but it is only in last few years these mod-
els have exploded in popularity. And for good reasons. They have now become the first
choice in many fields of prediction and classification due to many examples where these
models have outperformed more traditional feature-based machine learning methods.
It is also a scalable approach in contrast to method where specific features need to be
hand-crafted for each unique task; with deep learning, such features are data driven
and typically hidden from the user. The recent improvement in performance are mainly
due to computationally efficient hardware, more complex models built by less complex
parts, software for efficient fitting and large sets of labeled data.

So, what is a neural network? In a supervised setting, where we feed a model labeled
data (e.g. an input matrix X and a corresponding class it belongs to or continuous value
y), a neural network ends with a conditional distribution over all classes P(y|x ,Θ).
But instead of directly relate the matrix to the output distribution, we make a linear
predictor of the matrix and corresponding parameters (called weights), add an inter-
cept (called biases) and apply an non-linear function (called activation function). If
several such functions (neurons) are applied to the matrix and the output from these
are the input to a predictor for the output distribution, then we have a neural network
with one hidden layer. Typically, one uses at least 5 or 10 hidden layers when referring
to deep learning, where the depth refers to the numbers of hidden layers of parametric
output and input connected in a network.
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4.3 CNN

4.3.1 Overview

The most successful type of neural networks so far has been the Convolutional Neural
Networks (CNNs), which can preserve the spatial structure in the network of neurons
by sliding spatially small filters over the input and at each location calculate the output
of the neuron based on the linear predictor of the filter parameters and the input
values at that location. These outputs form a feature map of the level of activation that
this filter induced in the corresponding spatial location in the input. In the fashion of
neural networks, one may stack several of these convolutional layers into a network
and possibly combine with the original hidden layers, so called fully connected layers.
The main benefit of this is that the convolutional layers are translational invariant so
that the model does not need individually specified parameters for a specific feature
(i.e. convolutional filter) occurring at different spatial location in the input but can
instead share these parameters.

4.3.2 CNN in histopathology

Developing mathematical algorithms for histopathological tasks such as cancer localiza-
tion and cancer grading is not new, but it has historically proven difficult to extract and
use relevant so called ‘hand-crafted’ features from these images. The recent advances
in CNNs has brought new hope for success in these tasks, and some breakthroughs
have already been made. In 2017, a research group used one of Google’s CNN ar-
chitectures (Inception V3) to classify skin-cancer subtypes. [27] They convincingly
demonstrated dermatologist-level performance by evaluating it against a panel of 21
dermatologists. Another recent success has been in detecting breast cancer lymph node
metastases, where deep learning algorithms outperformed a panel of 11 pathologists.
[28] In prostate cancer there was no such success prior to the works of this thesis.
The most significant contribution was in 2016 when Litjens et al. achieved an AUC
of 0.9 discriminating between cancer and noncancer. [29] Deep learning shows great
promise, but many research groups do not take their studies far enough according to
a recent editorial in Nature. [30] They sacrifice reliable data and sound evaluation
for quick and crowd-pleasing announcements. Many in the field, including our own
research group, value rigorous study designs and high-quality evaluation, preferable
in an external data set against a panel of human experts or head-to-head evaluation
against current clinical tools.
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14 4. Methods

4.4 Semantic segmentation

In segmentation we are not only concerned with classifying an image (or predicting
what is in the image) but want to highlight where in the image an object is located.
In the simplest case this can be the pixel coordinates of a bounding box surrounding
the object of interest. But sometime this is not enough, and you need to put a label
on each pixel in an image. This is called semantic segmentation. The output from the
model will then be an image of the same width and height as the input image, with
pixel values of, say, 1 for humans, 2 for cars, etc. We can go even further to distinguish
each occurrence of a class in an image. E.g. instead of simply accepting that all pixels
corresponding to humans are one indistinguishable mass (all with pixel value 1), we
can localize each unique human in the image, say, by additionally putting a bounding
box around each occurrence. This is called instance segmentation. In this thesis we are
only concerned with semantic segmentation.

The biggest issue in going from classification (a simple CNN) to segmentation is that
the spatial resolution keeps getting smaller and smaller due to the typical funnel shape
of CNNs (i.e. the relevant information in an image successively loose spatial resolution).
This is fine for classification where it is only of interest the know if an object exists
in an image or not, but for locating the position of the object all the information that
remains may be that a human is somewhere in the bottom half of the image; not at all
the resolution needed for pixel-wise classification. Most approaches for not losing the
spatial resolution involves a combination upsampling the last non-fully connected layer
with so called skip-connections. These are direct connections from a resolution level in
the downsampling stage (i.e. the encoder) to the corresponding resolution level in the
upsampling stage (i.e. the decoder). These connections are typically applied at each
resolution level to aid the network in preserving the special localization of the task it
is trained on.

4.5 t-SNE

Sometimes it is desirable to visualize high-dimensional data. A common way of reduc-
ing the data is by PCA, but unfortunately it is often not very useful for visualization. A
better approach is instead to use t-distributed stochastic neighbor embedding (t-SNE).
[31] The idea is to create a similarity score between each pair of points in the high
dimensional space. This is done by considering a Gaussian distribution centered over
each point so that the density at all other points reflect their similarity scores. The score
of a point to itself is defined as zero. These scores are then normalized so each point
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has an associated distribution of similarity scores:

Pi| j =
exp(−||x i − x j||2/2σ2

i )
∑

k 6=i exp(−||x i − xk||2/2σ2
i )

Now we allocate points in low dimensional space so that a similar approach on those
data would result in pointwise similarity distributions the closely resemble those seen
in high dimensional space. The problem is how to allocate them in this way. The
algorithm stochastically allocates them in low dimensional space and then iteratively
move the points using gradient decent with the Kullback-Leibler divergence as the
objective function. The Kullback-Leibler divergence is defined as:

C =
∑

i

K L(Pi||Q i) =
∑

i

∑

j

p j|i log
p j|i

q j|i

and is a common way to measure the distance between two distributions. The approach
described so far is basically the SNE algorithm that was published by Hinton 2002. [32]
The t-SNE extends this approach in two meaningful ways. First, it uses a t-distribution
with one degree of freedom for the low dimensional space since it has heavier tails than
the Gaussian distribution which allow for moderately distant points in high dimensional
space to map with larger distances in low dimensional space. This allows truly close
point to be better separated from more distant points. Second, it used joint distributions
pi j and qi j instead of pi| j and gi| j for high and low dimensional space, respectively. In
low dimensional space

qi j =
exp(−||yi − y j||2)
∑

k 6=l exp(−||yk − x l ||2)

and in high dimensional space pi j is defined as

pi j =
pi| j + p j|i

2n

With this it is possible to minimize a single Kullback-Leibler divergence between the
join distributions P and Q.

C = K L(P||Q) =
∑

i

∑

j

pi j log
pi j

qi j

The results from this algorithm typically produces data that are very nicely visualized in
2D or 3D, with clearly distinct islands for data points that clusters in high dimensional
space. For an example see the Supplementary of Study 2.
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16 4. Methods

4.6 Boosted trees

4.6.1 Decision tree

Decision trees are, like single neurons, very simple algorithms and often quite poor
when used on their own. But when used in abundance with computer intensive meth-
ods they often perform very well. An example of this is the XGBoost algorithm which
often is a key component in the winning solution of prediction modeling competitions.
[33] At its core, a tree is the simplest model you can imagine; it first splits the covariate
space (the tree root) with regard to some covariate at the point where it best separate
the groups you want to predict (tree depth 1 nodes). Then it continues to grow by
again making a split in one or both nodes (tree depth-2 nodes), see Figure 4.1. And
it continues to iteratively dichotomize the covariate space as long as it improves on
the discrimination of the outcome groups. But since further splitting almost always
improves discrimination, we must regularize the tree in some way to avoid overfitting.
This can be done in several ways. One way is to pre-specify the maximum depth of the
tree, the minimum number of samples in a node to allow it to split, and so on. Another
way is to grow a very large tree and then prune it down by only keeping splits that
improves discrimination at some predetermined significance level.

Figure 4.1: Illustration of a tree model for classifying the flowers Setosa and Versicolor from the public
Iris data. Left: 50 samples each of the two flowers are classified based on the septal length and width.
The first split is on length. If the value is higher than 5.45 cm then the model classifies Versicolor, but if
it is lower it will do an additional split on width. Here all flowers with septal width lower than 2.8 cm
classifies as Versicolor and the rest as Setosa. Right: The background color correspond to how the tree
classify in the covariate space and the color of the dots indicate the true value for the species.

So how is discrimination defined in this setting? A common choice is the Gini impurity:

Gi = 1−
n
∑

k=1

p2
i,k, (4.1)

16 4. Methods

4.6 Boosted trees

4.6.1 Decision tree

Decision trees are, like single neurons, very simple algorithms and often quite poor
when used on their own. But when used in abundance with computer intensive meth-
ods they often perform very well. An example of this is the XGBoost algorithm which
often is a key component in the winning solution of prediction modeling competitions.
[33] At its core, a tree is the simplest model you can imagine; it first splits the covariate
space (the tree root) with regard to some covariate at the point where it best separate
the groups you want to predict (tree depth 1 nodes). Then it continues to grow by
again making a split in one or both nodes (tree depth-2 nodes), see Figure 4.1. And
it continues to iteratively dichotomize the covariate space as long as it improves on
the discrimination of the outcome groups. But since further splitting almost always
improves discrimination, we must regularize the tree in some way to avoid overfitting.
This can be done in several ways. One way is to pre-specify the maximum depth of the
tree, the minimum number of samples in a node to allow it to split, and so on. Another
way is to grow a very large tree and then prune it down by only keeping splits that
improves discrimination at some predetermined significance level.

Figure 4.1: Illustration of a tree model for classifying the flowers Setosa and Versicolor from the public
Iris data. Left: 50 samples each of the two flowers are classified based on the septal length and width.
The first split is on length. If the value is higher than 5.45 cm then the model classifies Versicolor, but if
it is lower it will do an additional split on width. Here all flowers with septal width lower than 2.8 cm
classifies as Versicolor and the rest as Setosa. Right: The background color correspond to how the tree
classify in the covariate space and the color of the dots indicate the true value for the species.

So how is discrimination defined in this setting? A common choice is the Gini impurity:

Gi = 1−
n
∑

k=1

p2
i,k, (4.1)

30



4. Methods 17

where pi,k is the fraction of samples from outcome class k in node i.

Example: The Gini impurity for the leaf (where the branch end) that classify Setosa
in Figure 4.1 is Gi = 1− 44

45
2 − 1

45
2
= 0.04, a very low impurity meaning that this subset

of the covariate space mostly contain the predicted class.

To actually grow the tree, we must have a criterion for where to split. One choice
that is used in the popular Classification and Regression Tree (CART) searches for the
covariate k and its threshold tk that produces the purest split, but it does so by weigh-
ing the splits by their size to penalize small pure leafs. [34]

J(k, tk) =
nY

n
GY +

nN

n
GN , (4.2)

where Y and N indicate if the threshold condition is satisfied or not. If the outcome
variable is continuous, as when we predicted cancer length in Study 2, we use the
mean value in each leaf for prediction and replace the Gini impurity with MSE.

4.6.2 Gradient Boosting and XGBoost

XGBoost (eXtreme Gradient Boosting) is an exceedingly popular algorithm for predic-
tion modelling, due to its capability to achieve very good results on a wide range of
tasks. It is often a key component in winning solutions on prediction competitions.
[33] As the name suggests, it is an implementation of gradient boosting. [35] Boosting
is a way of sequentially building an ensemble of models, in contrast to Bagging where
the ensemble is built in parallel (e.g. with bootstrap samples of the data such as in
Random forest). In gradient boosting each sequential model is fitted to the errors of
the previous model. In this way, the kth model tries to correct the error that remains
after the (k− 1) first models have been added to the ensemble. Boosting can be used
with any kind of model, but here we will only focus on tree-based models.
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Chapter 5

Results

5.1 Brief summary of the results

In Study I we extended the analysis of the S3M in the STHLM3 study cohort. We
showed that the S3M could be used as a reflex test to PSA and thereby reduce the
number of biopsies by 34% with preserved sensitivity for detecting clinically relevant
prostate cancer. In Study II we digitized many of the biopsy cores from the STHLM3
study and built an AI for automated pathology assessment. The AI achieved world
record accuracy for diagnosing cancer by an automated system and we showed for
the first-time pathology level grading by evaluating the predictions against a panel of
international expert pathologists. In Study III and Study IV we explored the potential
of extending the AI by also flagging for PNI in the biopsies. The former showed the
prognostic relevance of reporting PNI and in the latter, we implemented such an AI.

5.2 Study I

In Study I we extended the analyses of the S3M in three ways:

• refitted the model with slightly updated covariates and a larger proportion of
STHLM3 cohort,

• evaluated the individual contributions from the biomarkers used for S3M, and

• evaluated the model as a reflex test, i.e. a second test for subjects positive on the
PSA test (≥3 ng/mL).

This was the second study on the S3M, and this time the training set (n=11,130),
validation set (n=47,688) and an additional set of participants that did not enter the
validation set due to date of end of study (n=330) were included. We used 10-fold
cross-validation to build the models on a much larger data set than the original S3M
was fitted on, and to be able to evaluate S3M on the whole data set. The drawback of
this approach is that it is not a single model that is evaluated but instead 10 slightly
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5. Results 19

different models. The result of this should not be interpreted as “this model” but rather
“a model fitted by this approach”. Due to technical reasons of the assay used in clinic
for measuring PSA derivatives, we had to drop Intact PSA from the model. At the same
time, we took the opportunity to single out a SNP from the genetic score (HOXB13)
due to its substantial impact on the risk of developing prostate cancer. Since it is only
present in a minority of the population, it is not expected to affect population metrics,
but it may still have relevance for the HOXB13 carriers. The AUC in this study was only
slightly increased from 0.74 to 0.75 when comparing to the preceding study.

A second aim was to do a detailed evaluation of the individual biomarkers’ contri-
bution in the S3M. We did this by considering their added value to PSA, and the loss of
performance of S3M if a single biomarker was removed. We also evaluated the cumula-
tive increase in performance by including the biomarker one at a time in one (of many
possible) specific order. The main conclusions that could be drawn from this were (1)
that volume has the largest impact of the biomarkers except for PSA, (2) several of
the biomarkers are week predictors but together they make a strong predictor, and (3)
some variables do not affect population metrics but can still be of value for a small
fraction of exposed patients (such as HOXB13).

The final aim was to evaluate the S3M in a potentially more efficient way. Since refined
tests for prostate biopsy referral are much more expensive than the PSA test, and they
can also involve more inconvenience for the patient by, for example, measuring the
volume of the prostate or performing a digital rectal examination, it is likely beneficial
to reserve the refined tests to patients with relatively high risk of having prostate cancer.
One way of achieving this is to use the PSA test with a relatively low threshold for posi-
tivity as an initial screening and in that way cheaply remove most benign cases and still
retain a high sensitivity. In a second step we address the low specificity of the PSA test
by using a multivariable prediction model, in this case S3M, on the men positive on the
initial PSA test. Since you cannot improve specificity without sacrificing sensitivity, we
need an objective strategy to evaluate the reward of such two-step approach. The way
we chose to do that was to compare the approach to another natural way increasing
the specificity, that is to use a higher threshold for the PSA test. Specifically, we chose a
threshold such that both approaches resulted in the same sensitivity and evaluated the
benefit in terms of achieved specificity. We found that by allowing a loss in sensitivity
of 20% compared to PSA ≥ 3ng/mL, the S3M reflex test approach reduced the number
of biopsies needed by more than 50%. The corresponding reduction by a high PSA
threshold was merely 27%. For the benefit by using alternative values for the accepted
loss in sensitivity, see Figure 5.1.
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Clinical implications of using S3M as a reflex test on 
1000 men aged 50−70 in the PSA range 3−10.

Figure 5.1: The x-axis shows the fraction of missed GS ≥7 cancers among men with PSA between 3
and 10, and the y-axis shows number of biopsies performed (blue and red lines) and the number of GS
≥7 cancers detected (grey line). Biopsy on all men in this PSA range detects (1) 156 GS ≥7 cancers
and increasing the PSA threshold to (2) 3.2 and (3) 3.4 corresponds to missing 10% and 20% of these
cancers and a total of 851 and 732 performed biopsies, respectively. Using S3M with a probability of
GS ≥7 cancer of (6) 8% and (7) 11% also miss 10% and 20% GS ≥7 cancers but with 666 and 485
biopsies, respectively.

5.3 Study II

In Study II we digitized a large proportion of the biopsy cores collected in the STHLM3
study, with the overarching aim of building an AI for automatic diagnosis on prostate
biopsies. In total, we digitized 8,980 biopsy cores, mostly from the STHLM3 cohort
but we included slides from another lab mainly to increase cases with the rare, but
very important, Gleason pattern 5. The extra cases were only used for training and
not included in the validation data. The validation was performed on two data sets: a
random selection of 246 of the STHLM3 subjects and an external data set of 73 subjects.

There are several aspects of histopathological diagnosis of prostate cancer, but arguably
the most significant ones are detecting cancer, grade the cancer and measure the ex-
tent of the cancer. And it is these three tasks that we have focused on in this study.
For detecting cancer in a biopsy core, we achieved an AUC of 0.997 on the STHLM3
test data which means almost perfect discrimination between cancer and benign cores
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5. Results 21

for any reasonable choice operating point. When we aggregated the detection to a
patient level the AUC was 0.999. The corresponding AUCs dropped somewhat when
we evaluated the algorithm on external data to 0.986 and 0.979, respectively. Even
if these AUCs are unquestionably high, they need to be in this magnitude to not risk
patient safety. We can look in more details of the consequences of the missed cancers
once we choose an operating point (i.e. a threshold for positivity on the predicted
probability for cancer). For this we consider Figure 5.2. Starting with the SHLM3 data
we can choose an operating point that result in a sensitivity of, say, 99.3%. With that
sensitivity we missed 5 cancer cores of the 721 cancer cores in the test set. Four of
these were ISUP 1 (1.1% of all ISUP 1 in the test set) and 1 was ISUP 2 (0.7% of all
ISUP 2 in the test set). At this operating point the AI did not fail to detect any subject
with cancer. This is because a subject has more than one sampled core at a time of
biopsy, and in these cases the men who had a core falsely negative had other cores that
were classified positive. The specificity of the AI for this operating point was 88.9%
meaning that 809 out of the 910 benign cores was removed from ‘human’ pathological
assessment. Correspondingly for the external data, we can choose an operating point
that result in a sensitivity of 98.6% and a specificity of 87.0%. In such case we miss
3 out of the 65 cores which was graded ISUP 1 by the pathologist, and no cores with
higher grade. One subject with ISUP 1 disease was falsely classified as healthy.

Figure 5.2: A table of the implications of choosing various operating points as positivity criteria

It is important to report the total cancer burden, measured as the cancer length in the
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biopsies along the length of the cores. On this task we achieved a correlation with the
study pathologist measurements of 0.98 on the STHLM3 data and 0.94 on the external
data, results that should be well within the accepted accuracy for clinical utility.

The hardest task was to learn and evaluate the ISUP grading. Since there is a very large
disagreement between pathologists in this task, it is very difficult to define a ground
truth and to define what is good enough results. For these reasons we evaluated the
AI grading on Imagebase, a reference database with gradings by 23 internationally
recognized pathologists and related the AI performance to the performance of the
individual pathologists. The measure for evaluation was average agreement with the
other pathologists measured with Cohan’s Kappa with linear weights. The AI had an
average kappa of 0.62 which was within the range of the pathologists (0.60-0.73).

5.4 Study III

Perineural invasion (PNI) is a major pathway for cancer to migrate from its organ of
origin. However, there has been a debate of the clinical relevance of PNI for prostate
cancer, and whether the presence of PNI in prostate biopsies is associated with poorer
prognosis. A possible explanation for this confusion is the difficulty to define a large
enough study cohort with power to reject the null hypothesis, in combination with a
common misconception that not rejecting the null is evidence for the null. Loeb et al.
conducted a study with 1,256 subjects by which multivariable adjusted PNI failed to
reach statistical significance for predicting biochemical recurrence. [36] In an editorial
comment one of the authors state "...we were able to show that although patients with
perineural invasion were more likely to have extraprostatic extension, this was not
an independent predictor of biochemical failure". [37] Even though the confidence
covered unity, the point estimate suggested at least a 50% increase in the rate of
relapse. In our study with we combined the evidence from four studies with similar
design, methods and research question, including the study above and an analysis on
the STHLM3 data. All four studies where roughly of the same size and with similar
point estimate; two which could reject the null and two which could not. However, the
combined estimate showed very strong support for an independent prognostic value
of PNI in prostate biopsies.

5.5 Study IV

In Study IV we developed an AI for detecting PNI in prostate biopsies. We used the
slides from STHLM3 that we had digitized in the study II and searched the pathology
reports for cases with PNI that had not been digitized in the previous study. These were
then digitized and all cases of PNI from the pathology reports were re-assessed for PNI
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by the study pathologist L.E. In addition to verify the presence of PNI he also outlined
the regions of each lesion of PNI in the slides. In total we used 8,803 slides of which
485 where positive for PNI based on the re-assessment of the slides.

The AI achieved an AUC of 0.98 (95% CI: 0.97-0.99) for discriminating between PNI
positive and negative slides. For the chosen operating point, this corresponded to a
sensitivity of 0.87 and a specificity of 0.97, see Figure 5.3. This is somewhat lower
sensitivity than what we would like, but the operating point was decided on prior to
the evaluation on the test set, to facilitate a truly independent validation. The positive
and negative predicted values were 0.67 and 0.99, respectively. Since the negative pre-
dictive value is high, we can accept a somewhat lower positive predictive value with
the caveat that the positive predicted cases should be verified by a pathologist. With
the relatively rare case of PNI in a slide, this approach has potential to substantially
reduce the workload of the pathologist for detecting and diagnosing PNI.

Figure 5.3: Diagnostic properties of the model. PPV = Positive predictive value, NPV = Negative predic-
tive value

For the task of highlighting each unique focus of PNI, we used IoU as the target param-
eter. Specifically, we calculated IoU for each slide positive for PNI and averaged the
results across the slides. The average IoU was 0.5 (95% CI: 0.46-0.55).
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Chapter 6

Discussion

In this thesis we have mainly focused on diagnostics of prostate cancer, even though
study I focused on screening for prostate cancer by a using a multivariate diagnostic
prediction model and study III estimated the prognostic value of PNI to assess the use-
fulness of reporting it with the diagnosis. In particular, the thesis relates to prediction
models and AI solutions to some of the challenges of prostate cancer in the clinic: poor
discriminative ability of the PSA test, too many unnecessary biopsies, high subjectivity
and uncertainty in the grading, and increasing work load for a decreasing work force
of uro-pathologists. We are still very early in the AI era for pathology, but with the
rapid digitization of pathology labs and the recent improvements with AI techniques,
software and hardware, we are bound to see many improvements in the coming years.

Despite promising results – not only by our AI but also the AI developed by Wouter et.
al. which was published in the same issue of Lancet Oncology – there are still much
to be done before we will see a fully autonomous diagnostic AI in the clinic. [38] The
main challenges now are to ensure that such an AI generalizes across different labs,
countries, and scanners, and that we can ensure quality control to avoid erroneous
predictions if the AI encounter something new or unexpected, say, a new component
in the stain or pen marks on top of the tissue. For generalizability we have initiated
a project, the OncoWatch project, where we collect thousands of samples from 10
European countries. Some of these samples will be used to further train the AI and
others to validate the performance in novel environments. For quality control we have
initiated several studies, such as collecting samples with rare morphologies, providing
uncertainty estimates along with the predictions, and evaluating the impact of the
choice of scanner. To evaluate the latter, we are currently scanning a large sample of
slides on three different scanners, not only to evaluate the loss in performance on a
novel scanner but also estimating what measures are needed to ensure generalizability.
Is it enough with data augmentation and color matching, or do we need to include the
scanner in the training? And if so, to what degree?

Chapter 6

Discussion

In this thesis we have mainly focused on diagnostics of prostate cancer, even though
study I focused on screening for prostate cancer by a using a multivariate diagnostic
prediction model and study III estimated the prognostic value of PNI to assess the use-
fulness of reporting it with the diagnosis. In particular, the thesis relates to prediction
models and AI solutions to some of the challenges of prostate cancer in the clinic: poor
discriminative ability of the PSA test, too many unnecessary biopsies, high subjectivity
and uncertainty in the grading, and increasing work load for a decreasing work force
of uro-pathologists. We are still very early in the AI era for pathology, but with the
rapid digitization of pathology labs and the recent improvements with AI techniques,
software and hardware, we are bound to see many improvements in the coming years.

Despite promising results – not only by our AI but also the AI developed by Wouter et.
al. which was published in the same issue of Lancet Oncology – there are still much
to be done before we will see a fully autonomous diagnostic AI in the clinic. [38] The
main challenges now are to ensure that such an AI generalizes across different labs,
countries, and scanners, and that we can ensure quality control to avoid erroneous
predictions if the AI encounter something new or unexpected, say, a new component
in the stain or pen marks on top of the tissue. For generalizability we have initiated
a project, the OncoWatch project, where we collect thousands of samples from 10
European countries. Some of these samples will be used to further train the AI and
others to validate the performance in novel environments. For quality control we have
initiated several studies, such as collecting samples with rare morphologies, providing
uncertainty estimates along with the predictions, and evaluating the impact of the
choice of scanner. To evaluate the latter, we are currently scanning a large sample of
slides on three different scanners, not only to evaluate the loss in performance on a
novel scanner but also estimating what measures are needed to ensure generalizability.
Is it enough with data augmentation and color matching, or do we need to include the
scanner in the training? And if so, to what degree?

38
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Besides these crucial challenges, we also need to continue to strive for improvements
of the AI. Two ways to do this is to explicitly target more features relevant for patho-
logical assessment and to further train the AI on the tasks it already performs. An
example of the former is the explicit training of detecting PNI in study IV. Another task
that could be useful is to detect high grade prostate intraepithelial neoplasm (HGPIN),
which is a pre-cancer and therefore treated as benign by the AI. Even if this is correct,
it would be useful to provide the information of a pre-cancer in the assessment. Then
there are other important morphologies such as cribriform and comodonecrosis, but
since these are implicit in the Gleason grading system (grade 4 and 5, respectively),
they are arguably not need to be targeted explicitly by the AI. For the improvement of
computer assisted grading, we are at the time of this writing about to launch a com-
petition together with Wouter et. al. on the prediction competition platform Kaggle,
where we have combined the data sets used in both the studies published in Lancet
Oncology 2020. We anticipate that hundreds of teams will participate from a wide
range of backgrounds. This may prove fruitful, not only since the size of the data is
doubled, but also since there are so much room for creativity in creating these models
and the computational resources prohibit a single research group to explore more than
a fraction of all approaches that may or may not lead to improvements.

The article from study IV has not yet been submitted for peer review, but there is
a pre-print on ArXiv. Before submission, we will address a few shortcomings. The main
extension is to show that the AI generalizes to external data. For this we are currently
collecting one hundred images from Dr Toyonori Tsuzuki, Japan, (new lab and new
scanner) of which approximately half are positive for PNI. Another question is how
the results relate to human pathologists’ performance, and whether the concordance
of the AI with expert uro-pathologists is within the range of the concordance between
the pathologists themselves. Prostate PNI diagnostic accuracy or agreement has to the
best of our knowledge never been evaluated, and for this we have selected all positive
cases in the test set and a random selection of equally many benign cores (in total over
200 samples) which will be independently assessed for PNI by four expert pathologists:
Brett Delahunt (New Zeeland), Hemamali Samaratunga (Australia), Toyonori Tsuzuki
(Japan), and Lars Egevad (Sweden). Another shortcoming of the study is the difficulty
of assessing the performance of pixel-wise localization of PNI. For this we have used
average IoU across positive biopsy cores, but this metric has some disadvantages. First,
it does not address the false positive pixels in negative cores. Second, it does not con-
sider that each PNI in a core is a unique lesion, and that they very much vary in size.
The latter feature has implications such that the IoU benefit from focusing on large
PNI lesions. If a core contains, say, one small and one large PNI, the metric is higher if
most of the larger PNI is located and the small PNI is overlooked, compared to if both
lesions have about half predicted localization each. Despite these shortcomings, we
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26 6. Discussion

argue that this metric is a good balance of relevant qualities and interpretability.

Finally, why do we train our models against Gleason labels – a subjective proxy endpoint
for prostate cancer prognosis with large uncertainty – when we could train directly
against survival (prostate specific cancer death or a surrogate such as biochemical
relapse or metastasis)? There are several reasons for this! The successes of deep con-
volutional neural networks have to a large extent depended on huge collections of
labeled samples. For pixel-labeled (or core labeled) data we can extract hundreds or
even thousands or labeled images per core and with 10 to 12 cores per subject we
have plenty of labeled images in a single subject. But since a subject only dies once, all
images belonging to this subject will have to be attributed to the same outcome. Also,
prostate cancer is a slow growing disease and it can take 20 years or longer for death
to occur. This is of course coupled with many challenges of competing causes of death
and censored data. And not least that the technology of scanners, labs, and treatments
changes over time so the AI will be trained on samples that may not be so relevant 20
years later. Only relying on retrospective data has disadvantages such that the tissue
may decade over time, and prospectively collected data will only be useful very long
time from now. Another challenge to overcome is that all patients today are treated
based on the current Gleason system, with the radicality of the treatments depending
heavily on the ISUP grade. This is not only a challenge for building and training an
AI but also for evaluating it. To do so properly, we would need to treat hundreds, or
thousands, of patents based on diagnoses assigned by the AI system. This would have
severe ethical implication and would be very time consuming, since it takes at least
ten to fifteen years to evaluate prostate cancer. Despite all these challenges, there are
enormous potential in such approaches due to the shortcomings of the Gleason system.
And with prostate cancer being one of the major cancers with millions of men effected,
there are certainly strong reasons to work in this direction.

This is certainly an exciting development with AI specialists and pathologists working
together to ensure safe diagnosis and better prognostication, with the goal of better
choice of treatment and, with that, decreased mortality from prostate cancer.
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Chapter 7

Ethical considerations

In the first study, the update of S3M, we explicitly included HOXB13, a relatively com-
mon mutation in a nucleotide which is strongly associated with prostate cancer. This
led to a Letter to the Editor in European Urology with some questions regarding genetic
consulting prior to the test and of who should receive the information and by whom.
We replied that we welcome such a discussion and until there are national guidelines
regarding this, we do not report back carriership information to the index person, we
only use it to improve his risk assessment. However, this information will likely play an
important role in individualizing the recommended time until future screenings among
men who not yet developed (detectable) cancer. There are guidelines for conveying
genetic information in general, but these include sensitive genetic information where
stigmatization, discrimination or depression may follow.[39] Here the starting point
is that genetic information should be conveyed to the index person by medical profes-
sionals if wished for, and the index person in turn decides if relatives who also may be
exposed should be informed. This is a discussion we will likely see more of in the future
and is relevant with the increase of data intense and automatic procedures in medicine.

Regarding artificial intelligence in medicine, there are many ethical issues that needs
to be addressed. Likely, we have not yet formulated all questions that concerns ethical
issues with this new and powerful technology. Even though our research is transla-
tional in its nature, we are still at a proof-of-principle stage, and there are no direct
ethical issues related to artificial intelligence in medicine for these projects. There are
of course the usual ethical issues when working with sensitive data.

As researchers in this new field, it is important to reflect on the ethical issues that may
spring for a success in these proof-of-principle studies. Among these is the question
of responsibility. For example, if we implement an end-to-end algorithm for diagnosis
in an open source pathology software and a hospital in a country with no available
pathologists use it and it leads to a false put diagnosis, who is responsible?
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