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ABSTRACT 
Reactive oxygen species exert reversible posttranslational modifications in proteins 
containing redox sensitive thiols, thereby affecting several cellular processes and 
protein functions. Reductive enzyme systems, such as the thioredoxin system, can 
reverse most of these cysteine modifications. Therefore, a tight control between 
oxidizing and reducing events is the central principle of redox signaling. The 
studies within this thesis have covered several aspects of the Trx system in the 
modulation of cellular signaling pathways. 

 
In Paper I, we evaluated how b-AP15, a small inhibitor of proteasome-associated 
DUB, exerts redox perturbations in tumor cells. It is known that b-AP15 triggers 
an increase level of reactive oxygen species (ROS) and proteotoxic stress in can- 
cer cells. However, its efficacy inducing apoptosis diminished by antioxidants. To 
identify the precise mechanism by which b-AP15 induces redox perturbations, we 
generated cells deprived of mitochondrial DNA. We found that in cells lacking 
mitochondria, the oxidative stress generated by b-AP15 was completely abrogated. 
Furthermore, to exclude that the observed increase in the levels of oxidative stress 
were due to an inhibition of TrxR1, we evaluated a number of proteasome asso- 
ciated DUBs inhibitors that did not inhibit TrxR1. Similarly, to b-AP15 all the 
inhibitors tested induced oxidative stress and the expression of HO-1. In parallel, 
we observed mitochondrial dysfunction, measuring the levels of COX5b and 
TOMM34, in both cases their respective levels decreased in those cells treated 
with b-AP15. Based in all the results we could conclude that the source of ROS 
in cells treated with b-AP15 was of mitochondrial origin. 

 
In Paper II, we performed a drug-screen of compounds sharing a common enone 
motif with b-AP15 and many natural products with antineoplastic effect. Through 
biochemical and structural analyses, we could demonstrate the binding of the 
enone containing compounds to the proteasome-associated cysteine deubiquitinase, 
USP14, inhibiting its activity. Additionally, we further analyzed a subset of those 
compounds in a zebrafish embryo model where they showed antineoplastic activity. 
These findings suggest that DUB inhibition is a relatively common mode of action 
by cytotoxic compounds containing motifs and it helps to explain the 
antineoplastic effects of natural products containing such functional group. 

 
In Paper III, we identified HRI as a redox-regulated protein, which becomes 
oxidized when activated upon As(III) exposure. TrxR1 associates with HRI in 
cells and together with TRP14 and Trx1 reduces HRI in vitro. Moreover, several 
specific inhibitors of TrxR1 lead to HRI-dependent eIF2α phosphorylation, trans- 
lation suppression and stress granule formation. Based on our finding that HRI- 
mediated translation suppression is essential for cellular survival under conditions 
of high As(III), we revealed the Trx system as a regulator of the HRI dependent 
translational stress response. 



In Paper IV, we evaluated the role of TRP14 in the regulation of different redox- 
regulated transcriptional factors using our unique tool pTRAF (plasmid for tran- 
scription factor reporter activation based upon fluorescence). We discovered that 
using TRP14 knockdown HEK293 cells, NRF2 activation increased upon treat- 
ment with auranofin, we also uncovered that TRP14 is crucial for HIF activation 
upon TNF-α stimulation in hypoxic conditions. Furthermore, endogenous TRP14 
levels increased under hypoxia or TNF-α treatment, suggesting that TRP14 could 
itself be regulated by NFκB and HIF,  which is compatible with the presence    of 
the corresponding response elements in the proximal TXNDC17 promoter region. 
Surprisingly, using TRP14 knockout HEK293 cells we found that global protein 
translation was reduced, which could be reverted with methionine or N-
acetylcysteine supplementation. TRP14 knockout cells were also, in contrast to 
controls, highly sensitive to PPG. We conclude that TRP14 has several roles in 
control of redox signaling pathways, and that TRP14 is the main intracellular 
reductase for liberation of cysteine from cystine. 

 
In Paper V, we de novo synthesized eight vinyl sulfone compounds and evalu- 
ated their capacity to activate NRF2, NFκB and HIF1 in comparison with DMF 
using our previously mention tool pTRAF. We selected a set of compounds that 
activate NRF2 more selectively than DMF and characterize their downstream 
effects using in vitro and in vivo models. Our selected compounds display a more 
selective oligodendrocyte associated effect which could be explore in the future 
as a regenerative drug in demyelinating disorders. 
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1 INTRODUCTION 
1.1 Redox homeostasis 
Reactive oxygen species (ROS) are a group of small reactive byproducts produced 
during incomplete oxygen reduction. Under control concentrations, ROS are essen- 
tial as second messengers in the regulation of signaling cascades to mediate physi- 
ological responses (1-4). At distorted ROS concentrations, redox homeostasis will 
be disrupted inflicting damage to important organelles and biomolecules, causing 
fatal  alterations implicated in carcinogenesis and neurodegenerative disorders (5-
7). 

 
In redox sensitive proteins, ROS induce reversible covalent modifications of specific 
cysteines also known as “thiol switches” (8). The post-transcriptional modifications 
exhibit by these cysteines usually reveal crucial roles in protein function as an ideal 
target for signal regulation and as vital players in redox homeostasis (9-12) (Fig. 1). 

 
The cell has developed different mechanism to reverse these oxidative modifica- 
tions, being the most distinguished systems the glutathione and thioredoxin system. 
These systems are essential to regulate the different redox signaling pathways 
and to sustain the redox homeostasis in the cell (12). 

 

1.2 Reactive oxygen species 
With a half-life of approximately 1 ms, H2O2 is one of the best candidates for redox 
signaling with its selective reactivity and its ability to circulate freely through 
membranes or through aquaporins (4, 13-15). Furthermore, H2O2 production is 
enabled by a number of oxidases (16-18) or by the quick reactions of superoxide 
(O2

•-) to H2O2 (19, 20). 

Interestingly, the percentage of O2
•- generated in the mitochondrial represents less 

than 2% of all the oxygen consume by the cell. During regular circumstances its 
production is strictly regulated by the antioxidant system (21-23), which regulates 
different redox sensitive pathways, like those involve in inflammation, degrada- 
tion and transcriptional factors activation (24-27). 

 
Furthermore, O2

•- and thus H2O2 can be produced by NADPH oxidases (NOXs), 
for the activation of redox sensitive signaling pathways, including transcription 
factor activation (28, 29). 
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Figure 1. Scheme of the effect of oxidative stress in health and disease. Redox homeostasis 
is crucial for the correct functioning of the cells. When an imbalance between ROS and 
the antioxidant system occur, oxidative stress takes places disrupting different procedures 
in the cell based on intensity. 

 

1.3 Antioxidants in redox signaling 
All living organisms have developed an interacting network of small antioxidant 
molecules and enzymes to scavenge highly reactive radicals, being the most 
prominent the glutathione (GSH) and the thioredoxin (Trx) systems (11, 30-33). 
These systems play an important role not only protecting cells against oxidative 
damage but reversing oxidative modifications to maintain a tight regulation of 
the signaling pathways (34). 

 
1.3.1 Glutathione system 
The glutathione system is one of the two major NADPHdependent redox regulatory 
systems in the cells. It regulates a broad number of cellular processes involved in 
redox signaling and antioxidant defense (35, 36). Its main function is to scavenge 
electrophilic or oxidizing compounds either directly by GSH or catalyzed by 
Glutathione-S-Transferases, which has been previously demonstrated to also have 
an important role modulating signaling pathways (37). Furthermore, GSH can act 
as a cofactor by Glutaredoxins (Grxs) and glutathione peroxidases (38). 

 
1.3.1.1 Glutathione 
GSH (Glu-Cys-Gly) in its reduced form, with a concentration range between 1 and 
10 mM, is the most abundant low molecular weight antioxidant in cells (11, 39, 
40). Localization wise, the vast majority of GSH is found in the cytosol, with a 
small percentage localized in the mitochondria and ER (41, 42). 

 
GSH is synthesized by the consecutive reactions of 2 enzymes. 
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First, glutamate cysteine ligase (GCL) mediates the formation of γ-glutamylcysteine 
by the reaction between glutamate and cysteine. At this step, it is important to 
consider that cysteine is the reduced form of the semi-essential amino acid cystine. 
Cysteine can be generated de novo from methionine through the transsulfuration 
pathway or it can be incorporated into the cells as its oxidized form cystine (Cys) 
(43). Cys is imported via the alanine-serine-cysteine (ASC) and XAG- systems 
in a Na+-dependent manner (44). Cystine, on the other hand, is imported in a Na+ 

independent manner by system b0+ and by the cystine/glutamate antiporter Xc- (45). 
Interestingly, Xc- is highly inducible by O2, electrophilic agents, TNFα, and the 
transcription factor NRF2, characteristics that would crucial for the development 
of paper IV of this thesis (45, 46). The capacity of the cell to obtain cysteine is 
crucial for GSH formation, and its availability representing the rate limiting step 
in GSH synthesis. Secondly, the reaction between glutamate and cysteine occurs, 
GSH synthetase catalyzes the condensation of glycine to form GSH (47). 

Interestingly, the degradation of GSH can take place only extracellularly since γ-
glutamyltranspeptidase (GGT), the only enzyme capable of degrading the γ-
carboxylgroup in GHS, is localized on the external surface of some cell types. 
This procedure has been described in rats to last from 2 to 3 hours (47). In cir- 
circumstances of acute oxidative stress a large amount of GSSG will be present 
in the cells, this GSSG will be further transferred extracellularly to be use for de 
novo synthesis of GSH (48). 

 
GSH also has an important role in redox signaling via glutathionylation. GSH can 
protect proteins from irreversible overoxidation via the formation of disulfide 
bonds with their reactive thiols in situation of elevated oxidative stress (49-51). 

 
1.3.1.2 GSTs 
GSTs are a family of enzymes responsible of detoxification, that in conjugation 
with GSH are capable of reducing a large number of endogenous and exogenous 
compounds (37, 52). Additionally, GSTs are involved in the reduction of lipid 
peroxidases and glutathionylation of proteins (53-55). 

 
1.3.1.3 GPxs 
GPxs are a group of glutathione-dependent peroxidases that catalyze the removal 
of different types of hydroperoxides leading to the generation of H2O or alcohols 
(56). In humans, there are 8 variants that could be divided in two groups GPx1-4 
and GPx6 are selenoproteins while the remaining isoforms contain a cysteine in 
their active site. This amino acid substitutions leads to a drop-in activity of two 
to three orders of magnitude having the selenium containing GPxs a high rate of 
reactivity with H2O2 (57, 58). Interestingly, only GPx4 knockout mice is embryoni- 
cally lethal, it is the only isoform that directly can reduce lipid peroxidases and 
when inhibited leads to cell death through ferroptosis (56, 59, 60). 
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1.3.1.4 Grx 
Grxs are a family of four small enzymes of approximately 100 amino acids that 
catalyze the reduction of mixed disulfides between protein thiols and GSH. Grxs 
can be further subdivided into diverse categories based in the number of thiols in 
their active site or their localization. Grx1 and Grx2 are dithiols containing the 
active site motif CXXC, while Grx3 and Grx5 are monothiols lacking the C-terminal 
Cys. Furthermore, Grx1 and Grx3 are mainly found in the cytosol while Grx2 and 
Grx5 are located in the mitochondria where they develop redox specific functions 
(35, 61, 62). Interestingly, Grxs play an important role in NFκB, AP-1 and NF-1 
redox signaling regulation, as well as in apoptosis signaling binding to ASK1 and 
regulating the cleavage of caspase 3 (63-66). 

 
1.3.2 Thioredoxin system 
The thioredoxin system, together with the GSH system, is one of the key regu- 
lators in the defense against oxidative stress. It is comprised of isoenzymes of 
thioredoxin reductase (TrxR), thioredoxin (Trx) as main substrate and NADPH 
as electron donor. This system has key roles in redox regulation involved in the 
fight against oxidative stress, DNA synthesis and redox signaling (33, 67, 68). 

 
1.3.2.1 Thioredoxin 
Trx is 12-kDa ubiquitously expressed protein consisting of four β-sheets surrounded 
by three α-helix with a well conserve active site (CGPC) that confers Trx a robust 
disulfide reductase activity (69-72). In mammals, there are two distinct isoforms; 
Trx1 localized in the cytosol and Trx2 that is found in the mitochondria, both 
variants display distinct roles in redox regulation and antioxidant defense, 
however their main different resides in the three additional cysteines present in Trx1 
outside its active site (C62, C69 C73) that are target of posttranscriptional 
modifications and have a regulatory function (73). C62 and C69 are capable of 
forming an intramolecular disulfide bond between them that can be reduce by the 
GSH system but not by TrxR1 (74, 75). Likewise, C73 is capable of forming a 
disulfide bond between homodimers that cannot be reduce by TrxR1 either (76, 
77). 

In the cytosol, Trx1 donates electrons to catalize the reduction of RNR, Prxs and 
Msrs (78, 79, 80). Additionally, reduced Trx1 can exert its function by direct 
binding to their target proteins modulating apoptosis, through its binding to PTEN, 
inhibiting its phosphatase activity and preventing the activation of the PI3K/Akt 
pathway (81). Trx1 can also bind to the apoptosis signal regulating kinase 1 (ASK1) 
inhibiting its activity (82). In situ ations of oxidative stress, Trx1 will get oxidized 
and it will be release from ASK1, however this release may be prompted by the Trx 
interacting protein (TXNIP), an endogenous inhibitor of Trx that competes with 
ASK1 in reducing conditions (83). 
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Despite lacking any nuclear translocation motif, Trx1 can translocate to the nucleus 
where it controls the activity of several redox regulated transcriptional factors 
including NRF2, NFκB, HIF that will be further discuss in this thesis (84-88). 

 
1.3.2.2 Thioredoxin family of proteins 
The Trx-fold family comprises a number of oxidoreductases with crucial regula- 
tory roles in redox signaling. These proteins are characterized by the presence of a 
common structure named “Trx fold”, constituted of four β-sheets and three α-helix. 
Many Trx-like proteins share an active site composed of CXXC indispensable for 
their catalytic activity, however several variants have been described with different 
number of Cys residues as well as an alternative composition of the XX dipeptide (38, 
89, 90). Unfortunately, due to the sparsely characterization of the Trx superfamily, 
there is a discordance in the nomenclature of its members varying between the clas- 
sical representatives and the new thioredoxin-domain-containing-(TXNDC) (38). 

 
This superfamily of proteins has members present in all the cellular compartments, 
even in some circumstances some proteins can be secreted extracellularly. Most 
of these proteins are localized in the ER corresponding to members of the protein 
disulfide isomerase (PDI) family with important roles in protein folding. TMX1- 
TMX4 are thioredoxin-like transmembrane proteins that have an ER targeting signal, 
being the only member displaying oxidoreductase activity TMX1, whereas TMX2-
TMX4 behaves like PDIs (91-95). In the cytosol, together with Trx, Grx and Prxs 
there are some other members that are more scarcely characterizes like TRP14 
which will be described in depth in the following section or thioredoxin related 
protein of 32 kDa which appears to have unique role in proteolysis (96-99). 

 
Finally, nucleoredoxins (Nxn), the members of the family localized in the nucleus 
which best describe function is to act as negative regulators in transcription (100-
106). 

 
1.3.2.3 Thioredoxin Related Protein of 14 kDa (TRP14) 
TRP14 is a123 amino acids protein encoded by TXNDC17. It was initially detected 
searching for proteins containing redox-sensitive cysteine residues with low pKa 
in rat brains (107). TRP14 is a cytosolic protein expressed in most cells and tissues 
and it can be reduced by TrxR1. Interestingly, despite some similarities with Trx1, 
TRP14 is incapable of reducing classical Trx1 substrates such as RNR, Prx1 or 
Msrs (107, 108). 

 
Like Trx1, human TRP14 has a well conserved active site motif containing two 
Cys residues (WCPDC) and despite being similar topologically speaking, TRP14 
only shares 20% sequence identity with Trx1. The presence of an extended loop, an 
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additional α-helix, near the active site of TRP14, together with a different 
distribution of charged residues compared to Trx1, may be the culprits of the 
differences in substrate specificity between these two oxidoreductases (108). 

 
From the evolutionary point of view, TRP14 orthologues are found in a broad 
number of organisms from bacteria until mammals (107). However, a detail analysis 
comparing their active site revealed that the WCPDC characteristic active site was 
not completely conserved among species during evolution. In some cases, there are 
some variations in the WCPYC sequence in the active site. The change from “D” 
to “Y”, turns the TRP14 active site into the typical glutaredoxin active site. This 
controversy makes us to rethink if those species are really TRP14 orthologous, 
an observation that needs to be further scrutinize (35, 109-111). Nevertheless, 
studies performed in different TRP14 orthologues species highlight some impor- 
tant roles of TRP14 protecting against oxidative stress challenges, toxic 
compounds, and viral infections. The fact that TRP14 is so well-preserved during 
evolution points out towards an unrecognize role of TRP14 in cell survival that 
need to be further explore (107). 

 
Previously we have mentioned the inability of TRP14 to reduce classical Trx1 
substrates. However, when coupled to cystine reduction, TRP14 becomes an even 
better substrate for TrxR1 than Trx1, with a catalytic efficiency (kcat/Km) of TRP14 
(2217 min-1·μM-1) being fivefold higher than that of Trx1 (418 min-1·μM-1). These 
observations suggest that TRP14 has a more dedicated role towards the catalysis 
of cystine reduction (112). 

 
Another interesting role of TRP14 is as a suppressor of NF-κB signaling pathway 
(113, 114). It has been previously described the role of Trx1 in NF-κB regulation 
(84, 115). However, TRP14 seems to be a more potent regulator of NF-κB signal- 
ing than Trx1, despite being present at lower concentrations in the cells. TRP14 
via the activation of LC8 through the reduction of a disulfide bond keeps NF-kB 
inhibited, since reduced LC8 prevents IκB phosphorylation (116). 

 
TRP14 can additionally control redox signaling via NO and nitrosylation (112). 
The nitrosylation state of cysteine residue can be modulated by Trx1 either by 
direct reduction of cysteine S-nitrosolyated groups or by transnitrosylation (78, 117, 
118). Interestingly, TRP14 is also efficient at reducing nitrosylated cysteine 
residues (112). However, whether Trx1 and TRP14 have different nitrosylated 
target proteins remains unknown. 

 
Recently, hydrogen sulfide has emerged as a ”hot molecule” in signaling by its 
ability to form persulfate cysteine residues. Our group, has previously revealed 
TRP14 as an efficient protein at reducing persulfide moieties on cysteine residues 
as well 
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as inorganic polysulfides (119). The reduction of protein persulfides by TRP14 is 
also interesting because TRP14 can reactivate oxidized forms of PTP1B and 
regulate the persulfidation status as control of growth factor responsiveness (120, 
121). 

 
Furthermore, TRP14 it has been shown to be upregulated in many tumors. TRP14 
supports the induction of autophagy as a mechanism of resistance of cancer cells to 
paclitaxel supported by BECN1 (122). Autophagy as well as BECN1 expression 
are known to be intimately linked to oxidative stress and redox signaling pathways. 
However, how TRP14 directly regulates BECN1 remains unknown (123). 

 
1.3.2.4 Thioredoxin reductases 
TrxRs are dimeric flavoenzymes which in higher species, such as mammal, are 
selenoproteins containing a selenocysteine in their active site. However, there are 
some species like some parasites that contain a cysteine in their active site (124, 
125). 

 
The catalytic mechanism of mammalian TrxR demand the transfer of electrons 
from NADPH to the N-terminal disulfide through FAD. These electrons with the 
selenenylsulfide in the C-terminal active site of the other subunit form a reduced 
selenolthiol motif that is in charge of reducing the majority of substrates (Fig. 2) 
(126, 127). However, there are several quinones that can be directly reduced through 
the N-terminal dithiol motif (128). 

 
There are several characteristics that are essential for the mechanism of action of 
mammalian TrxR: 

 
• A selenocysteine in their active site (129-132) 

• A flexible C-terminal tail (132, 133) 

• Key amino acids in the TrxR/substrate connection or in the vicinity of 
the active site 

• An exact electron flow during catalysis (132, 134) 
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Figure 2. Scheme of mammalian TrxR electron flow and its inhibition mechanism. This is 
a scheme of the configuration of the mammalian TrxR homodimer, its electron flow and 
how different compounds can lead to a complete inactivation or its transformation into 
pro-oxidant SecTRAP. 

 

1.3.2.5 TrxR inhibition and SecTRAP formation 
The Sec residue in the C-terminal active site of TrxR1 has two striking characteris- 
tics. Its nucleophilicity makes TrxR highly reactive but simultaneously its reduced 
selenolate can be an easy target of electrophilic compounds (129). Now a days 
there are a broad number of known inhibitors of TrxR both naturally occurring as 
well as some specifically constructed that now a days are used clinically (135-
139). Some examples include auranofin, cisplatin, arsenic oxide or 
dinitrohalobenzenes (140-143). 

 
These TrxR1 inhibitors can provoke diverse effects on the activity of TrxR. They can 
be divided between those that completely inhibit its enzymatic activity and the ones 
that transform TrxR into a pro-oxidant forming what is known as a SecTRAP (selenium 
compromised thioredoxin reductase-derived apoptotic protein) (144, 145) (Fig. 2). 
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SecTRAPs are formed when the differnt compounds derivatize the Sec residue. In 
this case, TrxR can no longer catalyze the reactions dependent on Sec but in turn 
it gains a potent NADPH oxidase activity. In these circumstances, TrxR is capable 
of redox cycle with certain substrates via the intact FAD and N-terminus active 
inducing different mechanism of cell death potentiating the cytotoxic effect of 
many TrxR inhibitors (144, 146-148). 

 
1.3.2.6 Thioredoxin reductases as targets for anticancer therapy 
ROS has been involved in the development and progression of tumor cells (149, 
150). As a counteractive mechanism, the malignant cells also enhance their antioxidant 
systems to avoid oxidative damage that could be a consequence of an hyperactive 
metabolism (151) (Fig. 7). Since cancer cells seem to rely more in the antioxidant 
systems than normal cells, its inhibition could be used as a therapeutic approach 
to promote cell death in cancer cells via oxidative stress with a minimal impact 
in normal healthy cells (152, 153). 

Based in these principles, TrxR1 has become an interesting candidate to target 
for cancer therapy, atacking on of the hallmarks of cancer (154). It was shown 
that several cancer course with upregulated levels of TrxR1 and Trx1, correlating 
directly with aggressiveness, poor prognosis and treatment resistances (155, 156). 
As described before, TrxR1 can be inhibited by electrophilic compound as well as 
transformed into a SecTRAP enhancing the accumulation of ROS in the tumor 
cells therefore committing the cells to death. In fact, our group has successfully 
characterized two potent TrxR1 inhibitors, TRi-1 and TRi-2, with a minimal effect 
on mitochondrial function showing cytotoxicity to cancer cells, in comparison to 
unaffected normal cells (161). 

 

1.4 Thiols in redox regulation 
There are several amino acids such that can be modify by ROS. However, 
tryptophan, histidine and tyrosine oxidation are less favored being less important 
in physiological processes (162, 163). Methionine oxidation is reversed via 
methionine sulfoxide reductases and its contribution to redox signaling it is not 
clear (164). Cysteine, in the other hand, it is considered the prime residue 
involved in redox signaling with an important role in the diverse papers of this 
thesis. 

 
1.4.1.1 Cysteine 
Cysteine is a sulfur containing amino acid and one of the least abundant, although 
often it is directly involved in catalysis, protein binding and stabilization (165). 

Cysteine has a low pKa which promotes the formation of reactive deprotonated 
thiolate at physiologic pH. However, this is not the only characteristic that deter- 
mines its oxidative susceptibility. It is important to notice, the wide range of 
oxidation states of sulfur (-2 to +6) which allows different modifications (166). 
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1.4.1.2 Selenocysteine 
Selenocysteine is an analogue of cysteine. It is the 21st naturally occurring amino 
acid showing a higher reactive when compared to cysteine. The key characteristic 
that differentiate selonocysteine from cysteine is the selenol group in place of the 
sulfur which grants a higher nucleophilicity (167, 168).The importance of this 
aminoacid  was evidenced in a experiment where the Sec residue was replace for  
Cys in GPx and TrxR1. Those mutated proteins containing the Cys variant saw 
their reactivity drastically reduced (169, 170). Nevertheless, this phenomenon 
does not impl that selenoproteins have a higher capacity regulating redox processes 
than the Cys containing ones but perhaps the following characteristics may 
provide some advantages (171-175): 

• An increase flexibility towards substrates 

• An efficient reaction for one electron transfer  

• Higher nucleophilicity increasing the reaction rates  

Interestingly, it was also shown that the presence of the Sec residue it is not 
indispensable for the protein function. Several studies using TxR1 showed 
that under selenium deficient conditions the Cys variant can take over as a 
backup mechanism sustaining TrxR1 activity (176, 177). 

 

1.5 Redox sensitive transcription factors 
Transcriptional factors regulate gene transcription regulatory binding to specific 
DNA sequences in order to generate rapid responses. 

These redox procedures occur at different points (178, 179): 

• mRNA stability and translation 

• Stability/ degradation 

• Transport between the cytoplasm and the nucleus 

• DNA binding  

• Activators vs repressors 

Now a days it is accepted that oxidants act as mediators and modulators of signal- 
ing pathways and protein function, however how they are redox regulated remain 
poorly characterized (178, 180). 

The Trx and GSH systems regulate the transcriptional activity of NFκB AP-1, 
NRF2, HIF and p53, which activities are intertwined. Interestingly, these specific 
transcriptional factors are involved in cell survival, stress response and cell death 
leading to pathological conditions when dysregulated (181-185). 
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1.5.1 NRF2 
NRF2 (Nuclear factor (erythroid-derived 2)-like 2) is the most important transcrip- 
tion factors involved in detoxification and response against oxidative stress. Its 
activation is mediated by ROS (184, 185). It binds to the antioxidant responsive 
element (ARE) in the promoter region of genes of detoxifying enzymes and 
antioxidant proteins (Trx, TrxR, Prx1, GPx2 and transcription factors (37, 129, 
178, 186, 187). 

 
Under normal conditions, NRF2 binds to its inhibitor Keap1, which constantly 
targets NRF2 for proteasomal degradation. Keap1 is responsible of acting as sen- 
sor for NRF2 activation. It is subject of conformational changes upon oxidation on 
critical cysteines residues (188, 189). Upon oxidation, the NRF2-Keap1 binding is 
disturbed and NRF2 degradation is terminated. However, NRF2 is not completely 
released from Keap1, instead is the newly synthesized NRF2 that translocate into 
the nucleus forming heterodimers with bZIP transcription factors such as Mafs 
(predominantly), c-Jun or ATF4 prior binding to ARE (190) (Fig. 4). It is currently 
a source of debate, if NRF2 dissociates from Keap1, however the most convincing 
results suggest that NRF2 is not completely released from Keap1 (178, 191). 

 
Keap1 is an adaptor of the Cullin-3-based E3 ligase. Each subunit of Keap1 
contains 27 residues of which only 9 are believed to be reactive, depending their 
specific reactivity on the type of electrophile that targets the different cysteines 
residues (192, 193). For example, Cys151 is important NRF2 activation mediated 
by H2O2 (194, 195). 

Furthermore, NRF2 is also redox regulated. In the nucleus NRF2 remains bind to 
Crm1 (chromosome region maintenance 1; exportin) via Cys183 which is regulated 
GSH or Trx systems. Moreover, Trx1 it is involved in the exportation of NRF2 
from the nucleus and via Trx1/Ref is capable of reducing Cys506 in the NLS cru- 
cial for the interaction with the coactivators CBP/p300 (Fig. 3) (85). 

 
NRF2 is also regulated by phosphorylation. Phosphorylation of Ser40 by protein 
kinase C (PKC) prevents its binding to Keap1 and supports its translocation to 
the nucleus (196). Also, NRF2 can be phosphorylated by Fyn at Tyr568 in the 
nucleus, promoting Crm1 interaction and thus nuclear export (Fig. 3). 
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Figure 3. Schematic overview of NRF2 regulation. During normal conditions, the NRF2 
inhibitor Keap1 binds to NRF2 for its proteosomal degradation. Upon oxidative stress 
newly synthesize NRF2 bypasses Keap1 and it translocates it to the nucleus where it binds 
to the antioxidant response element. 

 
 

1.5.2 NFκB 
NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) comprise 
a family of dimeric transcription factors containing several subunits: p65 (RelA), 
RelB, c-Rel, p50 and p52, being p50 and p52 generated from their precursors p105 
and p100 (197). These proteins have a nuclear localization signal (NLS) respon- 
sible for their DNA and protein binding. p50 and p52 are unable to activate 
transcription, however they act as repressors binding to the DNA (198). 
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The NFκB system is mainly responsible for the immune and inflammatory response 
however it is also involved in cellular growth and apoptosis. The activation of 
NFκB is mediated by diverse cytokines, antigens and growth factors that stimulate 
different receptor families triggering a series of phosphorylation events that ends 
in the activation of NFκB (178). The incorrect regulation of NFκB is furthermore 
associated with many diseases such cancer, diabetes and atherosclerosis (199). 

 
NFκB, in a similar manner as NRF2, remains on an inactive state in the cytosol. 
Once stimulated NFκB gets rid of its inhibitor IκB and translocates into the 
nucleus where it binds to promoter regions of its target genes (200) (Fig. 4). 

 
Under normal circumstances, NFκB dimers are targeted by members of the IκB 
family (183, 201). Upon induction, IκB gets phosphorylated by the IκB kinase 
(IKK) (a complex conform of IKKα, IKKβ and two IKKγ subunits that form the 
NFκB essential modulator (NEMO)) and subsequently IκB gets ubiquitinated for 
proteasomal degradation (202, 203) (Fig. 4). 

 
Additionally, phosphatase can be inactivated by oxidations, which in turn leads to 
increased phosphorylation, NFκB activation and enhanced signaling (204, 181, 
205). 

 
In the nucleus, as opposed to its preventive role in the cytosol, Trx1 is essential for 
DNA binding of the p65/p50 complex by reducing Cys62 in the p50 subunit, 
(206, 207). 

 
As previously described, TRP14 has also been implied in the prevention of NFκB 
activation by keeping reduced LC8 binding to IκB and preventing IKK 
phosphorylation and degradation (113). Also, the Grx system modulate NFκB 
activation through deglutathionylation of critical cysteines in the p65 and p50 
(114, 208). 
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Figure 4. Schematic overview of the regulation of NFκB canonical pathway modulated 
by the Trx and GSH systems. 

 
 

1.5.3 HIF 
Hypoxia inducible factors (HIFs) are key transcription factors that mediate the 
response to in oxygen deficiency with an implication in angiogenesis, erythro- 
poiesis and glycolysis (209). 

 
HIFs are dimeric proteins conform of a constitutive HIF-1β subunit and an inducible 
HIFα subunit. HIF-1β is always express in exceed amounts making the levels of 
HIF-1α the accountable of its activity (210). 

 
HIF-1α has an oxygen-dependent degradation domain with two conserved 
proline residues. At physiological oxygen levels, at least one proline residue is 
hydroxylated by PHDs which are recognized by pVHL, which targets HIF-1α for 
degradation (211). 

 
PHDs activity dependent on oxygen availability, therefore at lower oxygen levels 
PHDs get inhibited, which leads to a HIF-1α dependent transcriptional activation 
(212). Also, in an oxygen dependent manner HIF-1α gets hydroxylated at the 
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asparaginyl residue by the factor inhibiting HIF (FIH). Its association with the p300 
coactivator gets blocked and therefore, HIF dependent transactivation is repressed 
(213, 214). Upon stabilization, HIF-1α dimerizes with HIF-1β. Subsequently, it 
binds to HRE in the promoter region to initiate transactivation (215). 

 
Several studies elucidate a crosstalk mechanism between NFκB and HIF-1α, 
suggesting that NFκB promotes HIF-1α activation upon binding to HIF-1α 
promoter region (217-219), the cooperative effect of these two transcriptional 
factors may be a protective mechanism of organs exposed to ischemia (220). 

 
HIF-1α has been described as redox sensitive. ROS were described to aid HIF-1α 
stabilization. Interestingly, TrxR1 studies showed that it played no effect on the 
stabilization of HIF nor in its function when TrxR1 was overexpressed or depleted 
(221, 222). In the other hand, studies on Trx1 suggest that it has an important role 
in translocation and binding of HIF-1α (222-229). The reduction of cysteine 800 
in HIF-1α required for its activation takes places via Trx1/Ref-1 (223, 225) as well 
as Trx1 is involved in the detachment of pVHL from HIF-1α (226).  
Furthermore, when Trx1 was overexpressed it played a crucial for HIF-1α 
transactivation by activating p70S6K and eIF-4E which are essential for translation 
initiation (81, 229, 230) (Fig. 5). 

 
 

Figure 5. Schematic overview of HIF regulation by the GSH and Trx Systems. 
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1.6 Protein homeostasis and redox control 
1.6.1 Protein synthesis 
Translation consumes up to 40% of the cellular energy (231). Hence, suppressing 
translation can save up for cellular defense or repair processes. Even Though 
translation can be controlled virtually at any step, most of the translational 
regulation happens during the initiation step (232). 

 
1.6.1.1 The eIF2α pathway 
Many different types of insults cause translational suppression by phosphorylation 
of eIF2 at Ser51 (233). The resulting impaired nucleotide exchange blocks protein 
synthesis which is required for binding of the initiator Met-tRNAi to the 40S 
subunit during initiation (234). 

 
In mammals, there are several conserved Ser/Thr kinases responds to different to 
the different stresses. PKR is very important in ribotoxic stress (235). PKR-like 
endoplasmic reticulum kinase (PERK) is activated in response to ER stress (236) 
and HRI) which is activated under heme deficiency. This kinase is also activated 
by arsenite-induced oxidative stress and reduction of global translation under 
arsenite stress (237). 

 
1.6.1.2 HRI kinase 
Translation suppression under arsenite stress and heme deficiency exclusively 
depends on HRI (238). While heme has a binding site in HRI, arsenite treatment in 
vitro does not lead to eIF2α phosphorylation (239). Interestingly. increased levels 
ROS are required for arsenite induced activation of HRI (240). This is consistent with 
cells experiencing oxidative stress upon arsenite treatment (241). ROS might act 
directly on one or more of the cysteine residues in HRI.
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2 METHODOLOGY 
This section provides a short introduction into some of the methods used in paper 
I-V. For more detailed information see the Materials and Methods part of each study. 

 

2.1 Activity Assays for TrxR1, Trx1 and TRP14 (paper I-III) 
In this thesis, we developed an assay for examining the ability of Trx1, TRP14 and 
TrxR1to reduce HRI utilizing the fluorescence characteristics of NADPH. (Fig 6). 

 
Furthermore, TrxR1 activity has been studied with purified enzyme and the DTNB 
assay (246). TrxR1 directly reduces DTNB to two TNB- molecules, which absorb 
at 412 nm. In this thesis, we used this method to examine how different proteo- 
somal inhibitors affected TrxR1 activity based on the knowledge that one unit (U) 
of TrxR1 is defined as the amount of enzyme catalyzing the reduction of 1 mol 
DTNB (formation of 2 mol TNB-) per minute (246). 

 
 

Figure 6. Principles of the activity assays used in this thesis 
 
 
 
 
 
 
 

2.2 pTRAF (Paper IV-V) 
With our developed tool pTRAF we could study the activation of 3 different tran- 
scriptional factors; NRF2, NFκB and HIF by locating all the cassettes on the same 
plasmid. Thus, by coupling mCherry to NRF2, YPet to HIF and CFP to NFκB we 
could compared the different intensities to each other, making it is possible to 
study the relative activation of all three transcription factors in single cells with 
high resolution in a high throughput manner (Fig. 7) 
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Figure 7. Schematic overview of the pTRAF plasmid 



19  

3 AIMS OF THIS THESIS 

3.1 Aims 
The thioredoxin system has been discussed in a variety of different contexts and 
many of its important roles in health and disease have been discovered. However, its 
involvement in cellular pathways is versatile and countless aspects that contribute to 
the final outcome of the cell are still unknown. Taking this into account we studied 
several separate aspects of the Trx system that had the following specific aims: 

 
Paper I 
• Determine the mechanisms of redox generation in cells treated with b-AP15 

and the potential implication the Trx system. 

Paper II 
• Show the potential pharmacological applications of enone containing com- 

pounds, relative selectivity for USP14, specifically inhibit the UPS and 
evaluate their effect in the Txr system. 

Paper III 
• Evaluate the role of the Trx system as a redox cellular sensor of arsenic 

compounds triggering the translational stress response. 

Paper IV 
• Discern the role of the Trx system member, TRP14, in the activation of redox 

regulated transcriptional factors NRF2, NFκB and HIF. 

• Understand the importance of TRP14 for intracellular reduction of cystine. 

Paper V 
• Apply the pTRAF method to evaluate the activation NRF2, NFκB and HIF, 

in drug development. 
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4 PROJECTS 

4.1 Paper I 
Oxidative Stress Induced by the Deubiquitinase Inhibitor b-AP15 Is Associated 
with Mitochondrial Impairment 
Xiaonan  Zhang, Belén Espinosa, Amir Ata Saei, Padraig D’Arcy, Roman AZubarev, 
and Stig Linder 

 
Background 
b-AP15 is a small molecule that blocks proteasome activity at the level of the 
proteasome -associated deubiquitinases (DUB). Excitingly, b-AP15 has provided 
a new mechanism to overcome intrinsic and acquired resistance that limited the 
therapeutic efficacy of other anti-cancer therapies. It is well described that b-AP15 
boosts proteotoxic and oxidative stress in tumors cells, however its efficacy is hin- 
dered by antioxidants (247). In this paper we address the mechanisms by which b-
AP15 induces oxidative stress. 

 
Main Findings 
• b-AP15 oxidative stress depends on having functional mitochondria 
We exposed cells to low doses of ethidium bromide until reaching non detectable 
expression of mitochondrial genome. We treated those cells with b-AP15, and we 
could observe a remarkable abrogation of NRF2 induction compared to normal 
cells, with no changes in the levels of proteotoxic stress. 

 
• Dubs inhibitors do not required inhibition of Thioredoxin Reductase activity 
Thioredoxin Reductase activity was previously shown to be inhibited by b-AP15 
(247). In order to evaluate this possibility, we tested some newly identified DUB 
inhibitors that did not inhibit TrxR and all induced NFR2 activation 

 
• b-AP15 decreases the expression of COX5b 
We found that 3 proteins were significantly downregulated TOMM34 (translocase of 
outer mitochondrial membrane 34), CHDH (Choline dehydrogenase) and COX5B 
(Cytochrome C subunit 5B). COX5B is a component of the electron transport chain 
and its decrease may explain reduce oxidative phosphorylation. 

 
Conclusions 
Despite its strong cytotoxicity to tumor cells, b-AP15 and similar compounds 
show limited activity against normal cells. We here found weaker induction of the 
NRF2 targeted protein HO-1 and decreased elevation of GSSG/GSH ratios in ρ0 
cells exposed to b-AP15, consistent with a mitochondrial involvement in b-AP15- 
induced oxidative stress. We also found that increasing the level of proteotoxic 
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stress by inhibiting anterograde ER translocation resulted in increased induction 
of expression of HO-1 and without affecting the selenoprotein TrxR1. These find- 
ings suggest cells exposed to b-AP15 will have pursue its effect due to an increase 
ROS level of mitochondrial origin. 

 

4.2 Paper II 
Cytotoxic unsaturated electrophilic compounds commonly target the ubiquitin 
proteasome system 
Karthik Selvaraju, Arjan Mofers, Paola Pellegrini, Johannes Salomonsson, Alexandra 
Ahlner, Vivian Morad, Ellin-Kristina Hillert, Belén Espinosa, Elias S. J. Arnér, 
Lasse Jensen, Jonas Malmström, Maria V. Turkina, Padraig D’Arcy, Michael A. 
Walters, Maria Sunnerhagen & Stig Linder 

 
Background 
Drug resistance remains the principal limiting factor in the treatment of patients 
suffering from cancer. In this regard, the ubiquitin proteasome system has emerged 
as a promising area for the development of new drugs since they can overcome 
other type of proteosomal inhibitor resistance (248). Cysteine deubiquitinases 
(DUBs) are druggable by α,β-unsaturated ketones (Enones) by Michael addition 
(249). Unfortunately, Michael acceptors are often avoided by drug developers due 
to their reputation of displaying general reactivity. 

 
Many natural products with antineoplastic activity usually contain Michael accep- 
tors like those contained in b-AP15. The objective of this paper was to perform a 
drug screen of ≈ 5000 compounds selected for unsaturated ketone motifs and 
determine their usefulness as deubiquitinase inhibitors despite their proclaimed 
off-target activity. We also analyzed the propensity of these compounds to inhibit 
TrxR1, as this selenoprotein is typically considered to be a prime target of electro- 
philic compounds (250). 

 
Main findings 
• Only 3% of the enone-containing compounds where cytotoxic to tumor cells 
Using a library of enone containing compounds based on the assumption that enone 
electrophiles will inhibit cysteine DUBS we found that only 3% were cytotoxic to 
tumor cells in the micromolar range. 

 
• Hit compounds inhibit the proteasome deubiquitinase activity 
Of the 141 antiproliferative compounds we found that 25% inhibited the UPS. We 
further characterized the selected hit compounds and consistent with inhibition of 
the proteasome, they showed increased levels of proteotoxic stress, ER stress and 
apoptotic markers, together with elevated levels of HMXO1as an indication 



22  

of oxidative stress. A glycerol gradient cell fractionation demonstrated that poly- 
ubiquitin chains that accumulate in cells co-sedimented with proteasomes, this 
finding excluded the possibility that those chains were further processed. We were 
able to identify that those compounds inhibited USP14/UCHL5, however none 
of the compounds inhibited total cellular DUBs. We confirmed these find- ings 
using Isothermal Calorimetry (ITC) and Cellular Extract Thermostabilizing 
Assay (CETSA). A molecular Mass shifts of USP14 was observed with mass 
spectrometry and binding of the compounds to the UPS14 catalytic domain with 
Tryptophan fluorescence. 

 
• USP14 and TrxR are not necessarily targeted by the same compounds 
Enones are known to inhibit TrxR1 (251). We found that surprisingly only 20 of 
the 141 cytotoxic compounds could directly inhibit TrxR1 activity and none of 
them belonged to our hit compounds. 

• The selected compounds showed anti-neoplastic activity in Zebrafish 
Some of the hit compounds inhibited the proliferation and dissemination of human 
melanoma cells in zebrafish embryo model at a concentration of 5µM and did not 
affect embryo development at 20µM. 

 
Discussion 
Many of the most used chemotherapeutical drugs are natural products. Many natural 
products contain α,β-unsaturated ketones and are expected to be associated with 
widespread cysteine reactivity. Several such thiol-reactive natural products have 
been reported to affect the ubiquitin-proteasome system (UPS) (252). Whether 
this type of biological activity is evolutionary selected or an intrinsic property of 
α, β-unsaturated compounds was not known. 

In this paper, we screened ~5000 synthetic α, β-unsaturated compounds for cytotox- 
icity to tumor cells and inhibition of proteasome degradative activity. Interestingly, 
of 141 cytotoxic compounds, 28 compounds (20%) increased the levels of protea- 
some substrates in cells. We found evidence of inhibition of proteasome-associated 
cysteine deubiquitinases, USP14. Structural analysis suggested that the compounds 
bind to a crevice close to the USP14 active site with modest affinity, followed by 
covalent binding. Counter screening performed using non-proteasome associated 
cysteine deubiquitinases and thioredoxin reductase suggested a degree of selectivity 
to proteasome deubiquitinases. We finally demonstrate limited developmental 
toxicity and significant antineoplastic activity in zebrafish embryos. 

These findings suggest that proteasome inhibition is a common mode of cyto- 
toxicity by natural products containing α, β-unsaturated carbonyl functionalities. 
The combination of high sensitivity of tumor cells to UPS inhibition and the 
potential for high druggability of components of the UPS may explain the common 
pharmacological response of proteasome inhibition to this class of drugs. (Fig. 8) 
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Figure 8. Schematic overview of paper II 

 
 

4.3 Paper III 
Cellular protection from arsenic compounds through control of global protein 
synthesis by TrxR1-mediated HRI kinase activation 
Bogdan Jovanovic, Belén Espinosa, Shawn M. Lyons, Nga Ly-Hartig, Tobias 
Dick, Elias Arnér and Georg Stoecklin 

 
Background 
Arsenic compounds are a potent health hazard associated with the development 
of many diseases including cancer. Paradoxically, some of these compounds are 
approved for the treatment of different types of tumor malignancies (253). These 
compounds induce their toxicity by oxidizing thiol groups (253). To try to overcome 
this type of insults, cells have developed a protective stress response diminishing 
their level of protein translation by activating HRI and therefore phosphorylating 
the translation initiation factor eIF2α (254). In this study we hypothesized that 
this protective mechanism is redox regulated. 
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Main findings 
 

• Trx system keeps HRI in its reduced state 
In this paper we showed that HRI redox status is controlled by TRP14, Trx and 
TrxR keeping HRI in its reduced form. Under exposure to arsenic compounds all 
3 enzymes lost their activity and reduction of HRI was inhibited which can acti- 
vate the HRI kinase activity. 

 
• TrxR is required for the ASN-induced translational stress response 
We could demonstrate that TrxR inhibitors led to HRI oxidation, eIF2α phospho- 
rylation, translation inhibition and stress granules formation. We could show for 
the first time that through its prooxidative function, TrxR1 regulates the activity 
of a substrate. 

 
Discussion 
In this study, we could confirm a direct link between the thioredoxin system and 
HRI activation. Our results show that several inhibitors of TrxR1 lead to HRI- 
dependent eIF2α phosphorylation, translation inhibition and stress granule for- 
mation. Furthermore, we found that TrxR1 co-immunoprecipitates with HRI, and 
that TrxR1 reduces HRI in vitro. Interestingly, TRP14 and Trx1 in vitro enhance 
the reducing activity of TrxR1 towards HRI indicating that several thioredoxin 
family proteins may participate in controlling the redox state of HRI. Given that 
the deregulation of protein synthesis is increasingly recognized as a mechanism 
that drives cancer progression, this redox-driven translational stress responses 
strategies to inhibit protein synthesis might be of use in anticancer therapy (Fig. 9). 

 
 

Figure 9. Schematic overview of paper III 



25  

4.4 Paper IV 
Thioredoxin related protein of 14 kDa (TRP14, TXNDC17) regulates NRF2, 
NFκB and HIF activities, and is essential for intracellular cystine reduction 
Belén Espinosa, Irina Pader, Marcus Cebula, Katarina Johansson, Elias S. J. Arnér. 

 
Background 
Cellular responses to diverse stimuli are often controlled by redox regulatory events. 
Thioredoxin-related protein of 14 kDa is a sparsely characterized member of the 
Trx system and a good substrate of TrxR1 (107). TRP14 has the ability of efficiently 
reducing L-cystine, nitrosothiols and persulfide moieties of proteins (112). TRP14 
is also known to support PTP1B activities and to indirectly counteract NFκB (113, 
120). Taking into consideration that TRP14 is an efficient redox active protein, 
here we asked if TRP14 is also functionally linked to NRF2, the main transcriptional 
regulator of the antioxidant system and to HIF, the oxygen dependent transcription 
factor that is also redox regulated and indispensable during hypoxic metabolism. 

 
Through the generation of a stable knockdown of TRP14 in HEK239 cells and 
using our previously developed pTRAF reporter plasmid. 

 
Main findings 
• Knockdown of TRP14 increases the activation of NRF2 and NFκB in 

normoxic and hypoxic conditions 
After transfecting the TRP14 knockdown cells with our developed reporter plas- 
mid we could observe the effect of TRP14 in the activation of the different tran- 
scriptional factors. Indeed, we could confirm the repression that TRP14 exerts in 
NFκB upon TNFα stimulation previously described but here we could see that 
effect remains in hypoxic conditions at a lesser extent. Furthermore, we observed 
that similarly to NFκB, TRP14 represses the activation of NRF2 after treating the 
cells for 24 hours with auranofin, both in normoxic and hypoxic conditions. 

 
• TRP14 is crucial for HIF activation upon TNFα stimulation during hypoxic 

conditions 
We furthermore tested the role of TRP14 in HIF activation. In normoxic conditions 
was unfeasible to determine the role of TRP14 in the regulation of HIF due its low 
activation at high oxygen concentrations. However, under hypoxic conditions TRP14 
proved to be indispensable specially after treating the cells with TNFα for 24 hours. 
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• TRP14 levels increased under hypoxia or TNFα treatment 
Here, in order to identify potential transcriptional factors that may modulate the 
expression of TRP14 we performed a bioinformatic analysis of the proximal 
TXNDC17 promoter region, we could find several potential binding sites for the 
transcriptional factors study here NFκB and HIF but none for NRF2 the main 
regulator of the antioxidant system. Interestingly, the levels of TRP14 expression 
increased after treating cells with TNFα and under hypoxia, however no changes 
were observed after treating the cells with auranofin, correlating with the initial 
promoter predictions and suggesting that TRP14 is a downstream target of NFκB 
and HIF but not of NRF2. 

 
• TRP14 knockout in HEK293 cells diminished global protein translation 
In order to determine if the complete abolition of TRP14 would further increase 
the effects of TRP14 on the transcriptional factors, we made a TRP14 knockout 
cell line. Surprisingly, when transfecting those cells with the pTRAF, all signals 
diminished significantly. These observations suggested that the lack of signal in 
these pTRAF experiments was related to global effects on protein translation rather 
than an effect in redox regulated transcription factors. 

 
To confirm this hypothesis, we performed a puromycin assay where we could see that 
the puromycinylated polypeptides in the TRP14 knockout cells decreased, showing 
inhibited protein translation. 

 
• Supplementation of the cellular media with methionine or N-acetylcysteine 
Based on previous findings in our group that TRP14 efficiently reduces cystine 
we speculated that perhaps a complete depletion of TRP14 leads to a major defi- 
ciency of cysteine inside the cell, which would be essential for protein synthesis. 
Since cells can alternatively obtain cysteine from methionine through the trans- 
sulfuration pathway we thus supplemented the cells with either methionine or 
NAC and we could observe that the effect of TRP14 knockout cells in protein 
translation was reverted 

 
• TRP14 knockout cells are highly sensitive to PPG in comparison to control 

cells 
To demonstrate that TRP14 knockout cells would be entirely dependent on the 
transsulfuration pathway as a cysteine source, we treated cells with 
propargylglycine (PPG), a cystathionase inhibitor to complete prevent the 
utilization of methionine as a source of cysteine. As expected TRP14 knockout 
cells showed signs of strong toxicity by PPG where normal cells were unaffected 
(Fig.10) 
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Figure 10. Schematic overview of paper IV 

 
 

Discussion 
In this study we have characterized the role of TRP14 in the regulation of NRF2, 
NFκB and HIF activities. We found that TRP14 can suppress NRF2 as well as NFκB 
activation, and that under hypoxic conditions TRP14 seems to be required for HIF 
activation as prompted by TNF-α stimulation. While TRP14 may be upregulated 
by both NFκB and HIF, no evidence was found of TRP14 being a NRF2 target. 
Most importantly, TRP14 seems to be an essential enzyme for utilization of intra- 
cellular cystine as a source of cysteine, suggesting that TRP14 has important roles 
in redox homeostasis. 
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4.5 Paper V 
Novel vinyl sulfone compounds are more specific NRF2 activators in the in 
vitro and in the central nervous system than dimethyl fumarate 
Karl E Carlström, Praveen K Chinthakindi, Belén Espinosa, Faiez Al Nimer, 
Katarina Johansson, Elias S J Arnér, Per I Arvidsson, Fredrik Piehl 

 
Background 
Dimethyl fumarate (DMF) is the first line of treatment for patients suffering from 
Multiple Sclerosis (MS) worldwide (255). It is known that NRF2 is a target of 
DMF, however its precise mechanism of action remains elusive. Due to the sig- 
nificant off-target effects of DMF and its poor ability to penetrate the blood-brain 
barrier, we hypothesized that by modifying certain moieties we could improve 
NRF2 specificity and increase the penetrance to the central nervous system. In 
this paper we evaluated the capacity of eight de novo synthesized vinyl sulfone 
compounds (CH-1to CH8) to activate NRF2 and other transcriptional factors in 
comparison to DMF. 

 
Main findings 
• CH3 is more specific to NRF2 compared to DMF as evaluated using pTRAF 

transfected cells 
Out of the eight de novo synthesized compounds that we evaluated using pTRAF, 
CH3 was the most promising candidate in comparison to DMF showing similar 
NRF2 activation but less off-target effects when measuring the activation of NFκB 
and HIF. 

 
• Transcriptional changes observed in human cells produced by CH3 and 

DMF are observed in rat glial cultures 
We treated oligodendrocytes with CH3 and DMF showing in both cases and increase 
in NRF2 expression in line like with previously observe results using pTRAF. 
However, this response varied in microglia cells when comparing CH3 and DMF. 

 
• CH3 and DMF affects numbers of pre-OLs and neurons after TBI 
Following TBI, DMF (but not CH-3) lowered systemic CD45+ cells. In addition, 
DMF also limited axonal degeneration following TBI compared to vehicle. 

 
In turn, CH-3 preserved or facilitated proliferation and differentiation of OLs 
following TBI compared to DMF and vehicle. 
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Discussion 
Here, we tested a series of novel vinyl sulfone compounds as compared to DMF 
through in vitro and in vivo models. We demonstrated that the best candidate, CH-3, 
was more specific activating NRF2 in contrast to DMF. The NRF2 specific effect 
is suggested to influence oligodendrocyte, specifically promoting proliferation of 
pre-myelinating cells. In contrast, CH-3 cannot reduce the concentrations of CSF, 
a nerve cell death biomarker in, suggesting that DMF has a neuroprotective off- 
target effect independent of NRF2. These observations suggest a potential 
therapeutic role of NRF2 inducing compounds in conditions such of demyelina- 
tion or brain trauma. 
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5 SUMMARY AND CONCLUSIONS 
Within this thesis we investigated different aspects of the Trx system in the con- 
text of redox signaling. 

 
In Paper I and Paper II we investigated the potential use of proteasomal inhibi- 
tors in anticancer therapy focusing with special interest in b-AP15 and other 
compounds containing an enone motif. These compounds are characterized by an 
inhibition of the 19S proteasome ubiquitinase, becoming a great alternative to 
those inhibitors of the 20S subunit, like bortezomib, that have developed high level 
of resistance. In Paper I we showed how b-AP15 increased the level of oxidative 
stress in the cells by inflicting direct damage in the mitochondrial and not being 
that phenomenon affected by the status of TrxR1. In Paper II we performed a 
large screening of compounds containing the previously mentioned reactive enone 
motif. Despite their claim high reactivity, we demonstrated that these compounds 
had a high selectivity towards the 19S DUB USP14. 

 
In Paper III, we showed how the Trx system can regulate cellular translation by 
redox regulating HRI. Furthermore, we showed that TrxR1 is required for Asn 
translational inhibition and for the first time we could show how TrxR1 regulates 
the activity of a substrate through its prooxidative function. 

 
In Paper IV, we elucidated the role of TRP14 as a specialized member of the Trx 
system with important roles in the regulation of several redox regulated transcrip- 
tional factors. Furthermore, we demonstrated the crucial role that TRP14 plays in 
the incorporation of cysteine into the cells, becoming the cells dependent on the 
transsulfuration pathway in its absence. 

 
In Paper V, we used our unique tool, pTRAF, to understand how different tran- 
scriptional factors intertwined when testing different drugs, helping us to design 
more specific drugs minimizing the off-target effects. 

 
In conclusion, with this thesis we have expanded the knowledge about the Trx 
System in redox signaling. We showed how TrxR1 could be an interesting target 
in anticancer therapy with specific activities despite its nucleophilicity. And we 
disclosed TRP14 as a dedicated modulator of several transcriptional pathways and 
how its presence in the cells is crucial for the intracellular reduction of cysteine. 
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