@ nanomaterials WW\D\Py

Article

Prediction of Thermo-Physical Properties of
TiO;-Al,O3/Water Nanoparticles by Using Artificial
Neural Network

Milad Sadeghzadeh 107, Heydar Maddah 2, Mohammad Hossein Ahmadi 3%, Amirhosein Khadang 2,
Mahyar Ghazvini 4, Amirhosein Mosavi 5%7/8*( and Narjes Nabipour %*

1 Department of Renewable Energy and Environmental Engineering, University of Tehran, Tehran 1439957131,

Iran; milad.sadeghzadeh@gmail.com
2 Department of Chemistry, Payame Noor University (PNU), Tehran P.O. Box, 19395-3697, Iran;
heydarmaddah@gmail.com (H.M.); Amirhossein.khadang77@gmail.com (A.K.)
3 Faculty of Mechanical Engineering, Shahrood University of Technology, POB- Shahrood 3619995161, Iran
Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road Boca Raton,
FL 33431, USA; m.ghazvini@alumni.ut.ac.ir
Kalman Kando Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary
Institute of Structural Mechanics (ISM), Bauhaus-Universitdt Weimar, 99423 Weimar, Germany
Thuringian Institute of Sustainability and Climate Protection, 07743 Jena, Germany
Department of Mathematics and Informatics, J. Selye University, 94501 Komarno, Slovakia
Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
Correspondence: mohammadhosein.ahmadi@gmail.com or mhosein.ahmadi@shahroodut.ac.ir (M.H.A.);
amirmosavi@uni-weimar.de (A.M.); narjesnabipour@duytan.edu.vn (N.N.)

O NN N G

check for

Received: 28 December 2019; Accepted: 29 March 2020; Published: 7 April 2020 updates

Abstract: In this paper, an artificial neural network is implemented for the sake of predicting
the thermal conductivity ratio of TiO,-Al,Os/water nanofluid. TiO,-Al,Oz/water in the role of an
innovative type of nanofluid was synthesized by the sol-gel method. The results indicated that
1.5 vol.% of nanofluids enhanced the thermal conductivity by up to 25%. It was shown that the
heat transfer coefficient was linearly augmented with increasing nanoparticle concentration, but its
variation with temperature was nonlinear. It should be noted that the increase in concentration may
cause the particles to agglomerate, and then the thermal conductivity is reduced. The increase in
temperature also increases the thermal conductivity, due to an increase in the Brownian motion
and collision of particles. In this research, for the sake of predicting the thermal conductivity of
TiO,-Al,Os/water nanofluid based on volumetric concentration and temperature functions, an artificial
neural network is implemented. In this way, for predicting thermal conductivity, SOM (self-organizing
map) and BP-LM (Back Propagation-Levenberg-Marquardt) algorithms were used. Based on the
results obtained, these algorithms can be considered as an exceptional tool for predicting thermal
conductivity. Additionally, the correlation coefficient values were equal to 0.938 and 0.98 when
implementing the SOM and BP-LM algorithms, respectively, which is highly acceptable.

Keywords: thermal conductivity; TiO,-Al,O3/water; nanofluid; artificial neural network

1. Introduction

Recently, numerous endeavors have been made in order to enhance the performance of various
applications with the help of nanotechnology [1-4]. As an illustration, it is practicable to reduce system
size or enhance the thermal performance of materials [5-8]. In this way, some investigations have been
implemented on the use of nanotechnology in thermal applications [9-19]. Additionally, some studies
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have focused on the prediction of the thermal conductivity ratio associated with various nanofluids
with the help of using experiments and artificial neural networks [20-31]. Vafaei et al. [32] predicted
the thermal conductivity ratio of MgO-MWCNTs/EG hybrid nanofluids by using ANN (artificial neural
network) at the temperature range of 25-50 °C. According to the results, the best performance belonged
to the neural network with 12 neurons in the hidden layer. Also, an investigation has been carried
out by Afrand et al. [33] to estimate the thermal conductivity of MgO/water nanofluid. Furthermore,
by implementing an ANN, convective heat transfer of TiO,/water nanofluid has been studied by
Esfe et al. [34]. As indicated in the results, the regression coefficient of the model for the Nusselt
number’s data is 99.94%. Azizi et al. [35] employed ANN to estimate the water holdup in different
layouts of oil-water two-phase flow. In another use of ANN, Azizi et al. [36] investigated the estimation
of void fraction in pipes with different inclination. ANN-based methods have this potential to give
high precision estimation which can be beneficial in real practice since the actual experiment is not
only so expensive but also very time-consuming.

On the other hand, the sol-gel process involving hydrolysis and condensation reactions of alkali
precursors is an appropriate method for the synthesis of ultra-fine metal oxide [37]. Different researchers
have used the sol-gel method in different conditions. Li et al. [38] added tetra-n-butyl titanate to
deionized water and hydrochloric acid or ammonia. After milling and drying the gel at different
temperatures, TiO, nanopowder was obtained. Zhang et al. [39] used the sol-gel microemulsion method.
They synthesized TiO, nanoparticles by hydrolysis of tetraizo titanium Prop Oxide with 80 Tween-Span
in a microemulsion and then calcined it is at different temperatures. The results show that the particles
are spherical. In some cases, the surfactant is used in the sol-gel process. Pavasupree et al. [40]
synthesized semi-porous TiO, nanoparticles by adding hydrochloride clarinylamine (LAHC) as a
surfactant to the precursor solution. The resulting powders were calcined for 4 h at 400 °C. In the same
way, Colon et al. [41] increased the specific surface area of the particles by adding activated carbon to the
solution. The XRD results showed only the presence of the anatase phase in the powders. Li et al. [37]
aged the gel for 12 h at 100 °C after drying it. The results showed that aging help to remove organic
compounds and influence atomic penetration and crystalline anatase. In 2014, SiO, nanoparticles were
synthesized by Oliveira et al. They used the polypropylene matrix in their research. Their results
showed that the production of inorganic nanoparticles in a polymer solution does not require solvent
through the reaction in the molten phase [42]. Moreover, the influence of adding Al,O3; and TiO,
nanoparticles into the drilling mud was studied by Ghasemi et al. [43]. The size of Al,O3 and TiO,
nanoparticles were 20 and 60 nm, respectively, and a concentration of 0.05 wt. %. Based on the obtained
results of temperature and pressure effects, the drilling mud rheological properties such as plastic
viscosity are decreased by increasing the temperature, nonetheless, the pressure rise augments these
properties. Additionally, the influences of pressure in low temperature outweighs in high temperatures.
Also, the effective electrical conductivity of Al,O3; nanoparticles was experimentally measured by
Ganguly et al. [44]. For examining the influences of temperature variations and volume fraction on
the electrical conductivity of Al,O3 nanofluids, experiments have been carried out as a function of
these parameters. As indicated in the results, the electrical conductivity increases significantly with
augmenting volume fraction and temperature. Nonetheless, the effective conductivity’s reliance on the
volume fraction is much higher than the temperature. Furthermore, some investigations have been
intensively carried out for increasing the nanofluids’ thermal conductivity with the help of applying
different kinds of nanoparticles [45,46].

The aim of this study is to investigate the thermo-physical properties of TiO,-Al,O3 nanoparticles
in water that can be employed as a coolant fluid with its improved thermal properties. This is
accomplished by conducting experiments on various volumes of nanoparticles in water. In this study,
special attention has been paid to the temperature effect on the nanofluid’s thermal conductivity.
The temperature’s influence on the thermal conductivity of TiO, nanofluid has not been reported
yet. Furthermore, the current investigation discloses the influence of temperature and nanoparticle
concentrations on the thermal properties of hybrid nanofluids. With the help of the experimental results
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obtained by this study, researchers can acquire exceptional information regarding the displacement of
nanofluid and its properties, in which appropriate theoretical models can be achieved in the future.

2. Test section

Synthesis of TiO,-Al,O3 Nanoparticles and Characterization

In this study, the sol-gel method was used to synthesize TiO;-Al,O3 nanoparticles prepared in
various percentages of Al;O3 (10-60). Two different solution samples were prepared for this nanofluid.
In the first sample, 0.1105 mol (2 g) of TiCl4 was dissolved in a solution that contains 10 mL of methyl
acetate, 10 mL of ethanolamine and 100 mL of ethanol, and stirred for one hour at room temperature.
Finally, a uniform suspension was produced. Then, AICl; was added to the solution in various
weights (0-100%) and the resulting solution was stirred for one hour at 80 °C. The second sample
solution was made up of 30 mL of n-hexane, 20 mL of ethanol, 4 mL of methyl acetate and 5 mL of
ammonium hydroxide. The second sample was added to the first sample and the solution was mixed
simultaneously to obtain the hydrogel. By adding the second sample, the viscosity of the hydrogel
increased. After the addition of the sample was complete, the solution was stirred at room temperature
for 48 h and then kept at room temperature for 12 h. After 12 h, with the help of water, the obtained gel
was washed to remove the chloride salts and then separated solids from it. The solids were washed
three times with distilled water and then placed in an oven for 3 h at 900 °C. Figure 1 shows the
schematic of nanocomposite synthesis.

TiOy/ALLO4
Nano
composite

Figure 1. Schematic of nanocomposite synthesis.

The preparation of nanofluid is the first step in changing the heat transfer efficiency. The preparation
of nanofluid by adding the nanoparticles to the base fluid should not be considered as a solid-liquid
mixture. Because the preparation of nanofluid requires special conditions. Some of these special
conditions include uniform and stable suspension, aggregation of particles and the lack of change
in the nature of the base fluid. Different methods are used to achieve these specific properties.
Various concentrations of nanofluids are prepared by using the equation below:

Wnp

@ (Volume concentration%) = wnpp+t @

Prp ' Puater
where py, and pugter represent the nanoparticles” density and water density, respectively. w is their
mass [5].

Nanofluids that are prepared by the two-step method should be stable and the particle should not
be sedimented in the fluid. Therefore, the nanofluid’s stabilization should be considered.

In this study, a magnetic stirrer was used for nanofluid stability. The agitation intensity is crucially
important for the nanoparticles” dispersion. The particles are connected to each other through bonds
and the weak bonds are broken with force. However, there is a forceful propensity in nanoparticles for
agglomerating because of the van der Waals force. We used the TEM analysis to evaluate the produced
nanoparticles (Electro Microscopy) (PHILIPS EM 208, FEI, Hillsboro, Oregon, USA). SEM analysis
was used to evaluate the morphology of synthesized nanoparticles. Figure 2 shows the SEM of pure
nanoparticles and nanocomposites.
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Figure 2. SEM images of nanoparticles after dispersion (20% alumina and 80% titanium).

According to the above, 20% alumina and 80% titanium were selected as samples for heat transfer
analysis (the main objective of this study is to improve the properties of TiO,). Therefore, adding more
alumina will keep TiO, away from its main. With the help of the TCi Thermal Conductivity analyzer
made by Canada’s C-Therm, the thermal conductivity of the nanocomposite has been calculated
experimentally. Also, the Brookfield Viscometer was used to measure the viscosity of prepared
nanofluid. Based on the manufacturer and the obtained results, the proposed approach for measuring
thermal conductivity brings an uncertainity of +2% with the deviation of 4% for each measurement.
The repeatability and accuracy of the viscometer used are +0.2% and +1% in the full-scale range
(FSR) of measurements, respectively. One noteworthy approach in the field of thermal analysis is
differential scanning calorimetry (DSC). This approach can be found in ASTM E1269. The ASTM E1269
is the standard defined procedure for measuring specific heat capacity through DSC approach. In this
research, the improved modulated-DSC approach is used to obtain the specific heats. In modulated-DSC,
a sinusoidal temperature fluctuation is employed instead of a linear ramp. This novel technique is
capable to calculate the heat capacity and the heat flow of the samples, simultaneously.

3. Results and Discussion

As shown in Figure 3, the specific heat capacity of the nanocomposite varied linearly within the
range 300-360 K. For temperatures of 300 K, the nanocomposite has a higher thermal capacity than its
components. At this temperature, the nanocomposite’s average heat capacity was 0.75 J/gK. In the
range of 300-360 K, the average heat capacity was 0.78 J/gK. Since the temperature of the heat transfer
analysis was mainly in this range, this number was chosen as the basis for our calculation.
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Figure 3. The results of the specific heat capacity of the nanocomposite.
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Based on the results, it can be said that in the initial intervals, the thermal conductivity of the
nanocomposite was within the range of its components. Because of the large number of Al,O3 particles
in the nanocomposite, the thermal conductivity of the nanocomposite was very close to that of Al;O3.
Based on Figure 4, the thermal conductivity coefficient was calculated to be 11.7 W/mK within the
range of 300-360 K.

60
so |2 A1203 ot
EA
TiO2-Al1203 MAAAAA AA
A
40 |6 Tio2 N ab
Q AAAM@ OO (@] o0 OO
T 30 pasaamies 2L L@ 20 D00
= 5 €0 0o PP
8
20 6
10 ; $0° ©
CI)@OOOO
0
300 320 340 360 380 400 420
T(K)

Figure 4. The results of the thermal conductivity coefficient of the nanocomposite.

The variations in the thermal conductivity of the nanofluid with respect to concentration are shown
in Figure 5. According to Figure 5, with increasing nanofluid concentration, thermal conductivity also
increased. It should be noted that overconcentration may be due to the agglomeration of particles
and the reduction of the thermal conductivity of the nanofluid. Increasing the temperature leads
to enhanced thermal conductivity. This is due to Brownian motion and an increase in the collision
of the particles with each other. Since the presented equations are not based on nanocomposite in
nanofluid, or the base fluid is not combined, it is not possible to match the data with this equation.
Here, the experimentally measured data is fit on the basis of temperature and concentrations to be
employed in heat transfer analysis.
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Figure 5. Variations in thermal conductivity coefficient of nanofluid with temperature and concentration

of nanoparticles.
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The relationships among the temperature, concentration, and thermal conductivity of the nanofluid
were obtained on the basis of the experimental data. In Figures 5 and 6, the 3D contour illustrates the
predicted data resulting from the experimental data. In the equations, x represents the concentration,
y represents the temperature, and z is the thermal conductivity coefficient.

* Kuvs.phi, T

0.7

« 065

0.6

Figure 6. (a) Contour plots, (b) 3D, and (c) proposed model for the thermal conductivity coefficient
(Temperature is in °C and phi (Volumetric Concentration (%)).

Linear model Poly55:
F(x, y) = p00 + p10 X x + p01 X y + p20 X x? + p11 x x X y + p02 X y? + p30 x x> + p21 x x?

Xy +Ppl2 X x X y2 + p03 X y2 + p40 x x* + p31 X33 X y + p22 X x**y? + pI13 x x X y> + p04  (2)
Xyt +p50 X x° + pal x x* Xy +p32 X x> X y2 + p23 x x2 X y® + pld X x X y* + p05 X y°
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Coefficients (with 95% confidence bounds):

p10 =3.494 x 1071 (1.966 x 1071, 5.022 x 1071)
p01 =7.815x 1073 (-1.715 x 1072, 3.279 x 1072)
p20 = —3.843 x 107! (-8.201 x 107!, 5.145 x 1072)
pll=-1.749 x 1072 (-2.926 x 1072, —5.721 x 1073)
p02 = —1.736 x 107# (~1.623 x 1073, 1.276 x 1073)
P30 = 4.467 x 1071 (—2.094 x 1071, 1.103)

p21 =8.337 x 1073 (-1.159 x 1073, 1.783 x 1072)
pl12=4.972x 1074 (7.729 x 107°,9.171 x 107%)
p03 =1.163 x 1076 (-3.839 x 1075, 4.071 x 107°)
p40 = -3.24 x 107! (~7.665 x 1071, 1.186 x 1071)
p31 =-4.751 x 1073 (~1.065 x 1072, 1.146 x 1073)
p22 = —4.931 x 1075 (-=2.011 x 1074, 1.025 x 107%)
pl13 =-7.265 x 107° (-1.401 x 107>, -5.195 x 1077)
p04 =1.758 x 1078 (-4.95 x 1077, 5.302 x 1077)
P50 = 8.486 X 1072 (—2.493 x 1072, 1.946 x 1071)
p41 =2.198 x 1073 (5.41 x 1074, 3.855 x 1073)
p32 = —2.4 x 1072 (=6.092 x 1073, 1.293 x 107°)
p23 =5.426 X 1077 (-5.136 x 1077, 1.599 x 107°)
pl4=3.898 x 1078 (-1.76 x 1077, 7.971 x 1078)
p05 = —2.131 x 10710 (=2.756 x 1077, 2.33 x 1077
p00 =4.794 x 1071 (3.199 x 1071, 6.388 x 107")

7 of 14

Figure 7 shows the effect of the increase of nanoparticles on the viscosity of the base fluid. As shown
in Figures 7 and 8, as the nanofluid concentration increases, the viscosity increases. These solid particles
in the base fluid increased the collision of particles, leading to an increase in viscosity. The equation
and the corresponding graph for viscosity are presented below.
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Figure 7. Viscosity variations of nanofluid with temperature and nanoparticle concentrations.

Linear model Poly55:

f(x,y)=pOO+plO><x+p01><y+p20><x2+pll><X><y+p02><y2+p30><x3+1:>21><x2
Xy +pl2 X x X y2 +p03 X y° + pd0 X x* + p31 X x> X y + p22 X x% X y?+ p13 X x X y° + p04
Xyt +p50 X x° + p4l X x* Xy + p32 X x> X y2 + p23 x x2 X y° + pld X x X y* + p05 x y°

Coefficients (with 95% confidence bounds):

®)
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P00 = 1.043 x 1073 (1.442 x 1074, 1.941 x 1073)
p10 = —1.066 x 107 (—9.675 x 1074, 7.544 x 107%)
p01 =4.699 x 1075 (=9.37 x 1075, 1.877 x 107%)
p20 = -5.178 x 1074 (-2.973 x 1073, 1.937 x 1073)
pl1=4.561 x 107° (-2.071 x 1075, 1.119 x 1074)
p02 = -3.333 x 107° (~1.15 x 1075, 4.832 x 107)
P30 =4.982 x 1074 (—3.198 x 1073, 4.195 x 1073)
p21 =2.274 x 107° (-3.076 x 107, 7.625 x 107°)
pl2=-2.283 x 107° (—4.649 x 107°, 8.235 x 107%)
p03 =6.58 x 1078 (~1.57 x 1077, 2.886 x 1077)
p40 = —2.457 x 107 (-2.739 x 1073,2.248 x 1073)
p31=-1.03 x 107° (-4.352 x 1075, 2.292 x 10~°)
p22=-3.773 x 1077 (-1.233 x 1076, 4.781 x 1077)
p13 =4.347 x 1078 (5.466 x 1077, 8.147 x 1078)
p04 = —4.355 x 10710 (=3.324 x 1077, 2.453 x 1077)
P50 = 4.998 X 1072 (—5.686 x 107, 6.685 x 107%)
p41=1.876 x 1070 (=7.46 x 1076, 1.121 x 107°)
p32=6.451 x 1078 (~=1.435 x 1077, 2.725 x 1077)
p23=2.166 x 1077 (-3.785 x 1077, 8.116 x 10~)
pl4 = -2.81 x 10710 (-5.105 x 10719, -5.151 x 10~1)
p05 =1.276 x 10713 (-1.42 x 101, 1.445 x 10~11)
Goodness of fit:

SSE: 2.306 x 1077

R-square: 0.9991

Adjusted R-square: 0.9979

RMSE: 1.24 x 10~

* Visvs. phi, T

® Visvs.phi, T

phi

(b)
Figure 8. Cont.
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—= untitled fit 1 - residuals

(©
Figure 8. Contour graphs (3D) describing the model’s (a to ¢) viscosity (Vis) distribution.

(T (temperature) and phi (Volumetric Concentration (%)).

The data were obtained from the experiment that were necessary to find a favorable relation
between output and input data, and these were the volumetric concentration and temperature of the
fluid, respectively. Table 1 presents the range of each of these input parameters.

Table 1. Input parameters’ range.

Parameter Range
Temperature (°C) 10-70
Volumetric Concentration (%) 0.25-6

The nanofluid’s thermal conductivity with respect to the base fluid is considered to be its thermal
conductivity ratio, which is an appropriate measurement of nanoparticles with respect to thermal
conductivity. As an illustration in SOM, competitive learning methods were developed based on
particular properties of the human brain and were used for training. The arrangement of the human
brain’s cells in a distinct area is precise and meaningful. As an example, the sensory inputs of hearing
or touch can contribute to an important geometric arrangement in distinct regions. Furthermore,
processor units are located in nodes in SOM. By considering input patterns, units are arranged in a
competitive learning approach. The units’ position is arranged so that a useful coordinate system is
created. Thus, a topographic map of the input patterns is created by the SOM in which units’ position
is associated with the input patterns’ intrinsic characteristics. As illustrated in Figure 9, the base
fluid’s hexagonal arrangement leads to the prediction of the nanofluid’s thermal conductivity ratio.
The arrangement of the number of neurons is implemented in 9 X 9 shapes. The overall number
associated with the neurons used is 81, with a neuron winner of 9 data. Thus, here, the neuron number
76 is the winner.

Radial basic networks are another kind of neural network. The comparison of baseline radius and
post back networks indicates that the former requires a greater number of neurons, and the design of
the latter requires more time. The performance of the former is exceptional under conditions in which
there are very large educational vectors. Meanwhile, the input layer does not perform any processing.
On the other hand, the hidden or second layer performs a significant part in converting nonlinear
patterns to linear separation patterns. Finally, in order to find an approximation, a summation function
with a linear output is produced by the third layer. Based on Figure 10, the correlation coefficient value
was equal to 0.93875, which is auspicious.
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Figure 9. The structure of the neurons used and the quantity of assigned data.

300

R =0.93875

2001

100+

-100+

thermal conductivity ratio
o

)
S
S

_30 I I I I
—900 -200  -100 0 100 200 300
thermal conductivity ratio

Figure 10. Correlation coefficient data based on investigating the predicted and experimental thermal

conductivity ratio.

A BP-LM network training algorithm with a two-layered neural network was used for modeling.
In this way, the nanoparticle size, volumetric concentration, and temperature were chosen as input
data. Furthermore, the thermal conductivity ratio coefficient was employed as the target parameter.
The sensitivity analysis is required for the number of neurons in the hidden layer. To achieve this
purpose through application of the trial and error method, the quantity of neurons associated with
the hidden layer was studied. As indicated in the Figure 10, the best performance belonged to the
network with 76 neurons in the hidden layer. The reason for which numbers of neurons greater than
76 are not more attractive is that augmentation of the number of neurons increases the runtime as well
as intensifying the possibility error in the model, even though exceptional outcomes are sometimes
achieved by augmenting the number of neurons. According to Figure 11, the quantity of 0.98 expresses
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the achieved correlation coefficient of the thermal conductivity ratio. The overall obtained data are
placed within the circumference of the diameter line. The correlation coefficient can be enumerated as
the most crucial predictive factor, such that better predictions can be made when this value is closer to
1. It can be clearly observed that the predicted and experimental data can be easily fitted, which is
evidence of exceptionally favorable network prediction using 76 neurons.

Validation: R=0.9812

Training: R=0.9916
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Figure 11. Results based on the correlation coefficient of thermal conductivity ratio. (a) Training,
(b) Validation, (c) Test, (d) totally).

4. Conclusions

Firstly, the TiO,-Al,O3 nanocomposite was synthesized. For the synthesis of nanocomposites,
the sol-gel method and TiCly and AICl3 compounds were used. The results of the analysis showed that
all synthesized samples had dimensions in the nano range. After the synthesis of the nanocomposites,
they were characterized by TEM. Adding alumina had a significant effect on the TiO; crystal size.
The main reason for this is the formation of a homogeneous mixture of Ti-O-Al bonds during the
sol-gel process. DSC (differential scanning calorimetry) was used to measure the specific heat capacity
of the nanofluid. The nanocomposite showed a higher thermal capacity than its components at
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300 K. A TC-Thermal Conductivity Analyzer (C-Therm Canada) was used to measure the thermal
conductivity of the nanofluid-containing nanocomposite. The results showed that the average thermal
conductivity was 11.7 W/mK. It should be noted that as the concentration of nanofluid increases,
the agglomeration of particles also increases; as a result, the thermal conductivity of the nanofluid
decreased. An increase in temperature also increases the thermal conductivity coefficient. Based on
the experimental data, the relationships among concentration, temperature, thermal conductivity and
viscosity were obtained. Finally, neural networks were used to predict the electrical properties of the
nanofluid. For this purpose, a neural network with a multilayer perceptron structure was used to
develop a model for estimating the thermal properties of nanofluids. In the end, the neural network
was able to predict thermal properties by a correlation coefficient of 98%.
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