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Abstract— The aggressive fungal attack is seriously 

threatening tree species in forests and woodlands in the UK and 

beyond. A lot has been said about the spread of disease and 

fungal attack on ash and oak trees in the United Kingdom and 

European countries. Within this context, Ground Penetrating 

Radar (GPR) has emerged as one of the most promising non-

destructive testing (NDT) methods for acquisition of 

information about the internal structure of trees in terms of 

defect and their root system architecture. Nevertheless, current 

research has shown that there exists limited information and in 

depth studies within this important area of endeavour. This 

review paper reports on the current advances made within the 

context of GPR applications in health monitoring and 

assessment of trees and tree roots. This paper also discusses and 

reports on new areas of development including, the reverse-time 

migration, the microwave tomography and the pattern-

recognition approaches within the signal processing and image 

analysis (interpretation) contexts.  
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I. INTRODUCTION  

Proper maintenance of the ecosystem and conservation of 
the overall climate conditions are strictly connected with the 
proper management, health monitoring and protection of 
forests [1]. To this effect, it is known that the actions of insects 
and diseases present a serious threat to tree health within 
European territories [2, 3] and may eventually lead to the 
complete extinction of certain tree species [4]. Within this 
context, the current greatest threats are undoubtedly the fungi 
provoking ash dieback and acute oak decline (AOD) [5], [6].  

First signs of the ash dieback disease in Europe date back 
to 1992, whereas it was first reported in the United Kingdom 
(UK) in 2012 [7]. Only a few ash species can resist to this 
disease, and it is predicted that the majority of these trees will 
die within the next two decades [8]. AOD is similarly very 
harmful in view of its rapid development within the UK area 
[6] and the level of aggressiveness that causes tree death 
within a short time frame, usually a few years [9].  

Within this context, an early-stage disease diagnosis is 
fundamental to identify decayed trees and provide timely 
remedial actions. A major challenge in this area of endeavour 
is that early decay can be located in the inner core of the tree 
without any visible signs of disease on the bark [10]. Tree 
decay usually develops internally along the stem as hollows or 
rotten woods and assume a cylindrical shape.  

In terms of available assessment methods for decay 
detection in trees, core-drilling is still the most used. However, 
the method is fully destructive and can induce further decay 
around the testing area [11]. To this effect, the use of non-
destructive testing (NDT) methods, such as resistograph 
testing [12], electrical resistivity tomography (ERT) [13], 
infrared thermography [14], ultrasound tomography [15, 16] 
and X-ray tomography [17] were reported in this area of 
endeavour. Within the available electromagnetic (EM) 
methods, microwave tomography has proven its viability [18]. 
Use of common offset GPR systems has been successfully 
proven for large-scale applications in forestry engineering, 
especially in regard to the monitoring of tree trunks [19]–[21] 
and root systems [22]–[26] (Fig. 1). 

A main constraint in terms of the application of GPR data 
processing techniques for tree trunk investigations is that 
traditional processing methods cannot be used due to the 
cylindrical-like configuration of the trunks and the internal 
anomalies. Also, it was questionable the full effectiveness of 
the available GPR processing techniques for the detection of 
decay in terms of type and location, such as early disease close 
to the bark, major decay within the tree core areas, bark 
inclusions etc. To this effect, this paper reports a review on the 
most recent advances achieved within the context of new data 
processing approaches in GPR for health monitoring of trees. 
In particular, the reverse-time (RT) migration approach, the 
microwave tomography approach and the pattern-recognition 
approach are discussed. In regard to the use of the RT and the 
microwave tomography approach in the present work, the case 
of a set of measurement profiles at a constant height and 
encircling the sections of the trunk is specifically considered. 
The pattern-recognition approach is instead discussed within 
the context of detecting root system architecture. 
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Fig. 1. 2-D planar view (a) and 3-D rendering (b) of the root system 
architecture invesitgated in [27]. 

II. THE REVERSE TIME-MIGRATION APPROACH 

Reverse-time (RT) migration is based on the exploding 
reflector model. The latter assumes that subsurface targets can 
be approximated by equivalent sources that are triggered when 
reached by the incident field [28]. Consequently, propagating 
the received fields back in time -using the right 
electromagnetic velocity model- will force the fields to 
collapse at the location of potential scatterers [28]. 

As an example, in the paper proposed by [29], the received 
fields are propagated back in time using the Finite-Difference 
Time-Domain (FDTD) method. A 2D configuration has been 
chosen in order to reduce the computational requirements. The 
employed spatial step equals with  while 
the time-step was chosen based on the Courant limit [29]. The 
boundaries of the grid are truncated using the time-
synchronised convolutional perfectly matched layer [30] with 
ten layers thickness. The velocity is assumed to be 
homogenous within the trunk and is estimated indirectly based 
on focusing criteria [28]. In particular, a criterion exploiting 
the entropy of the retrieved image is used in order to choose 
what is the most focussed reconstructed image on dependence 
of the dielectric permittivity of the homogeneous background 
[28]. To compensate the two-way travel time, the simulated 
velocity should be half the actual one. Therefore, the 
implemented permittivity has to be four times higher than the 
estimated bulk permittivity of the trunk [31].  

The FDTD grid is excited by multiple sources that are 
placed at the position of the measurements. The waveforms of 
the sources are the received signals reversed in time after 
applying time-zero correction, time-varying gain and a 

singular value decomposition filter [31]. Notice that the 
reversed received field should be interpolated in order to be 
synchronous with the time-step of the employed FDTD [31].  

Finally, the migrated image is subject to a post-processing 
scheme in order to remove migration artefacts and 
furthermore increase the overall signal-to-clutter ratio. The 
focussed fields are initially squared and subsequently 
smoothed using a Gaussian blur filter [31]. 

RT migration has been successfully validated using both 
numerical and experimental data (Fig. 2). Artificially created 
decay of various sizes were successfully detected regardless 
of their position [31]. Larger decay were more clearly 
detectable while smaller decay required a more exhaustive 
pre-processing in order to remove the ringing noise due to the 
layered nature of the trunk [31]. 

III. THE MICROWAVE TOMOGRAPY APPROACH 

The microwave tomography approach used within the 
context of tree health monitoring is based on a linearised 
model of the EM scattering exploiting the Born 
Approximation (BA) [32]. It is known that BA allows for a 
quantitative reconstruction of the targets only in the case of 
anomalies with a weak electromagnetic contrast compared to 
the host medium. In case the assumption of weak scattering 
does not hold, an inverse scattering approach based on BA can 
be still used to detect, locate and gain an estimation of the 
geometrical shape of the targets [33].  

In the research presented in [34] and [35], an inverse 
scattering approach exploiting a multi-monostatic/multi-
frequency configuration (which is the typical configuration 
for a GPR survey) is adopted. A 2D geometry is considered 
where the measurement points are located on a domain at a 
constant height and encircling the slice of the trunk under 
investigation. The host medium (inside of the trunk) is 
assumed as homogeneous and characterised by an equivalent 
dielectric permittivity. 

The unknown of the problem is the contrast function 
accounting for the relative difference in the dielectric 
properties of the targets [32, 33]. More specifically, solution 
is given under the form of a spatial map (image) of the contrast 
function for the inner region of the trunk. Information about 
the location and the geometry of the targets are retrieved at the 
areas of the trunk with the highest values of the amplitude of 
the contrast function. 

 

Fig. 2. Two tree samples and their corresponding reconstructed internal 
structure using reverse-time (RT) migration. The artificially created 
decay are highligted with circles [31]. 



In regard to the results presented in [34] and [35], the raw 
data are collected in the time domain whereas the input data 
to the inverse scattering approach are given in the frequency 
domain. To this effect, a pre-processing stage on raw data (in 
time domain) is required to achieve the input data (in 
frequency domain) to the inverse scattering approach. The 
pre-processing accounts for the following steps: 

• zero timing; 

• time-gating;  

• background removal; 

• linear gain versus time (depth); 

• Fourier transform of the filtered raw data. 

The tomographic inversion is performed after the pre-
processing stage. More in detail, a Truncated Singular Value 
Decomposition (TSVD) is applied to make the linear 
inversion, as a regularisation scheme in order to obtain a 
robust and physically meaningful solution [32, 33]. Results 
have proven effective in identifying and locating all the 
targets. Specifically, it was observed that reflections from 
targets closer to the bark are stronger than the reflections from 
targets located more internally in the cross-section [35]. 

IV. THE PATTERN-RECOGNITION APPROACH 

Tree roots in GPR images are usually represented by 
hyperbolic patterns, comparable to other linear objects such as 
pipes and cables. Methods for automatic recognition of these 
mainly linear objects in GPR images can be classified mainly 
into three types: machine learning based methods, clustering 
based methods, and Hough transform (HT)-based methods 
[36]. Machine learning approaches usually require a training 
process, and the accuracy of recognition results depends on 
the quality and quantity of the training data [37]-[39], which 
limits the application. Traditional clustering methods usually 
require prior knowledge on the number of the clusters, and are 
not able to detect noisy and interfering hyperbolas. The 
authors in [40], [41] developed an algorithm named GamRec 
to handle these problems. However, it was only tested in 
synthetic radargrams, its application accuracy in practical 
radargrams is still unknown. Conversely, the HT is a typical 
algorithm to detect hyperbolic patterns in GPR images. The 
HT algorithm was first proposed in 1962 by Hough for 
detecting imperfect curves with certain shapes [42], [43]. It is 
based on the transformation from a variable-space to the 
parameter-space. The randomized Hough transform (RHT), as 
one of the popular variants of the Hough transform [44]-[46], 
applies random sampling and converging mapping strategy to 
overcome the drawbacks of Hough transform regarding 
computational cost, detection accuracy, and resistance to noise 
[45], [46]. As a result, the RHT has been applied widely in 
actual automatic recognition of landmines and pipelines in 
GPR images [47]-[50]. 

Although the Hough transform class method has been 
applied successfully for the automatic recognition of objects 
such as buried pipes and cables in GPR images, few works 
have been done to evaluate this method in the identification of 
underground root systems [51]. Thus far, the influence of root 
system features on the pattern recognition on GPR images 
remains unclear. Although a single root and a single pipe share 
similar hyperbolic pattern on GPR image, root systems 
possess more complex characteristics than underground pipes 
or cables: (i) the size and depth of roots are uncertain; (ii) the 

directions and angles of root stretching are variable; (iii) the 
distribution range of root systems is not certain; and (iv) the 
soil environment where roots grow is more complex. These 
factors render the automatic identification of root systems 
more difficult than pipes in GPR images. Nonetheless, the 
work in [52] applies the RHT for the automatic recognition of 
root signals in GPR images in both controlled and in situ 
experiments. The results show acceptable accuracy for most 
of the datasets with a recognition rate of approximately 80% 
and a false alarm rate of less than 1.5/m. More recently, the 
research in [53] represents the first study that combines direct 
measurements of permittivity and GPR forward modelling 
techniques. Harvesting and measurement of tree root 
permittivity is possible, though the process is time-consuming 
and must be done carefully. The contact between root segment 
and probe remains a potentially problematic issue, although 
this can be overcome by collecting a large number of 
measurements and removing any potential outlier. Future 
research should focus on including correlations between GPR 
signals characteristics (e.g. time delays, amplitudes, frequency 
peaks) and trees and root trees conditions. 

V. CONCLUSIONS AND FUTURE PROSPECTS 

This paper reports a review on the current advances made 
within the context of GPR applications in health monitoring 
and assessment of trees and tree roots. This paper also 
discusses and reports on new areas of development including, 
the reverse-time (RT) migration, the microwave tomography 
and the pattern-recognition approaches within the signal 
processing and image analysis (interpretation) contexts.  

In particular, the RT migration approach and the 
microwave tomography approach have proven to be viable to 
detect decay of various size and at different locations within 
the trunk cross-section. The pattern-recognition approach 
discussed in this paper is potentially deployable for improving 
state-of-the-art research within the context of mapping tree 
root system architecture. 
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