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ABSTRACT 

 

 

 Seismic events may drastically damage buried pipelines affecting economy and 

public safety.  Traditionally, buried pipelines are bedded and backfilled with compacted 

soils, which is labor intensive, time consuming, and could be a safety hazard to workers.  

Many studies have shown that achieving a proper compaction level around pipelines can 

be a difficult task.  Improper compaction can greatly reduce performance of the pipelines 

under loads. 

Controlled Low-Strength Materials (CLSM) is a group of cementitious materials 

that can be used as an alternative to compacted soils to backfill pipelines.  These mixtures 

are highly flowable in their fresh state and are solid in the final state providing a uniform 

support around pipelines.  Although there is considerable research about the advantages 

of using CLSM to backfill pipelines from construction point of view, there is no research 

on the performance of pipelines embedded in CLSM subject to seismic loads.  In this 

research, 3D FEA was conducted using ABAQUS software to determine the 
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performance of buried steel pipes backfilled with CLSM when subjected to seismic wave 

propagation and reverse-slip fault rupture. 

Under seismic wave propagation, the study started by evaluating the ASCE 

guidelines and its design limitations.  Then, several FE model parameters were evaluated 

for their effects on FE model results.  After setting the model parameters to match the 

predicted stresses by the ASCE guidelines, the developed FE model was used to evaluate 

the pipe seismic performance with various soil and CLSM backfill materials.  Both linear 

and non-linear material behavior were considered in this study. 

Under seismic fault rupture, the study developed a 3D FE model matching results 

from a full-scale testing performed by others.  Various FE model parameters were also 

evaluated.  Then, the developed FE model was utilized to determine the pipe seismic 

performance of CLSM mixture compared to compacted soil backfill. 

Results indicated that for 3D FEA pipe seismic analysis, FE model parameters 

can have a significant effect on the results.  In addition, with a proper design buried steel 

pipe embedded in CLSM backfill with all its inherent advantages can perform as well as 

or better than soils in seismic prone areas. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Overview and Background 

1.1.1 Introduction 

Buried steel pipelines are often used to transport materials such as oil, gas, and 

other fluids.  According to [1], there is more than 2.4 million miles of energy pipelines 

network installed in the United States, the largest network in the world, with almost the 

entire system being buried pipelines.  Buried pipelines extend into a wide range of 

geologic conditions as well as different seismic zones.  Different seismic events such as 

permanent ground deformation, liquefaction, landslide, fault rupture, or wave 

propagation could cause failure of buried steel pipelines with drastic impacts on 

economy and public safety. 

Traditionally, buried steel pipelines are bedded and backfilled with several layers 

of compacted soils, as shown in Figure 1. 

 

Figure 1: Conventional buried pipe installation 
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This construction method is labor intensive and time consuming.  Many studies, e.g. [2], 

have shown that achieving a proper soil compaction level around pipelines, especially in 

the haunch zone, can be a very difficult task.  Improper compaction could potentially 

result in pipe settlements and can greatly reduce performance of the pipelines under 

loads.  In addition, a wider area of excavation would be required to accommodate 

workers and equipment for pipe installations, and with a limited working space it could 

be safety hazards on workers.  

1.1.2 Controlled Low-Strength Material (CLSM) 

With several drawbacks on the conventional pipe installation method, Controlled 

Low-Strength Material (CLSM) has been increasingly used as an alternative to 

compacted soils to backfill pipelines.  Other CLSM applications include void filling, 

pavement base, structural fill, bridge approach backfill, etc.  Figure 2 shows a typical 

pipe installation with CLSM backfill. 

 

Figure 2: Buried pipe with CLSM backfill 
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CLSM, frequently referred to as flowable fill, is a group of self-consolidating 

cementitious materials that are highly flowable in their fresh state and are solid in the 

final state providing a uniform support to pipelines.  CLSM mixtures typically consists 

of cementitious materials, fine and/or coarse aggregates, and water.  There are a large 

number of studies that successfully include several waste materials and by-products in 

CLSM mixture such as fly ash, quarry fines, synthetic gypsum, foundry sand, cement 

kiln dust, wood ash, scrap tire, etc. [3-5].  As stated in the American Concrete Institute 

(ACI) committee 229 report [6], CLSM is being used more and more as a backfill 

material for buried pipes due to its inherent advantages compared to compacted soils.  

Some of the advantages include shorter construction time, less inspection required, ease 

of placement, improvement in worker safety and pipe settlement, and being 

environment-friendly materials.  Although using CLSM a backfill material for 

underground pipelines has several benefits, their performance in seismic zones are not 

sufficiently evaluated. 

1.1.3 Seismic Phenomena 

There are several reports available, e.g. [7-9], regarding pipeline damages caused 

by different earthquake events.  Seismic wave propagation and permanent ground 

deformations are among the causes of underground pipeline failures.  Permanent ground 

deformations can occur in several forms, such as fault rupture, liquefaction, settlements, 

and landslide.  Based on a study by Eguchi [10] evaluating the pipeline damages as a 

result of the 1971 San Fernando earthquake, it concluded that almost half of the total 

damage occurred in the areas where fault rupture was observed.  Therefore, this study 
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mainly focused on buried pipelines subject to seismic wave propagation and seismic fault 

rupture. 

1.1.3.1 Seismic Wave Propagation 

An earthquake event generates seismic waves that propagate through the earth’s 

crust.  According to [11], there are two major wave type; 1) body waves and 2) surface 

waves.  Body waves consist of P-wave, also known as compressional wave, and S-wave, 

or secondary wave.  P-wave is the fastest of all wave types and can travel through any 

medium.  S-wave is slower than P-wave and can only travel through solid medium.  

There are two types of surface waves; 1) Love waves and 2) Rayleigh waves.  Just like 

its type, surface waves travel at the ground surface with side-to-side action for Love 

waves travel at the ground and with the combined actions, up-down and side-to-side, for 

Rayleigh waves.  Figure 3 shows types of seismic waves.[12] 

In this study, the selected earthquake event was Loma Prieta earthquake occurred 

on October 17, 1989 in San Francisco Bay area.  The seismic ground acceleration records 

were obtained from Center for Engineering Strong Motion Data (CESMD) [13].  The 

earthquake was caused by a slip along San Andrea fault with the recorded magnitude of 

6.9.  Figure 4 shows time-history of ground displacement, velocity, and acceleration in 

all directions for this earthquake event at the record station on Eureka Canyon Road in 

Corralitos, California [13].   
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Figure 3: Types of seismic waves [12] 

 

Figure 4: 1989 Loma Prieta earthquake seismic record [13] 
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1.1.3.2 Seismic Fault Rupture 

Fault rupture is the displacement that happens as a result of a sudden movement 

of the earth’s crust.  Fault ruptures are categorized by the direction of movement, such 

as normal-slip, strike-slip, reverse-slip, and oblique-slip fault, as shown in Figure 5. 

 

Figure 5: Seismic fault types [14] 

Various researchers studied pipelines subjected to different fault rupture types.  

In 1975, Newmark and Hall [15] proposed a simplified analysis method for a pipeline 

subject to a strike-slip fault using a beam-type approach considering only pipe tensile 

strain.  Their approach was extended by Kennedy et al. [16] in 1977 considering flexural 

deformations and soil-pipe interface lateral interactions.  Wang and Yeh [17] further 

developed this analysis in 1985 with a beam on elastic foundation approach.  In 1998, 
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Takada et al. [18] studied pipeline response to normal and reverse faults and found that 

pipelines are more vulnerable to reverse fault due to local buckling.  Failure analysis of 

a pipe crossing a fault is very complex.  It involves several factors such as soil-pipe 

interaction, material nonlinearity, large deformations, and local failures.  Due to this 

complexity several researches, e.g. [19-21], also utilized a three-dimensional (3D) finite 

element analysis (FEA) approach to analyze performance of underground pipelines 

subjected to a fault rupture. 

1.1.4 Finite Element Modeling 

ABAQUS software was used in this study to create 3D FE models for analyzing 

buried steel pipelines embedded in CLSM when subjected to seismic wave propagation 

as well as reverse-slip fault rupture.  Linear and nonlinear material behaviors were 

considered.  For linear (or elastic) analysis, three material properties are required; 1) unit 

weight, 2) Young’s modulus (E), and 3) Poisson’s ratio (υ).[22]  For nonlinear (or 

inelastic) analysis, three material constitutive models were considered; 1) Mohr-

Coulomb plasticity model, 2) Drucker-Prager model, and 3) concrete damaged plasticity 

(CDP) model.  According to [22], Mohr-Coulomb plasticity model uses the classical 

Mohr-Coulomb yield criterion.  It allows the material to harden and/or soften 

isotropically, and is suitable in several geotechnical engineering applications.  Drucker-

Prager model is applicable for the material that becomes stronger as the pressure 

increases (or pressure-dependent yield).  It also allows for volume change with inelastic 

behavior.  Concrete damaged plasticity model is often used for modeling concrete or 

quasi-brittle materials.  Seismic wave propagation was applied in FE models by using 
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body force that considers the mass of defined materials with applied ground acceleration 

time-history of the selected earthquake event in any direction (X, Y, or Z).  For reverse-

slip fault rupture, displacements were applied in the upward direction along the fault 

plane.  In all FE models, seismic loads were applied after application of gravitational 

forces. 

1.2 Research Objective 

The main research objective was to improve earthquake resistance of buried 

pipelines preventing loss to human life as well as reducing economic impact by: 

 Evaluating the use of CLSM mixtures to backfill pipelines with its inherent 

advantages for equal or better earthquake resistance compared to conventional 

compacted soil backfill. 

 Providing recommendations on 3D FE modeling parameters and material 

properties of CLSM for optimum earthquake resistance. 

1.3 Scope and Rationale 

This study utilized finite element analysis in a 3D domain using ABAQUS 

software to determine the performance of buried steel pipes embedded in CLSM backfill 

compared to compacted soil backfill.  At the beginning, literature review was conducted 

to evaluate studies previously performed regarding this subject.  Then, buried pipes 

embedded in soil and CLSM backfills subject to two types of seismic failure modes were 

analyzed, 1) seismic wave propagation and 2) seismic reverse-slip fault rupture.   

For buried pipes subject to seismic wave propagation, the study started by 

evaluating the existing ASCE guidelines for seismic design of buried pipelines and its 
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design limitations.  The 3D FE models with elastic material behavior matching design 

assumptions in the ASCE guidelines were developed to investigate the seismic 

performance of a straight pipe axially free at both ends.  Several FE model parameters 

were evaluated for their effects on a pipe stress prediction, including soil-pipe 

interaction, boundary condition, FE model dimensions, friction coefficients at interfaces, 

relationship between soil spring stiffness and material Young’s modulus, and FE model 

dimension scale factor.  After setting the FE model parameters to match the axial stress 

predicted by the ASCE guidelines, the developed FE model was then utilized to evaluate 

the pipe seismic performance of various soil and CLSM backfill materials.  In addition, 

the developed FE model was used to investigate the pipe seismic performance of other 

conditions that are not addressed in the ASCE guidelines, such as the effect from three-

directional seismic wave applied simultaneously or the effect from pipe having a rigid 

connection at one end.  Next, the effect on the pipe axial stress from non-linear material 

behavior was investigated including the discussion on various FE model parameters in 

inelastic range, such as the use of soil spring stiffness or dashpot element at FE model 

boundaries. 

For buried pipes subject to seismic reverse-slip fault rupture, the study first 

developed a 3D non-linear FE model with model parameters matching a full-scale 

laboratory testing performed by Jalali et al. [23].  Those model parameters included FE 

model dimensions, steel pipe diameter and thickness, pipe and soil backfill properties, 

boundary conditions, and total applied fault movement.  Maximum pipe longitudinal 

strain, maximum pipe deformation, and pipe deformation shape were compared to 
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experimental data reported by [23] for FE result verifications.  Various FE model 

parameters were evaluated for their effects on FE model results including CLSM trench 

continuity through a fault plane and CLSM-pipe interaction.  Then the developed FE 

model was further utilized to evaluate the pipe seismic performance for pipes with CLSM 

backfilled compared to soil backfill.  Other variables affecting the pipe seismic 

performance were also investigated, such as material shear strength, material Young’s 

modulus, and pipe diameter-to-thickness ratio. 

1.4 Research Significance 

Although consequences of pipe failures during a seismic event could be 

catastrophic, the available ASCE guidelines are limited in assumptions and are only valid 

for buried pipes in compacted soil backfill under seismic wave propagation.  This study 

discussed the effects of several parameters of 3D FE models on stress predictions and 

established an FE model matching the ASCE guideline.  The developed FE model was 

then used to analyze the seismic performance of pipes with various CLSM backfills and 

provided a design tool to engineers to use in conditions that cannot be analyzed with the 

ASCE guidelines.  In addition, this study evaluated the seismic performance of steel 

pipes embedded in CLSMs when subjected to a reverse-slip fault including the 

discussion on the effect of various FE model parameters.  This type of analysis has not 

been previously performed.  The research findings provided a more complete 

understanding of seismic performance of underground pipelines backfilled with CLSM 

and assist design engineers in specifying CLSM mixtures for backfilling applications. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter discusses research in the literature that has been previously 

conducted on using CLSM as a backfill material.  The literature on a buried pipeline 

response under seismic loads is also reviewed.  This chapter is divided into three sections 

that mainly focus on 1) CLSM backfill applications, 2) seismic performance of buried 

pipelines, and 3) conclusion. 

2.1 CLSM Backfill Applications 

 CLSM as a backfill material has been used in several applications, such as pipe 

backfill, pavement base, and bridge abutment backfill.  Many studies on CLSM backfill 

applications have been performed utilizing different analysis methods, including full-

scale testing, numerical analysis, and finite element analysis.  The literature was 

reviewed and is summarized below. 

In 1997, Zhan and Rajani [24] utilized 2D plane strain FEA to determine 

performance of buried pipelines embedded in different backfill materials, including soil 

and CLSM, subjected to traffic loads.  The research objectives were to compare FE 

model results to previously collected field test data and to assess the effect on pipe 

performance from various pipe embedment depths.  One-half of FE models was created 

due to the model symmetry.  The pipe was modeled as an elastic material, but nonlinear 

constitutive model Drucker-Prager was utilized for soil and CLSM backfill materials 

accounting for material nonlinearities.  Soil-pipe interaction was modeled with a jointed 

material option in ABAQUS defining a material failure with parameters such as friction 
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angle, dilation angle, cohesion, and temperature.  This approach is different from our FE 

modeling techniques and could have incurred additional errors due to variations in 

jointed material properties simulating this interface.  Based on results, FE models 

predicted higher pipe hoop strain, which could be from 2D plane strain analysis.  Results 

indicated that pipe embedded in CLSM yielded a lower stress and a decrease in pipe 

embedment depth compared to pipe embedded in conventional soil backfills. 

Masada and Sargand [25] conducted a study on the structural performance of 

High Density Poly-Ethylene (HDPE) pipe using CLSM as a pipe backfill. The buried 

pipe was backfilled with several lifts of CLSM and was subjected to surcharge loads.  

This study included results from field experiment as well as results from FEA.  

Laboratory testing on CLSM properties was previously performed and were used for 

CLSM properties in FEA.  It was assumed that there was no separation between CLSM 

and pipe considering fully bonding to the pipe from CLSM.  This approach is different 

from our research that soil-pipe separation was considered.  The assumption of no 

separation may be valid for some scenarios, e.g. under surcharge loads or small 

anticipated deflections/stresses, but it may not be applicable for an interface subjected to 

seismic loads since large ground movements are likely to occur.  FE model parametric 

study was not performed.  The results showed that FE models over-predicted the pipe 

deflections and stresses, which could have been caused by variations in CLSM material 

properties used in the field and in the FE models.  Results also indicated that under 

loadings pipe installed in CLSM backfill experienced lower deflections and stresses 

compared to pipe installed in conventional soil backfill. 
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In 2014, Dezfooli et al. [26] carried out field tests on a large steel buried pipeline 

backfilled with CLSM subjected to compaction forces during installation.  Three steel 

pipes, 84-inch pipe outside diameter (D), embedded in three different trench 

configurations were tested using CLSM as a pipe bedding and pipe backfill.  Trench 

configurations included 1) trench width of (D + 36”) backfilled with CLSM up to 0.3D 

for Test 1, 2) trench width of (D + 12”) backfilled with CLSM up to 0.7D for Test 2, and 

3) trench width of (D + 18”) backfilled with CLSM up to 0.7D for Test 3.  After CLSM 

backfill placement, the trenches were backfilled with compacted native soils on top of 

the CLSM layer up to the ground surface.  3D nonlinear finite element models were also 

developed in this study.  Native soil materials were modeled using Mohr-Coulomb 

constitutive model and CLSM was modeled with Concrete Damaged Plasticity model.  

Lateral loads induced by compactions were calculated based on at-rest lateral pressure.  

Loads were then applied to FE models using the equivalent thermal loading based on 

material thermal expansion coefficients and followed by surcharge load.  Field test 

results were in agreement with results obtained from the FE models indicating that the 

developed FE model could be further used to predict pipe performance in different 

backfill materials as well as different trench configurations. 

Alizadeh et al. [27] performed a full-scale laboratory test of a bridge abutment 

backfilled with CLSM subjected to surcharge loads.  The study also carried out a 

nonlinear 3D FEA to be compared with experimental results in terms of bearing pressure, 

vertical and lateral displacements, and axial forces in anchors.  CLSM was modeled with 

Concrete Damaged Plasticity constitutive model.  After the result verification, the 
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developed FE model was then used to evaluate the influence on structural performance 

of the bridge abutment from various CLSM curing age and curing temperature.  Results 

showed that bearing pressure of the bridge abutment increased as CLSM cured longer 

and at higher temperatures, which is the influence from CLSM compressive strength.  In 

our research, CLSM curing age and curing temperature were not considered.  CLSM 

properties at 28-day were utilized. 

In 2018, Abdel-Rahman et al. [28] conducted a study on buried pipes embedded 

in CLSM backfill subjected to traffic loads.  Finite element analysis (FEA) in a 2D 

domain, plane strain, was utilized for this study.  FE model dimensions were provided, 

but there was no discussion on the process used to select FE model dimensions.  Mohr-

Coulomb constitutive model was used for both CLSM backfill and in-situ surrounding 

soils.  Mohr-Coulomb constitutive model is commonly used for considering material 

nonlinearities in several studies, especially for granular soils, and was also utilized in our 

FE models.  Soil-pipe interaction was modeled with friction contact.  This same soil-

pipe interaction was implemented in our research.  Two pipe types, concrete and flexible 

PVC pipe, were considered in the study.  Results indicated that pipe vertical stress, 

horizontal stress, and bending moment on flexible PVC pipe from traffic loads were 

generally lower than concrete pipe.   

2.2 Seismic Performance of Buried Pipelines 

2.2.1 Buried Pipelines Subjected to Seismic Wave Propagation 

Design guidelines are available for researchers to design buried pipeline 

subjected to seismic wave propagation.  Other analysis methods, including numerical 
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analysis and finite element analysis, are also available for assessing buried pipeline 

performance.  The literature was reviewed and are summarized below. 

In 1984, American Society of Civil Engineers (ASCE) published the Guidelines 

for the Seismic Design of Oil and Gas Pipeline Systems [29].  The document provides a 

detailed background of seismic hazards and design guidelines and considerations for 

both aboveground and buried pipelines.  For buried pipelines, different seismic failure 

modes are discussed including seismic wave propagation and permanent ground 

deformation.  The analysis method outlined in ASCE guideline for pipes under seismic 

wave propagation was adopted from a study by Newmark [30].  This method assumes a 

straight buried pipe axially free at both ends.  The analysis method was applicable only 

for pipelines embedded in soils.  In addition, it cannot be used with pipelines subjected 

to three-directional seismic waves or pipelines rigidly connected to a structure at one 

end. 

Lee et al. [31] analyzed buried steel pipeline under seismic wave propagation 

utilizing FEA for both straight pipe and pipe with bend configurations.  Soil-pipe 

interaction was modeled with a series of nonlinear soil springs, which is different from 

our FE modeling techniques that use friction contact.  Multi-directional seismic wave 

was also considered for various earthquake events.  Only pipes embedded in soils were 

analyzed.  The effect on pipe response from several FE model parameters, including pipe 

types, end conditions, soil characteristics, and pipe embedment depths was evaluated.  

Results showed that pipe strain at the fixed end was always higher than the pinned end, 
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and was approximately 10 times higher than the strain at the mid-length of the pipe.  In 

addition, pipe strain decreased with a larger pipe embedment depth. 

In 2010, Lee [32] performed a study on a flexible buried pipeline under traffic 

load and seismic wave propagation using FEA in a 3D domain.  Parametric studies on 

FE model mesh size, pipe length, and pipe embedment were also performed.  The study 

was limited to pipelines embedded in soils.  Mohr-Coulomb constitutive model was 

utilized for surrounding soils.  The study assumed fully bonded interface for soil-pipe 

interaction, which does not allow pipe sliding or separation.  This soil-pipe interface 

assumption is not realistic and may be too conservative since all seismic loads from wave 

propagation would be transferred to the pipe.  Results showed that as the pipe was 

installed with a greater embedment depth, the pipe settlement decreased under traffic 

loads.  Also, pipe stress was generally higher at the fixed end compared to the free end. 

 Yang and Zhang [33] conducted a study on a concrete buried pipeline embedded 

in various soil types subjected to three-dimensional seismic wave propagation.  This 

study also assumed that there is no slip between soil and pipeline whereas our research 

utilized friction contact allowing slip and separation.  Although the study considered 

three-dimensional seismic wave, each seismic wave direction was applied independently 

to determine the effect on the pipe seismic response.  They found that under seismic 

wave propagation, pipe axial stress is much higher compared to pipe bending stress. The 

analysis was performed using 3D FEA, but there was no discussion on how FE model 

dimensions were chosen for the study. 
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In 2014, Sahoo et al. [34] evaluated the seismic response of buried single pipe 

and buried two parallel pipes embedded in soils subjected to seismic wave propagation 

using 3D FEA.  There was no discussion on how FE model dimensions were selected.  

Soil-pipe interaction was modeled with a jointed material considering cohesion, friction 

angle, and assumed strength reduction factor, similar to an approach utilized in the study 

by Zhan and Rajani [24].  Seismic wave excitation was applied only in one direction 

perpendicular to pipelines.  The effect on seismic performance from pipe embedment 

depth and spacing between two parallel pipes was evaluated.  For both pipe 

configurations, results indicated that pipe displacements and stresses decreased with 

greater pipe burial depths.  For two parallel pipes installed at varying spacing, results 

showed that pipe stresses increased as pipe spacing increased.  A study of buried 

pipelines subjected to permanent ground deformation was also included.  It was modeled 

by applying lateral pipe bending, single curvature, in FE models.  This assumption may 

be applicable only for pipes subjected to permanent ground deformation caused by 

liquefaction, settlements, or landslide but it would not be valid for seismic fault rupture 

because pipe deformation shape would be a double curvature instead. 

Zhang and Wang [35] proposed a numerical model for analyzing buried pipeline 

subjected to seismic wave propagation.  Their numerical model was an extension on the 

work originally conducted by Shinozuka and Koike and was revised to be consistent with 

the ASCE guidelines [29].  Zhang and Wang verified their numerical model with results 

from FEA.  The study included three different pipe configurations including 1) a straight 

pipe, 2) a pipe with 90 degree right-angle bend, and 3) a pipe with tee connection.  The 
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pipe was connected with a series of soil springs as computed from the ASCE guidelines.  

The study was only limited to buried pipe embedded in soils and did not consider multi-

direction seismic wave.  Results predicted by the proposed numerical model agreed well 

with FEA results.  It was also found that strain in a straight pipe dominated the design 

with a small ground strain where there is no slippage between soil and pipe.  At a larger 

ground strain where slippage occurs, maximum strain is located near pipe bends and tees. 

2.2.2 Buried Pipelines Subjected to Seismic Fault Rupture 

Permanent ground deformation, specifically caused by seismic fault rupture, is 

among the sources to buried pipeline failures.  A large number of studies have been 

conducted on buried pipelines subjected to various seismic fault rupture types, such as 

normal-slip, strike-slip, reverse-slip, and oblique-slip fault.  In 1998, Takada et al. [18] 

studied pipeline response to normal and reverse faults and found that pipelines are more 

vulnerable to reverse fault due to pipe local buckling failure.  Therefore, the literature, 

mainly focusing on buried pipelines subjected to reverse-slip fault rupture, was reviewed 

and are summarized below. 

In 2011, Joshi et al. [36] proposed a FE model to analyze buried pipelines under 

reverse fault motion.  The pipe was modeled using linear beam elements supported by a 

series of nonlinear soil springs representing soil-pipe interaction.  Pipe internal pressure 

was not considered in this study.  Also, pipe local buckling and large deformation were 

ignored due to a limitation on beam elements representing steel pipes.  The influences 

on pipe response from pipe crossing angle, fault dip angle, soil spring characteristic, pipe 

diameter, and pipe embedment depth were determined.  Results showed that pipe strain 
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increased as pipe crossing angle increased, with the maximum values at the angle of 90º.  

Pipe compressive strain was lower for pipe backfilled with loose soil compared to dense 

backfill.  In addition, pipe compressive strain increased as pipe embedment depth 

increased. 

Tarinejad et al. [21] studied seismic response of buried steel pipelines embedded 

in soils subjected to reverse-slip fault rupture using a nonlinear 3D FEA.  Gravitational 

forces were first applied to FE models followed by internal pipe pressure before applying 

seismic faulting.  Mohr-Coulomb constitutive model and friction contact were adopted 

for FE models, which are the same as our FE modeling techniques.  The study neither 

provides a discussion on selected FE model dimensions nor FE model result verification.  

Results showed that at the same amount of fault movement, pipe with a higher D/t ratio 

exhibited a lower pipe displacement and had less elements that went beyond elastic 

range.  In addition, pipe stresses decreased as fault angle increased.  Although pipe 

internal pressure, equal to 40% of pipe maximum design pressure, was considered, the 

study did not discuss its effect of pipe performance. 

In 2016, Zhang et al. [37] studied a seismic performance of buried pipelines 

embedded in soil backfill in rock stratum subjected to reverse faulting.  The study was 

carried out utilizing 3D FEA.  Shell elements were employed for steel pipelines.  FE 

model dimensions were provided but there was no discussion on the process used to 

select these dimensions.  The FE models were applied with gravity and internal pressure 

loadings, simultaneously, at the beginning.  Then, seismic reverse faulting was applied 

to the models.  Material nonlinearities were considered in this study using Mohr-
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Coulomb constitutive model for both soil and rock.  Although friction contact was 

utilized on all interfaces, only one value of friction coefficient was specified.  Our 

research defined different friction coefficients for different material interfaces.  The 

effects on pipe strain and deformation from pipe internal pressure, total fault 

displacement, pipe wall thickness, and pipe embedment depth were determined and 

discussed.  Results showed that as internal pressure increased, pipe wall wrinkles 

appeared in more locations, which could be an influence of increasing pipe stiffness.  

Also, pipe deformation and stress increased as fault displacement increased. 

Jalali et al. [23] conducted a full-scale laboratory testing on 4” and 6” buried steel 

pipes installed in a sand split-box subjected to 0.6 meter vertical movement along an 

inclined plane simulating seismic reverse fault rupture.  A nonlinear 3D FEA was also 

carried out.  Results from FE models were compared to experimental results.  Material 

nonlinearities were modeled using Mohr-Coulomb constitutive model.  In addition, 

friction contact was utilized for soil-pipe interaction.  Our research uses the same FE 

modeling techniques.  The study was limited to steel pipes embedded in soil.  Both pipes 

are 4 mm thick having diameter to thickness ratio (D/t) of 26 and 38, for 4” and 6” pipe, 

respectively.  Experimental results showed that both pipes exhibited “diamond-shape” 

buckled section matching FE results.  Results also showed that pipe with lower D/t ratio 

experienced higher strain, but reached the pipe buckling at a larger fault movement.  FE 

results slightly over predicted the maximum pipe longitudinal strains but simulated 

similar pipe buckled locations to experimental results. 
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Xu and Lin [38] utilized a FEA based on Vector Form Intrinsic Finite Element 

(VFIFE) method to assess buried pipe performance subjected to reverse fault rupture.  

The pipe was modeled as 3D triangular shell elements near the fault plane connected 

with beam elements elsewhere along the pipe.  The shell elements were used to capture 

severe deformation.  In our research, 8-node brick elements were utilized for steel 

pipelines.  A study by Sadowski and Rotter [39] indicated that using shell elements 

generally reduced computational runtime up to a pipe radius to thickness ratio of 25, but 

both brick and shell elements provided a comparable result accuracy.  Pipeline failure 

was identified based on three different criteria 1) ultimate tensile strain, 2) local buckling, 

and 3) pipe distortion at the cross-section.  Soil-pipe interaction was modeled by 

connecting pipe elements with a series of soil springs.  FE model results were compared 

to experimental data available from other studies.  After the result validation, the 

developed models were utilized to evaluate the effect on pipe performance from pipe 

crossing angle and fault dip angle.  Results showed that higher pipe deformation and 

pipe stress occurred as pipe crossing angle increased, with the maximum values at the 

angle of 90º.  In addition, pipe axial stress was higher with a smaller fault dip angle while 

pipe bending stress decreased. 

In 2017, Liu et al. [40] investigated buckling failure of buried steel pipelines 

subjected to reverse fault rupture using FEA.  Two buckling failure modes as defined in 

Canadian Standards Association (CSA), CSA Z662 [41].  The pipe was modeled with 

elbow elements available in ABAQUS software, which is similar to shell elements but 

allows more complex deformation pattern.  The nonlinear soil springs connected to the 
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pipe were used to simulate soil-pipe interaction.  The pipe internal pressure was applied 

and followed by seismic reverse faulting.  FE model results were verified with 

experimental data available from other studies.  The effects on pipe performance from 

FE model parameters, including fault dip angle, pipe wall thickness, and pipe 

embedment depth, were also evaluated.  Results indicated that pipe vertical displacement 

and maximum compressive strain increased as fault dip angle increased.  In addition, 

pipe vertical displacement decreased while maximum compressive strain increased with 

a greater pipe burial depth.   

2.3 Summary 

Review of literature shows that CLSM has been used as a backfill material in 

various applications such as pipe backfill, pavement base, and bridge abutment backfill.  

Finite element analysis, both in 2D and 3D domain, is utilized in several studies to 

analyze structural performance with CLSM backfills.  All studies only considered static 

loads, such as surcharge or construction loads, but there is no study on CLSM 

applications performed with seismic loads.  Several material constitutive models have 

been used to represent CLSM behavior including Drucker-Prager, Mohr-Coulomb, and 

Concrete Damaged Plasticity models with Mohr-Coulomb model being the most 

common.  According to [22], Mohr-Coulomb plasticity available in ABAQUS software 

is used with the linear elastic material model.  It allows the material to harden and/or 

soften isotropically and is often used in several geotechnical engineering applications.  It 

describes material shear stress in terms of material cohesion, normal stress, and angle of 

internal friction, as expressed in Eq. (1) and Figure 6. 
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� = � +  � tan(∅) Eq. (1) 

Where:  τ = shear stress on the failure plane 

  c = material cohesion 

   � = normal stress on the failure plane 

   ϕ = angle of internal friction 

 

 

Figure 6: Mohr-Coulomb plasticity model [22] 

For studies on CLSM as a pipe backfill material, various assumptions were taken 

on the soil-pipe interaction.  Some studies considered no slip or separation assuming full 

bonding between CLSM and pipe.  The assumption may be applicable for some 

scenarios, e.g. under surcharge loads or small anticipated deflections/stresses, but it may 

not be valid for large ground movement, e.g. under seismic loads.  Several studies 

considered friction contact that allows slip and separation, which is more realistic 

behavior and was adopted in our research. 
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For buried pipelines subjected to seismic wave propagation and seismic fault 

rupture, specifically reverse-slip fault, a large number of studies are available, but all of 

them only considered pipes embedded in soils.  No study has been performed for pipes 

embedded in CLSM under seismic loads.  In addition, researchers utilized 3D FEA for 

analyzing the performance of buried pipelines subjected to seismic loading conditions, 

but there is a significant variation in FE model dimensions used in those studies.  The 

process used to select FE model dimensions and their effects on the results are typically 

not discussed.  Furthermore, several studies with FEA approach without conducting a 

full-scale laboratory validated their results with experimental data conducted by others 

before the verified FE models were used for further analysis.  This approach was also 

adopted in our research. 
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CHAPTER 3 

BURIED PIPELINES SUBJECT TO SEISMIC WAVE PROPAGATION 

3.1 Introduction 

This chapter focuses on seismic performance of pipelines embedded in CLSM 

when subjected to seismic wave propagation.  This study utilized a 3D finite element 

model to compare the seismic performance of pipelines embedded in CLSM to the 

performance of pipelines embedded in compacted soils.  The study was carried out in 

two phases, 1) with the design assumptions that all materials, including steel pipe, 

backfill material, and in-situ soil, remain in elastic range when subjected to seismic wave 

propagation, and 2) with the design assumptions accounting for non-linear material 

plasticity (inelastic range). 

3.2 Research Methodology with Elastic Materials 

The study started with the evaluation of available design guidelines for designing 

pipelines when subjected to seismic wave propagation.  Then, FE models in 3D domain 

were developed using ABAQUS software for a buried steel pipe in soil backfill with the 

same design assumptions of the ASCE guidelines [29], i.e. infinitely long pipe with free 

ends.  The effects of model parameters, such as soil-pipe interaction, boundary condition, 

FE model dimensions, friction coefficients at interfaces, and soil spring used at 

boundaries, on the pipe axial stress predictions were evaluated.  Later, the FE model 

parameters were set to obtain similar stress predictions as [29] for pipes buried in soils.  

The developed model with set parameters was further used to evaluate 1) the seismic 

performance of pipes embedded in CLSM backfills, 2) the effect on pipe seismic 
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performance from seismic wave applied three directions simultaneously, and 3) pipe end 

conditions.  A pipe axial stress value was mainly used to evaluate the seismic 

performance of pipelines.  A lower pipe axial stress indicates a better pipeline 

performance under seismic wave propagation. 

3.2.1 ASCE Guidelines 

There are several design guidelines available for designing buried steel pipes 

under various seismic failure modes such as permanent ground deformation, 

liquefaction, landslide, or fault rupture.  However, there are only a few design guidelines 

available for the buried pipes subject to seismic wave propagation.  These guidelines are 

all either modified or adopted from ASCE Guidelines for the Seismic Design of Oil and 

Gas Pipeline Systems [29] dated back in 1984 which is based on a study by Newmark 

[30]. 

When a buried pipeline is subject to seismic wave propagation, seismic forces 

get transferred to the pipeline through friction at the soil-pipe interface.  According to 

[29], for an infinitely long pipe free on both ends, the maximum force transfer occurs at 

the maximum seismic ground strain, g, given by Eq. (2), and the maximum friction force 

per unit length, tu, at soil-pipe interface for a cohesionless soil can be determined from 

Eq. (3): 

 =
����

� �
 

Eq. (2) 

�� =  
�

2
 � � � (1 + ��) tan � Eq. (3) 

Where: g = maximum seismic ground strain 
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  Vmax = maximum ground velocity 

  C = seismic wave-propagation velocity 

  � = ground strain coefficient 

  tu = maximum friction force per unit length 

  Ko = coefficient of soil pressure at rest 

  H = depth from the ground surface to center of the pipeline 

  D = Pipeline outside diameter 

  γ = effective unit soil weight 

  δ = interface angle of friction 

Based on [29], Goodling [42] provided a set of equations to determine the maximum 

axial force of the pipeline, Fmax, for a straight configuration free at both ends, given by 

Eq. (4): 

���� = �� �′ Eq. (4) 

Where: Fmax = maximum axial force of the pipeline 

  L′ = effective friction length 

It should be noted that the ASCE guidelines are only applicable for pipes 

embedded in soils and cannot be used for different backfill materials such as CLSM.  

Another limitation of the ASCE guidelines is that they are only valid for an infinitely 

long pipe free at both ends and under one directional wave propagation.  In addition, the 

ASCE guidelines cannot be used to estimate stresses if the pipe is rigidly connected to a 

structure at one end or if the pipe is subject to seismic waves in three directions 

simultaneously. 
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3.2.2 3D Finite Element Models 

In this study, FE models in 3D domain were developed to investigate various 

effects on the pipe performance subject to seismic wave propagation as outlined earlier.  

The developed 3D FE model generally consists of a steel pipeline component embedded 

in a trench of backfill material surrounded by in-situ soil.  A steel pipeline was modeled 

using linear hexahedral element (C3D8R) whereas backfill material and in-situ soil were 

modeled using linear wedge elements (C3D6).  Smaller mesh sizes, as small as 0.25D 

(where D is the pipe outside diameter), were specified for the steel pipeline and backfill 

materials for more accurate results.  Larger mesh sizes, as large as 2D, were defined for 

in-situ soil where no results were extracted.  Half-sized models were used due to model 

symmetry to minimize computational run-time.  Figure 7 shows an example of a 

developed FE model consisting of all model components. 

 

Figure 7: Developed 3D FE model for pipe subject to seismic wave propagation 
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FE model parameters that were used in this study are listed below: 

 Equations provided in the ASCE guidelines assume elastic material properties.  

Therefore, steel pipeline, backfill, and in-situ soil material properties were kept in 

elastic range. 

 Steel pipe: API-5LX-60 Grade 60 steel pipe with a 609.6 mm [24 in.] in pipe 

outside diameter, 9.53 mm [0.375 in.] in thickness, and pipe embedment depth of 

1524 mm [60 in.] to the top of the pipe. 

 Backfill trench dimensions:  full width trench of 1828.8 mm [72 in.], or 3D (1.5D 

was modeled due to model symmetry) and trench depth of 2438.4 mm [96 in.], or 

4D. 

 Properties of soil and CLSM as backfill materials investigated in this study are 

summarized in Table 1.  Properties of four soil types, Soil (S1) thru Soil (S4), were 

based on a study by Yang and Zhang [33], and three selected CLSM mixtures,  

CLSM (C1) thru CLSM (C3), were evaluated by Shah [4]. 

 Load applications: all FE models were subject to the same seismic ground 

acceleration time-history of 1989 Loma Prieta earthquake event from a record 

station on Eureka Canyon Road in Corralitos, California obtained from Center for 

Engineering Strong Motion Data (CESMD) [13] after application of gravitational 

forces. 

 Boundary condition for the bottom plane of FE models:  pinned boundary condition 

restraining displacement in all direction was placed at the bottom plane, as shown 

in Figure 7, to simulate bedrock condition. 
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Table 1: Soil and CLSM properties [4, 33] 

ID 
Material Description 

as Listed in References 

Density 

kg/m3 

[lbf/ft3] 

Young’s 

Modulus 

MPa 

[kip/in2] 

Poisson 

Ratio 

Soil (S1) Loosely Compacted Soil 
1650 

[103] 

6.3 

[0.91] 
0.20 

Soil (S2) 
Loosely Compacted Sandy 

Silt 

1910 

[119.2] 

12.9 

[1.87] 
0.25 

Soil (S3) 
Loosely Compacted Sandy 

Silt 

1950 

[121.7] 

15.3 

[2.22] 
0.20 

Soil (S4) 
Loosely Compacted Sandy 

Silt 

2100 

[131.1] 

20.27 

[2.94] 
0.25 

Soil (T1) 
Pseudo Soil 

Evaluating Eq. (5) 

2025 

[126.4] 

17.79 

[2.58] 
0.25 

CLSM (C1) Mix Identity – S3 
2000 

[124.9] 

689.5 

[100] 
0.13 

CLSM (C2) Mix Identity – P2ʺ 
1811 

[113.1] 

1379 

[200] 
0.21 

CLSM (C3) Mix Identity – S2ʺ 
1798 

[112.2] 

2757.9 

[400] 
0.24 

3.2.3 FE Model Parametric Study 

Various researchers used 3D FE model approach to analyze buried pipelines 

under seismic wave propagation.  However, review of the literature, e.g. [32-34, 43], 

showed that there are significant variations in model dimensions used by researchers to 

evaluate buried pipelines with 3D FEA.  The process used to select model dimensions 

and their effects on the results as well as how results compare to those obtained from 

available design guidelines are typically not discussed.  In this study, a total of seven (7) 



31 

FE model parameters was evaluated to investigate their effects on the pipe axial stress 

prediction.  These parameters include: 

 Soil-pipe interaction 

 Boundary condition 

 FE model dimensions, width and depth 

 FE model length with various friction coefficients 

 Friction coefficients at interfaces 

 Relationship between soil spring used at boundaries and material Young’s modulus 

 FE model dimension scale factor 

The ASCE guidelines for an infinitely long pipe with a constant pipe cross section 

under seismic wave propagation assume the peak axial stress to be uniformly distributed 

along the entire pipe length.  Therefore, a uniform pipe axial stress distribution along the 

pipe was expected from FE model results with elastic materials. 

3.2.3.1 Soil-Pipe Interaction 

Based on the literature review performed earlier, two types of soil-pipe 

interaction are commonly used for analyzing pipes subject to seismic wave propagation 

by 3D FEA, 1) tie constraint, and 2) friction interface, as shown in Figure 8.  Tie 

constraint assumes that soil and pipe are fully bonded.  There is no slippage or separation 

between soil and pipe under seismic loads.  On the other hand, friction interface only 

allows seismic loads to transfer from soil to pipe by friction.  The friction interface allows 

pipe slippage as well as separation from soil mass.  Table 2 summarizes FE model 

variables used in the study of soil-pipe interaction. 
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Figure 8: Soil-pipe interaction types 

Table 2: FE model variables evaluated for soil-pipe interaction 

FE Model Constants 

Model: Steel pipe embedded in Soil (S2) backfill 

Boundary Condition: Pin at the bottom and roller support at all other planes 

FE Model Variables 

FE Model Width, Wd : 20D, 30D, and 40D 

FE Model Depth, Dd : 10D, 15D, 20D, and 25D 

FE Model Length, Ld : 50D and 100D 

Soil-Pipe Interface: 
1. Tie constraint (fully bonded) 

2. Friction interface with coefficient of friction (f1) = 0.5 

D = pipe outside diameter 

3.2.3.2 Boundary Condition 

FE model boundary condition used in the previous FE model parametric study, 

soil-pipe interaction, was the pin type at the bottom plane and the roller type at all other 

planes (front, back, and side planes as shown in Figure 7).  Another type of boundary 

condition evaluated in this study was soil spring, as shown in Figure 9,  with FE model 
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variables summarized in Table 3.  Results provided from the two types of boundary 

condition were compared to determine a uniform pipe axial stress distribution along the 

pipe. 

 

Figure 9: Boundary condition types 

Table 3: FE model variables evaluated for boundary condition 

FE Model Constants 

Model: Steel pipe embedded in Soil (S2) backfill 

Soil-Pipe Interface: Friction interface with coefficient of friction (f1) = 0.5 

FE Model Dimensions: Wd = 20D, Dd = 35D, and Ld = 150D 

FE Model Variables 

Boundary Condition: 
1. Roller type 

2. Spring type with stiffness (k) = 52.54 kN/m [300 lb/in] 

3.2.3.3 FE Model Width and Depth 

Table 4 and Table 5 show FE model variables evaluated on the effect on FE 

model results from FE model width and FE model depth, respectively. 
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Table 4: FE model variables evaluated for model width 

FE Model Constants 

Model: Steel pipe embedded in Soil (S2) backfill 

FE Model Length, Ld : 50D 

Soil-Pipe Interface: Friction interface with coefficient of friction (f1) = 0.5 

Boundary Condition: Spring type with stiffness (k) = 52.54 kN/m [300 lb/in] 

FE Model Variables 

FE Model Depth, Dd : 10D and 15D 

FE Model Width, Wd : 20D, 30D, and 40D 

Table 5: FE model variables evaluated for model depth 

FE Model Constants 

Model: Steel pipe embedded in Soil (S2) backfill 

FE Model Length, Ld : 150D 

Soil-Pipe Interface: Friction interface with coefficient of friction (f1) = 0.5 

Boundary Condition: Spring type with stiffness (k) = 52.54 kN/m [300 lb/in] 

FE Model Variables 

FE Model Width, Wd : 20D, 30D, and 40D 

FE Model Depth, Dd : 10D, 15D, 20D, 25D, 30D, 35D, 40D, and 45D 

3.2.3.4 FE Model Length 

Table 6 and Table 7 show FE model variables evaluated on the effect on FE 

model results from FE model length for pipe embedded in soil backfill and in CLSM 

backfill, respectively.  Various soil-pipe and CLSM-pipe friction coefficients were also 

evaluated in this parametric study. 
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Table 6: FE model variables evaluated for model length for soil backfill 

FE Model Constants 

Model: Steel pipe embedded in Soil (S2) backfill 

FE Model Dimensions: Wd = 20D, Dd = 20D 

Boundary Condition: Spring type with stiffness (k) = 52.54 kN/m [300 lb/in] 

FE Model Variables 

Soil-Pipe Interface: 
Friction interface with coefficient of friction (f1) = 0.3, 

0.5, 0.7, and 0.9 

FE Model Length, Ld : 50D, 75D, 100D, 125D, 150D, 175D, and 200D 

Table 7: FE model variables evaluated for model length for CLSM backfill 

FE Model Constants 

Model: Steel pipe embedded in CLSM (C3) backfill 

FE Model Dimensions: Wd = 30D, Dd = 25D 

Boundary Condition: Spring type with stiffness (k) = 105.08 kN/m [600 lb/in] 

FE Model Variables 

CLSM-Pipe Interface: 
Friction interface with coefficient of friction (f1) = 0.3, 

0.5, 0.7, and 0.9 

FE Model Length, Ld : 
50D, 75D, 100D, 125D, 150D, 175D, 200D, 300D, 400D, 

and 500D 

3.2.3.5 Friction Coefficients at Interfaces 

Under seismic wave propagation, seismic loads are transferred to buried 

pipelines through friction.  As shown in Figure 7, in case of buried pipe with soil backfill, 

only friction coefficient of soil-pipe interface (f1) was evaluated.  When CLSM is used 

as a backfill material, there are two interfaces with different friction coefficients that can 
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affect the pipe axial stress; 1) CLSM-pipe (f1) and 2) CLSM-soil (f2).  Effects of varying 

friction coefficients of both interfaces on pipe axial stresses were evaluated in this study 

with FE model variables evaluated shown in Table 8.  

Table 8: FE model variables evaluated for friction coefficients for CLSM backfill 

FE Model Constants 

Model: Steel pipe embedded in CLSM (C3) backfill 

FE Model Dimensions: Wd = 30D, Dd = 25D, and Ld = 200D 

Boundary Condition: Spring type with stiffness (k) = 105.08 kN/m [600 lb/in] 

FE Model Variables 

CLSM-Pipe Interface: 
Friction interface with coefficient of friction (f1) = 0.3, 

0.5, 0.7, and 0.9 

Soil-CLSM Interface: 
Friction interface with coefficient of friction (f2) = 0.2, 

0.4, 0.6, and 0.8 

3.2.3.6 Relationship between Material Young’s Modulus and Soil Spring Stiffness 

To achieve a uniform pipe axial stress distribution along the pipe, the study 

further evaluated a relationship between material Young’s modulus (E) and soil spring 

stiffness value (k) used at the FE model boundaries (front, back, and side planes as shown 

in Figure 7).  Four selected soil types (Soil S1 thru S4) with different densities, Young’s 

modulus, Poisson ratios, cohesion, and friction angles were investigated based on a study 

from [33].  In-situ soil spring stiffness placed at FE model boundaries for steel pipe 

embedded in CLSM backfills was also investigated.  Three selected CLSM mixtures 

(CLSM C1 thru C3) as evaluated by [4] were used for this study.  The three selected 
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CLSM mixtures consist of fly ash, gypsum, quarry waste, and water with the following 

proportions: 

 CLSM (C1) - Mix Identity S3: water to fly ash ratio (W/FA) of 0.61 and 15% 

gypsum of fly ash by weight. 

 CLSM (C2) - Mix Identity P2ʺ: water to fly ash ratio (W/FA) of 0.80 and 15% 

gypsum of fly ash by weight. 

 CLSM (C3) - Mix Identity S2ʺ: water to fly ash ratio (W/FA) of 0.80 and 10% 

gypsum of fly ash by weight. 

All soil and CLSM properties evaluated in this parametric study are summarized and 

listed in Table 1.  Table 9 and Table 10 show FE model variables evaluated on the 

relationship between material Young’s modulus and soil spring stiffness value for pipe 

embedded in soil backfill and in CLSM backfill, respectively. 

 

 

 

 

 

 

 

 

 



38 

Table 9: FE model variables evaluated for boundary soil spring for soil backfill 

FE Model Constants 

Soil-Pipe Interface: Friction interface with coefficient of friction (f1) = 0.5 

FE Model Dimensions: Wd = 30D, Dd = 25D, and Ld = 200D 

FE Model Variables 

Model: Steel pipe embedded in Soil (S1) thru (S4) backfills 

Boundary Condition: 

Soil (S1): spring stiffness (K) ranging from 17.51 kN/m 

[100 lb/in] to 157.61 kN/m [900 lb/in] 

Soil (S2): spring stiffness (K) ranging from 122.59 kN/m 

[700 lb/in] to 700.51 kN/m [4000 lb/in] 

Soil (S3): spring stiffness (K) ranging from 175.13 kN/m 

[1000 lb/in] to 875.63 kN/m [5000 lb/in] 

Soil (S4): spring stiffness (K) ranging from 280.2 kN/m 

[1600 lb/in] to 1225.89 kN/m [7000 lb/in] 

Table 10: FE model variables evaluated for boundary soil spring for CLSM backfill 

FE Model Constants 

Soil-Pipe Interface: Friction interface with coefficient of friction (f1) = 0.5 

FE Model Dimensions: Wd = 30D, Dd = 25D, and Ld = 200D 

FE Model Variables 

Model: Steel pipe embedded in CLSM (C1) thru (C3) backfills 

Boundary Condition: 
Spring stiffness (K) ranging from 105.08 kN/m [600 lb/in] 

to 315.23 kN/m [1800 lb/in] 

3.2.3.7 FE Model Dimension Scale Factor 

Larger FE model dimensions increase the computational run-time necessary for 

an analysis.  In this study, the effect of changing the FE model dimensions while keeping 

the dimension scale factor (SF) ratios constant was evaluated for pipe embedded in soil 
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backfill (Soil S2).  The developed FE model was scaled down and up by multiplying all 

dimensions with 0.75 and 1.25, respectively.  Overall FE model dimensions, pipe outside 

diameter and thickness, pipe embedment depth, and trench dimensions were all scaled.  

The soil spring stiffness placed at boundaries and soil-pipe friction coefficient remained 

unchanged.  This parametric study may allow engineers to minimize the computational 

run-time of FE model analysis by scaling the model and understanding the FE model 

size effects on model results.  Table 11 shows FE model variables evaluated in this study. 

Table 11: FE model variables evaluated for scale factor for soil backfill 

FE Model Constants 

Model: Steel pipe embedded in Soil (S2) backfill 

Soil-Pipe Interface: Friction interface with coefficient of friction (f1) = 0.5 

Boundary Condition: Spring type with stiffness (k) = 245.18 kN/m [1400 lb/in] 

FE Model Variables 

FE Model Dimensions: 

(SF = 0.75) Wd = 22.5D, Dd = 18.75D, and Ld = 150D 

(SF = 1.00) Wd = 30D, Dd = 25D, and Ld = 200D 

(SF = 1.25) Wd = 37.5D, Dd = 31.25D, and Ld = 250D 

3.2.4 Pipe Seismic Performance of Various Backfill Materials 

After evaluating the effects of different FE model parameters, the parameters of 

the FE model were set to obtain a similar uniform axial peak stress along the pipe as 

predicted by the ASCE guidelines for pipes buried in soils.  This FE model with set 

parameters to match the ASCE values was then used to evaluate the pipe seismic 

performance of four soils (Soil S1 thru S4) and three CLSM mixtures (CLSM C1 thru 
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C3) with their properties as listed in Table 1.  This study was conducted to address one 

of the limitations from using the ASCE guidelines that it cannot be used for buried pipe 

embedded in CLSM.  A pipe axial stress value was mainly used to evaluate the seismic 

performance of pipelines.  A lower pipe axial stress indicates a better pipeline 

performance under seismic wave propagation. 

3.2.5 Effect from One- and Three-Directional Seismic Wave 

For computing pipe axial stress under seismic wave propagation, equations 

provided in the ASCE guidelines only accounts for one directional wave propagation.  

The developed FE model was further utilized to evaluate the effect on the pipe seismic 

performance subject to three-directional seismic wave applied simultaneously.  Pipes 

embedded in soil backfill, Soil (S2), and CLSM backfill, CLSM (C3), were investigated 

and compared to the pipe seismic performance when subjected to one-directional seismic 

wave. 

3.2.6 Pipe End Conditions 

In many instances, buried pipelines interconnect with other components such as 

above ground pipelines, storage structures, and support facilities.  This pipe end 

condition is considered rigid.  Additional limitation of the ASCE guidelines is that they 

are only valid for an infinitely long pipe free at both ends.  The ASCE guidelines cannot 

be used to estimate stresses if the pipe is rigidly connected to a structure at one end.  For 

this particular scenario, the developed FE model was used to investigate the effect on the 

pipe seismic performance.  The effect from three-directional seismic wave applied 

simultaneously was also considered in conjunction with pipe end conditions. 
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3.3 Results and Discussions with Elastic Materials 

3.3.1 ASCE Guidelines 

For API-5LX-60 Grade 60 steel pipe with a 609.6 mm [24 in.] in pipe outside 

diameter (D), 9.53 mm [0.375 in.] in wall thickness, and pipe embedment depth (H) of 

1524 mm [60 in.] to the top of the pipe, the pipe axial stress when subjected to the 1989 

Loma Prieta earthquake was computed.  According to [13], the peak ground acceleration 

recorded during this earthquake event was 0.643g with the maximum ground velocity, 

Vmax, of 0.475 m/s [18.697 in/s] and the seismic wave velocity, C, of 462 m/s [1,515.7 

ft/s].  Assuming dilatational wave only, ground strain coefficient, �, is equal to 1.0.  

Using Eq. (2), the computed maximum ground strain, g, for this earthquake event is 

equal to 0.0010279.  From [33], soil unit weight, soil Young’s Modulus, and Poisson 

ratio of a sandy silt soil were taken as 1910 kg/m3 [119.24 lb/ft3], 12.9 MPa [1871 psi], 

and 0.25, respectively, as listed as Soil (S2) in Table 1.  Using Eq. (3) and Eq. (4), the 

calculated maximum friction force per unit length, tu, was 29.523 kN/m [2.023 kip/ft] 

resulting in a peak axial stress of the steel pipeline of 50.13 MPa [7.270 ksi] for an 

effective friction length, L′, of 60.96 m [200 ft]. 

This peak stress value was later used to set various parameters of the developed 

FE model using Soil (S2) to obtain a similar uniform axial stress.  After adjustments of 

parameters the obtained uniform average pipe axial stress from the FE model with Soil 

(S2) was equal to 49.69 MPa [7.206 ksi].  Figure 10 shows the pipe axial stress along the 

pipe length obtained from the ASCE guidelines as well as from the developed FE model 
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for pipe embedded in Soil (S2) backfill.  Results indicated that pipe axial stress prediction 

from the developed FE model matched well with the ASCE guidelines. 

 

Figure 10: Pipe axial stress along the pipe obtained from the ASCE guidelines and the 

developed FE models 

3.3.2 FE Model Parametric Study 

3.3.2.1 Soil-Pipe Interaction 

Two types of soil-pipe interaction, 1) tie constraint, and 2) friction interface, were 

evaluated with FE model variables as shown in Table 2.  Figure 11, Figure 12, and Figure 

13 show the pipe axial stress along the pipe length for FE models using tie constraint for 

soil-pipe interaction for FE model width (Wd) of 20D, 30D, and 40D, respectively, with 

various FE model depths (Dd), varying from 10D to 25D. 
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Figure 11: Pipe axial stress along the pipe using tie constraint for soil-pipe interaction 

with FE model width (Wd) of 20D for various FE model depth (Dd) 

 

Figure 12: Pipe axial stress along the pipe using tie constraint for soil-pipe interaction 

with FE model width (Wd) of 30D for various FE model depth (Dd) 
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Figure 13: Pipe axial stress along the pipe using tie constraint for soil-pipe interaction 

with FE model width (Wd) of 40D for various FE model depth (Dd) 
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when using friction interface for soil-pipe interaction stress variance among FE model 

depths were much less and average pipe axial stress was much closer to the value 

computed from the ASCE guidelines.  Therefore, it was concluded that friction interface 

should be utilized for soil-pipe interaction. 

 

Figure 14: Pipe axial stress along the pipe using friction interface for soil-pipe 

interaction with FE model width (Wd) of 20D for various FE model depth (Dd) 
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Figure 15: Pipe axial stress along the pipe using friction interface for soil-pipe 

interaction with FE model width (Wd) of 30D for various FE model depth (Dd) 

 

Figure 16: Pipe axial stress along the pipe using friction interface for soil-pipe 

interaction with FE model width (Wd) of 40D for various FE model depth (Dd) 
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3.3.2.2 Boundary Condition 

Two types of boundary condition, 1) roller support, and 2) soil spring support, 

were evaluated with FE model variables as shown in Table 3.  Figure 17 shows the pipe 

axial stress along the pipe length comparing between FE models using roller supports 

and soil spring supports.  Results clearly indicated that using soil spring at boundaries 

provided a much more uniform axial stress along the pipe length.  Therefore, it was 

recommended to use soil spring at all planes (front, back, and side planes) as a boundary 

condition for the developed FE models. 

 

Figure 17: Pipe axial stress along the pipe for roller and soil spring supports 



48 

3.3.2.3 FE Model Width 

Figure 18 and Figure 19 show the pipe axial stress along the pipe length for 

various FE model widths (Wd), 20D, 30D, and 40D.  Two FE model depths (Dd), 10D 

and 15D, were evaluated in this parametric study.  Results showed that stress variance 

along the pipe length among FE model widths evaluated was insignificant.  Therefore, it 

was concluded that FE model width does not have a significant impact to FE model 

results.  A minimum FE model width of 20D was recommended to minimize 

computational run-time. 

 

Figure 18: Pipe axial stress along the pipe with various FE model widths (Wd) for FE 

model depth (Dd) of 10D 
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Figure 19: Pipe axial stress along the pipe with various FE model widths (Wd) for FE 

model depth (Dd) of 15D 
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150D.  From the results, it was observed that the peak axial stress at mid-pipe location 
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Figure 20: Pipe axial stress at mid-pipe location for various FE model depth (Dd) 

3.3.2.5 FE Model Length 

Figure 21 shows the pipe axial stress at mid-pipe location for various FE model 
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Figure 21: Pipe axial stress at mid-pipe location for various FE model lengths (Ld) for 

pipes embedded in soil backfill 
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model length and decreased after it reached the critical FE model length.  It was observed 

that the critical FE model length decreased as the friction coefficient increased.  In 

addition, the maximum pipe axial stress at the critical length increased as the friction 

coefficient increased.  Therefore, it was recommended that a model should be created 

with a sufficient FE model length depending on soil-pipe friction coefficient to capture 

the peak axial stress that a pipeline could experience under seismic loads.  For this study, 
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a minimum FE model length of 200D was used for all other investigations with soil 

backfill. 

Figure 22 shows the pipe axial stress at mid-pipe location for various FE model 

lengths (Ld), varying from 50D to 500D, for piped embedded in CLSM backfill, CLSM 

(C3).  The same set of selected CLSM-pipe friction coefficients (f1) were investigated.  

The value of friction coefficient at CLSM-soil interface (f2) was set equal to the CLSM-

pipe friction coefficient. 

Results showed that the pipe axial stress initially increased as the FE model 

length increased for all CLSM-pipe friction coefficients, similar to pipe embedded in soil 

backfill, and it remained constant after reaching the critical model length.  Results also 

indicated that the maximum pipe axial stress increased with increasing CLSM-pipe 

friction coefficient.  This is consistent with the ASCE guidelines, which state that seismic 

forces get transferred to the pipeline through friction at the soil-pipe interface.  Unlike 

soil backfills, the critical FE model length did not vary with the CLSM-pipe friction 

coefficient.  Based on results shown in Figure 22, it was decided to use a minimum FE 

model length of 200D for all other evaluations of CLSM backfills in this study. 
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Figure 22: Pipe axial stress at mid-pipe location for various FE model lengths (Ld) for 

pipes embedded in CLSM backfill 

3.3.2.6 Friction Coefficients at Interfaces 

The effect of CLSM-soil coefficient of friction (f2) on pipe axial stresses was also 

evaluated.  Four values of CLSM-pipe friction coefficient (f1); 0.3, 0.5, 0.7, and 0.9, were 

combined with four values of CLSM-soil friction coefficients (f2); 0.2, 0.4, 0.6, and 0.8, 

in this parametric study for pipes embedded in CLSM backfill, CLSM (C3).   

Figure 23 shows the average pipe axial stresses for various f1 and f2 combinations.  

Results showed that for the same CLSM-pipe friction coefficient (f1), the average pipe 

axial stress increased as CLSM-soil friction coefficient (f2) increased.  Similarly, for the 

same CLSM-soil friction coefficient (f2), the average pipe axial stress increased as 

CLSM-pipe friction coefficient (f1) increased. 
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Figure 23: Effect on pipe axial stress from CLSM-pipe (f1) and CLSM-soil (f2) friction 

coefficients at interfaces 

3.3.2.7 Relationship between Material Young’s Modulus and Soil Spring Stiffness 

Based on the results from the parametric study of FE model boundary condition, 

it showed that use of soil springs was necessary at the front, back and side boundary 

planes, as shown in Figure 7, to achieve a uniform pipe axial stress distribution along the 

pipe.  In this study this issue was further investigated to establish a relationship between 

material Young’s modulus (E) and soil spring stiffness value (K) used at the FE model 

boundaries to obtain a uniform stress distribution.  Four soil backfills, Soil (S1) thru Soil 

(S4), and three CLSM mixtures, CLSM (C1) thru CLSM (C3), with different Young’s 

modulus (E) values as shown in Table 1.  Soil spring stiffness value (K) evaluated for 

each backfill material was summarized in Table 9 and Table 10 for soil and CLSM 

backfills, respectively. 
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For each backfill material, axial stresses along the pipe length (σx) were plotted 

for each K value.  The average pipe stress (�!) and stress variation, (�� " �!)#, along the 

pipe were also calculated for each K value.  Then, the summation of stress variance, 

∑(�� " �!)#, was plotted with the K value, as shown in Figure 24 a soil with E of 6.3 

MPa [0.91 ksi], Soil (S1), and for a CLSM mixture with E of 689.5 MPa [100 ksi], CLSM 

(C1). 

 

Figure 24: Stress variation curve for soil and CLSM backfills 

 Results showed that there was an optimum K value (Kopt) that resulted in the 

minimum stress variation along the pipe for each backfill material.  Table 12 thru Table 

15 show the summation stress variance for each K value evaluated for different soil 
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backfills investigated in this study.  The optimum K value (Kopt) was selected based on 

the lowest value of the summation stress variance and was highlighted in those tables. 

Table 12: Soil spring stiffness and sum of stress variance for Soil (S1) 

Backfill Material 

Soil Spring 

Stiffness 

(K) 

lb/in 

Avg. Pipe 

Axial Stress 

(%&) 
kip/in2 

Sum of Stress 

Variance 

Ʃ(%' " %&)(
 

  

Soil (S1) 

E = 6.3 MPa [0.91 ksi] 

100 6.192 43.980 

200 6.568 18.459 

300 6.727 12.065 

400 7.133 3.308 

500 7.352 0.934 

600 7.134 1.386 

700 7.379 0.426 

800 8.007 1.354 

900 8.289 3.594 

    * highlighted row indicates the optimum K value (Kopt) for this backfill material 
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Table 13: Soil spring stiffness and sum of stress variance for Soil (S2) 

Backfill Material 

Soil Spring 

Stiffness 

(K) 

lb/in 

Avg. Pipe 

Axial Stress 

(%&) 
kip/in2 

Sum of Stress 

Variance 

Ʃ(%' " %&)(
 

  

Soil (S2) 

E = 12.9 MPa [1.87 ksi] 

700 6.917 13.577 

800 6.854 13.328 

900 6.922 9.382 

1000 7.481 1.956 

1100 9.703 26.106 

1200 7.092 2.576 

1300 7.147 1.758 

1400 7.206 1.573 

4000 10.365 82.949 

Table 14: Soil spring stiffness and sum of stress variance for Soil (S3) 

Backfill Material 

Soil Spring 

Stiffness 

(K) 

lb/in 

Avg. Pipe 

Axial Stress 

(%&) 
kip/in2 

Sum of Stress 

Variance 

Ʃ(%' " %&)(
 

  

Soil (S3) 

E = 15.3 MPa [2.22 ksi] 

1000 6.453 1.356 

1100 6.569 1.844 

1200 6.764 3.876 

1300 6.093 0.807 

1400 7.123 10.616 

1500 6.181 2.124 

1600 6.302 3.239 

1700 6.455 4.579 

5000 12.624 147.213 
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Table 15: Soil spring stiffness and sum of stress variance for Soil (S4) 

Backfill Material 

Soil Spring 

Stiffness 

(K) 

lb/in 

Avg. Pipe 

Axial Stress 

(%&) 
kip/in2 

Sum of Stress 

Variance 

Ʃ(%' " %&)(
 

  

Soil (S4) 

E = 20.27 MPa [2.94 ksi] 

1600 6.422 3.036 

1700 6.453 2.064 

1800 6.483 1.368 

1900 7.420 2.408 

2000 7.595 3.819 

2100 8.522 13.148 

2200 8.864 17.672 

7000 10.200 99.846 

 

Next, the Kopt value obtained was plotted with soil Young’s modulus (E), as 

shown in Figure 25.  Results indicated that the Kopt value for a more uniform stress 

distribution along the pipe length increased with increasing E values for soil backfills.  

The observed empirical relationship between Kopt value and soil Young’s modulus is 

given by Eq. (5) and Eq. (6) for metric and English units, respectively: 

  [for metric unit]: Kopt = 13.24 E + 46.382 Eq. (5) 

[for English unit]: Kopt = 0.521 E + 264.85 Eq. (6) 

     Where:  Kopt   = soil spring stiffness placed at FE model  

    boundaries (kN/m for metric unit; lb/in for  

    English unit) 

  E   = soil’s Young’s modulus (MPa for metric  

    unit; lb/in2 for English unit) 
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Figure 25: Relationship between soil Young’s modulus and soil spring stiffness 

The Kopt value for additional soil type, referred to as Soil (T1) as listed in Table 

1, with E value of 17.79 MPa [2580.2 psi] was calculated using Eq. (5) to be 281.9 kN/m 

[1609.1 lb/in].  The soil properties and the computed Kopt value were then used in the 

developed FE model to evaluate the variation of axial stresses along the pipe.  Figure 26 

shows axial stresses plotted along the pipe for Soil (T1) using computed Kopt value at 

boundary planes.  Results showed that a fairly uniform axial stress distribution along the 

pipe was achieved for Soil (T1) when its Kopt calculated using Eq. (5) was used in the 

developed FE model. 
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Figure 26: Evaluation of empirical relationship for Soil (T1) 

 Similar to the evaluation for soil backfills, three CLSM mixtures, CLSM (C1) 

thru CLSM (C3), with different Young’s modulus (E) values were investigated for their 

relationship with soil spring stiffness utilized at FE model boundaries. Table 16 thru 

Table 18 show the summation stress variance for each K value evaluated for different 

CLSM backfills investigated in this study.  The optimum K value (Kopt) was selected 

based on the lowest value of the summation stress variance and was highlighted in those 

tables. 
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Table 16: Soil spring stiffness and sum of stress variance for CLSM (C1) 

Backfill Material 

Soil Spring 

Stiffness 

(K) 

lb/in 

Avg. Pipe 

Axial Stress 

(%&) 
kip/in2 

Sum of Stress 

Variance 

Ʃ(%' " %&)(
 

  

CLSM (C1) 

E = 689.5 MPa [100 ksi] 

600 4.149 7.683 

800 4.533 5.899 

1000 5.045 5.981 

1200 5.496 8.151 

1400 5.841 10.803 

1600 6.140 13.539 

1800 6.359 16.519 

Table 17: Soil spring stiffness and sum of stress variance for CLSM (C2) 

Backfill Material 

Soil Spring 

Stiffness 

(K) 

lb/in 

Avg. Pipe 

Axial Stress 

(%&) 
kip/in2 

Sum of Stress 

Variance 

Ʃ(%' " %&)(
 

  

CLSM (C2) 

E = 1379 MPa [200 ksi] 

600 3.329 2.127 

800 3.886 0.196 

1000 4.195 1.518 

1200 5.081 4.903 

1400 4.936 4.476 

1600 6.883 23.317 

1800 5.493 12.307 
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Table 18: Soil spring stiffness and sum of stress variance for CLSM (C3) 

Backfill Material 

Soil Spring 

Stiffness 

(K) 

lb/in 

Avg. Pipe 

Axial Stress 

(%&) 
kip/in2 

Sum of Stress 

Variance 

Ʃ(%' " %&)(
 

  

CLSM (C3) 

E = 2757.9 MPa [400 ksi] 

600 2.473 0.671 

800 2.879 1.209 

1000 3.248 3.166 

1200 3.593 5.158 

1400 3.880 7.499 

1600 4.256 11.463 

1800 4.440 14.173 

 

Unlike Soils, the Kopt value for minimum stress variation along the pipe changed 

only slightly for the three CLSM mixtures evaluated with different E values.  Therefore, 

it was concluded that the CLSM Young’s modulus value was not a significant factor 

affecting the Kopt value.  This could be due to the large difference in stiffness between 

the CLSM mixtures and the surrounding in-situ soil as well as an increase in system 

stiffness provided by CLSM trench surrounding the pipe.  For all other investigations 

with CLSM backfills in this study, an average Kopt value of 140.2 kN/m [800 lb/in] was 

utilized. 

3.3.2.8 FE Model Dimension Scale Factor 

Figure 27 shows axial stresses along the pipe length for the FE model with Soil 

(S2) backfill and the two scaled models with factors of 0.75 and 1.25.  The average pipe 

stress for the Soil (S2) backfill material was 49.69 MPa [7.206 ksi] and the average pipe 
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stresses for the down and up scaled models were 38.69 MPa [5.612 ksi] and 63.75 MPa 

[9.246 ksi], respectively. 

 

Figure 27: Pipe axial stress along the pipe for various FE model scale factors 

The average pipe axial stress of the FE model scaled down with a factor of 0.75 was 78% 

of the average pipe axial stress of the original model.  Similarly, the average pipe axial 

stress of the scaled up FE model with a factor of 1.25 was 128% of the average pipe axial 

stress of the original model.  Results indicated that when the FE model dimensions are 

modified with a constant scale factor keeping the dimension ratios constant, the average 

pipe axial stresses changed with almost the same factor.  This result can be used to 

minimize analysis run-time by using scaled down models. 
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3.3.3 Pipe Seismic Performance of Various Backfill Materials 

After setting the FE model parameters such as soil spring stiffness at boundaries, 

minimum FE model length, and friction coefficient to match the axial stress predicted 

by the ASCE guidelines when using Soil (S2) as a pipe backfill material, this developed 

FE model was further utilized to evaluate the pipe seismic performance of other soil and 

CLSM backfill materials, as shown in Table 1.  The pipe seismic performance is 

determined to be better when the pipe experiences the lower pipe axial stress under 

seismic loads.  Figure 28 shows the plot of pipe axial stress along the pipe length for 

buried pipes subject to one directional seismic wave propagation for various backfill 

materials.  It can be seen that pipe axial stresses were fairly uniform along the pipe length.  

Table 19 shows the average pipe axial stresses for various backfills. 

 

Figure 28: Pipe axial stress along the pipe for various backfill materials using Kopt at 

boundaries 
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Table 19: Summary of average pipe axial stress for various backfills 

Pipe 

Config.* 
Description 

Average Pipe Axial Stress 

MPa 

[kip/in2] 

Subject to 

1-Dir. 

Seismic 

Wave 

Subject to 

3-Dir. 

Seismic 

Wave 

I Computed from ASCE guidelines 
50.13 

[7.270] 
--- 

I FE model with Soil (S1) backfill 
50.88 

[7.379] 
--- 

I FE model with Soil (S2) backfill 
49.69 

[7.206] 

60.94 

[8.838] 

I FE model with Soil (S3) backfill 
42.01 

[6.093] 
--- 

I FE model with Soil (S4) backfill 
44.70 

[6.483] 
--- 

I FE model with Soil (T1) backfill 
44.74 

[6.489] 
--- 

I FE model with CLSM (C1) backfill 
31.26 

[4.533] 
--- 

I FE model with CLSM (C2) backfill 
26.79 

[3.886] 
--- 

I FE model with CLSM (C3) backfill 
19.85 

[2.879] 

15.12 

[2.198] 

II FE model with Soil (S2) backfill** 
307.31 

[44.572] 

338.19 

[49.051] 

II FE model with CLSM (C3) backfill** 
126.55 

[18.355] 

127.20 

[18.448] 

    * Pipe Config.:   I   =   an infinitely long pipe free on both ends 

                    II   =   a pipe free on one end and rigidly connected on the other end 

    ** Pipe axial stress measured at rigid end 
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Results clearly showed that under one dimensional seismic wave propagation, 

use of CLSM as a backfill material lowered the pipe axial stresses compared to soil 

backfills.  The pipe axial stresses decreased with increasing stiffness (Young’s modulus) 

of the backfill materials.  The change in pipe axial stresses between different CLSM 

mixtures was higher compared to the change between soil backfills.  It should be noted 

that in this study the differences in Young’s modulus value among evaluated CLSM 

mixtures are much higher compared to soils.  Therefore, it was concluded that for the 

evaluated backfill materials, the pipes embedded in CLSM backfills have a higher pipe 

seismic performance compared to soil backfills. 

3.3.4 Effect from One- and Three-Directional Seismic Wave 

 The FE models with Soil (S2) and CLSM (C3) backfills were also evaluated on 

the effect from three directional seismic wave propagation applied simultaneously.  

Figure 8 shows the pipe axial stresses under one and three directional wave propagation 

for pipes with the evaluated backfill materials. 

 As shown in Figure 29 and Table 19, for Soil (S2) backfill material, the average 

pipe axial stress increased from 49.69 MPa [7.206 ksi] to 60.94 MPa [8.838 ksi] when 

subjected to three directional seismic wave propagation, approximately 23% increase.  

For CLSM (C3) backfill material, the change in average pipe axial stresses when 

subjected to three directional wave propagation was very small.  The average pipe axial 

stresses were 19.85 MPa [2.879 ksi] and 15.12 MPa [2.198 ksi] when subject to one and 

three directional seismic wave propagation, respectively. 
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Figure 29: Effect on pipe axial stress from one- and three-directional seismic wave 

Therefore, it was concluded that the effect from three-directional seismic wave has a 

higher impact to pipe seismic performance for the pipe with soil backfill, but does not 

have a significant impact for the pipe with CLSM backfill. 

 In addition to pipe axial stress, Figure 30 and Figure 31 show the horizontal and 

vertical bending stresses along the pipe, respectively, when subjected to one and three 

directional seismic wave propagation using backfill materials Soil (S2) and CLSM (C3).  

Results indicated that pipe horizontal and vertical bending stresses are approximately 20 

times lower compared to the pipe axial stresses in both soil and CLSM backfills.  

Therefore, results suggested that buried pipes, even when subjected to three directional 

seismic wave propagation, would fail in pipe crushing rather than pipe bending failure. 
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Figure 30: Effect on pipe horizontal bending stress from one- and three-directional 

seismic wave 

 

Figure 31: Effect on pipe vertical bending stress from one- and three-directional 

seismic wave 
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3.3.5 Pipe End Conditions 

After matching the axial stress predicted by the ASCE guidelines for an infinitely 

long pipe free at both ends, the developed FE model was also used to evaluate the effect 

of having a rigid connection at one end of the pipe.  Figure 32 shows the pipe axial stress 

along the pipe length for pipes rigidly connected to a structure at one end and embedded 

in backfill materials Soil (S2) and CLSM (C3).  Pipe axial stresses are shown for both 

when subjected to one- and three directional seismic wave propagation. 

 

Figure 32: Pipe axial stress having one end rigidly connected to a structure 

Results indicated that pipe axial stresses could be 5 to 7 times higher at the rigid 

connection compared to the free end of the pipe regardless of the type of backfill 

material.  However, the pipe embedded in CLSM (C3) backfill exhibited significantly 
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lower axial stress compared to the pipe embedded in Soil (S2) backfill at the rigid 

connection end.  The maximum axial stress values observed at the rigid connections for 

soil and backfill materials were summarized in Table 19.  It was also observed that the 

effect of one- versus three-directional wave propagation on pipe axial stress was 

negligible compared to the effect of having a rigid connection at pipe end. 

3.4 Research Methodology with Inelastic Materials 

In the first phase of the study for buried pipelines subject to seismic wave 

propagation, all materials were considered to remain in elastic range under seismic loads.  

The second phase of this study was to evaluate the effect of non-linear material plasticity 

on the seismic performance for pipes embedded in soil and CLSM backfills.  The study 

started with the development of FE models using recommended FE model parameters 

obtained from the first phase, such as soil-pipe interaction, boundary condition, and FE 

model dimensions.  Various FE model parameters were investigated, including soil 

spring stiffness (K) and dashpot coefficient (c) utilized at FE model boundaries.  Similar 

to the study with elastic materials, the goal was to achieve a uniform pipe axial stress 

distribution along the pipe with non-linear material behavior.  Then, the developed FE 

model was further utilized to determine the seismic performance of pipes embedded in 

CLSM backfills compared to soil backfills in inelastic range.  The inelastic pipe seismic 

performance was also compared to the performance in elastic range. 

3.4.1 3D Finite Element Models 

All the modeling techniques implemented earlier in the first phase were adopted 

for the second phase, including model element types, mesh sizes, and load applications.  
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The developed FE model was the same as shown in Figure 7.  FE model parameters that 

were used in this study are listed below: 

 Steel pipe material, pipe size and thickness, pipe embedment depth, and backfill 

trench dimensions were the same as that utilized in the first phase. 

 3D FE model dimensions: model width (Wd) of 30D, model depth (Dd) of 35D, and 

model length (Ld) of 200D. 

 Boundary conditions: pinned boundary condition at the bottom plane and soil 

spring support at all other planes with the K value based on the material Young’s 

modulus (E) as suggested previously. 

 Load applications: all FE models were subject to the same seismic ground 

acceleration time-history of 1989 Loma Prieta earthquake record by [13] after 

application of gravitational forces. 

3.4.2 Inelastic Material Properties 

All materials considered in the second phase of the study accounted for non-

linear material behavior.  For the steel pipeline, an elastic-plastic material behavior with 

von Mises plasticity model was utilized with the stress-strain curve as shown in Table 

20 and Figure 33. 

Table 20: Stress-strain characteristics of steel pipeline [21] 

σ1 = σy 

(MPa) 

σ2 = σf 

(MPa) 

E1 

(GPa) 

E2 

(GPa) 

Strain Limit 

Elastic Failure 

490 531 210 1.088 0.0023 0.04 
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Figure 33: Stress-strain curve of steel pipelines 

Based on the literature review performed earlier, Mohr-Coulomb constitutive 

model is commonly used to represent non-linear material behavior; therefore, for soil 

and CLSM backfills and in-situ soil material, Mohr-Coulomb constitutive model was 

chosen for all FE models in this study.  Four soil types, Soil (S1) thru Soil (S4), and three 

selected CLSM mixtures, CLSM (C1) thru CLSM (C3), were evaluated with their elastic 

properties listed in Table 1.  To define material Mohr-Coulomb plasticity in ABAQUS, 

four additional parameters are required, including friction angle, cohesion stress, dilation 

angle, and absolute plastic strain.  According to Vazouras et al. [44], dilation angle of 

0.1º was utilized, and the absolute plastic strain was assumed to be zero for all materials 

evaluated in this study.  Friction angle and cohesion stress for the selected soil backfills 

were based on a study by [33].  It should be noted that in the study by [4], friction angle 

0

100

200

300

400

500

600

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

S
tr

e
s
s

 (
M

P
a

)

Strain

E
1

E
2



73 

and cohesion stress for CLSM mixtures were not evaluated and were not provided.  

Therefore, the values used in this study were based on CLSM mixtures evaluated by Lee 

et al. [45] with their mixture proportions as shown in Table 21.  Inelastic material 

properties of all materials evaluated in this study are summarized in Table 22. 

Table 21: CLSM mixture proportions [45] 

ID 

Material 

Description 

as Listed in 

References 

Optimum Mixing Composition (%) 

Recycled 

In-situ 

Soil 

Bottom 

Ash 
Fly Ash 

Crumb 

Rubber 
Cement Water 

CLSM 

(C1) 
Type Case 3 25 30 20 - 3 22 

CLSM 

(C2) 
Type Case 1 45 20 10 - 3 22 

CLSM 

(C3) 
Type Case 4 32 30 10 3 3 22 
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Table 22: Inelastic properties for soil and CLSM backfills [33, 45] 

ID 
Material Description 

as Listed in References 

Friction 

Angle 

 

 

Cohesion 

Stress 

kPa 

[psi] 

Soil (S1) Loosely Compacted Soil 15º 
8 

[1.16] 

Soil (S2) Loosely Compacted Sandy Silt 27º 
29 

[4.21] 

Soil (S3) Loosely Compacted Sandy Silt 25º 
30 

[4.35] 

Soil (S4) Loosely Compacted Sandy Silt 25º 
30 

[4.35] 

CLSM (C1) Type Case 3 47.4º 
97.7 

[14.17] 

CLSM (C2) Type Case 1 43.8º 
132 

[19.14] 

CLSM (C3) Type Case 4 36.5º 
180.7 

[26.21] 

3.4.3 FE Model Parametric Study 

In this study, three FE model parameters placed at FE model boundaries were 

evaluated to investigate their effects on a uniform pipe axial stress distribution along the 

pipe.  These parameters include: 

 Soil spring stiffness (K) 

 Dashpot element (c) 

 Dashpot element in conjunction with soil spring (c & K) 
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From the previous results, soil spring was suggested to be used at boundaries to achieve 

a uniform pipe axial stress along the pipe.  For non-linear material behavior, the study 

further investigated in the use of dashpot element.  According to [22], using dashpot 

element can provide viscous energy dissipation mechanisms and can be useful in FE 

model convergence in non-linear analysis.  Table 23 thru Table 25 show FE variables 

used in this parametric study for soil backfills, Soil (S1) thru Soil (S4). 

Table 23: FE model variables evaluated for boundary soil spring 

FE Model Constants 

Model: Steel pipe embedded in soil backfills 

FE Model Dimensions: Wd = 30D, Dd = 35D, and Ld = 200D 

Soil-Pipe Interface: Friction interface with coefficient of friction (f1) = 0.5 

FE Model Variables 

Boundary Condition: 

Soil (S1): spring stiffness (K) ranging from 87.56 kN/m 

[500 lb/in] to 700.51 kN/m [4000 lb/in] 

Soil (S2): spring stiffness (K) ranging from 245.18 kN/m 

[1400 lb/in] to 2626.90 kN/m [15000 lb/in] 

Soil (S3): spring stiffness (K) ranging from 875.63 kN/m 

[5000 lb/in] to 4378.17 kN/m [25000 lb/in] 

Soil (S4): spring stiffness (K) ranging from 1751.27 kN/m 

[10000 lb/in] to 5253.81 kN/m [30000 lb/in] 
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Table 24: FE model variables evaluated for boundary dashpot element 

FE Model Constants 

Model: Steel pipe embedded in Soil (S2) backfill 

FE Model Dimensions: Wd = 30D, Dd = 35D, and Ld = 200D 

Soil-Pipe Interface: Friction interface with coefficient of friction (f1) = 0.5 

FE Model Variables 

Boundary Condition: 
Dashpot element (c) with values ranging from 5 to 1000 

(in term of force per velocity) 

Table 25: FE model variables evaluated for boundary soil spring and dashpot element 

FE Model Constants 

Model: Steel pipe embedded in Soil (S2) backfill 

FE Model Dimensions: Wd = 30D, Dd = 35D, and Ld = 200D 

Soil-Pipe Interface: Friction interface with coefficient of friction (f1) = 0.5 

FE Model Variables 

Boundary Condition: 

Spring stiffness with dashpot element [c, K]: 

- [5, 600] 

- [5, 800] 

- [5, 2000] 

 

3.5 Results and Discussions with Inelastic Materials 

3.5.1 FE Model Parametric Study 

3.5.1.1 Soil Spring Stiffness 

Several soil spring stiffness values, as shown in Table 23, placed at FE model 

boundaries were evaluated for FE models with non-linear material behavior to 
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investigate their effects on a uniform pipe axial stress distribution along the pipe.  Figure 

34 shows the pipe axial stress along the pipe length for various soil spring stiffness 

evaluated. 

 

Figure 34: Pipe axial stress along the pipe for various soil spring stiffness at boundaries 

for inelastic materials Soil (S2) backfill 

Results clearly showed that a uniform pipe axial distribution along the pipe was 

not achieved with any value of soil spring stiffness, unlike results from elastic materials.  

This could be due to that under seismic loads the materials had gone into inelastic range 

and had experienced plastic deformations, particularly soil backfill material.  This effect 

was even more dramatic at locations near boundaries as shown by the higher pipe axial 

stress.  From the previous results, the optimal soil spring stiffness (Kopt) for Soil (S2) 
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backfill was equal to 1400 lb/in.  It was also observed from Figure 34 that axial stress 

variation along the pipe was greater with the higher soil spring stiffness utilized. 

Since results near boundaries were greatly affected from non-linear material 

behavior, only results from 30% to 70% of the pipe length were investigated to determine 

of a better uniform pipe axial distribution along the pipe could be achieved.  Figure 29 

shows the same results as Figure 28, excluding results near boundaries, and it showed 

that pipe axial stress along the pipe was more uniform.  Figure 36 thru Figure 38 show 

all results of the pipe axial stress along the pipe length for various soil spring stiffness 

for Soil (S1), Soil (S3), and Soil (S4) backfills, respectively.  Figure 39 thru Figure 41 

show the same results for Soil (S1), Soil (S3), and Soil (S4) backfills, respectively, 

excluding results near boundaries.  It was observed that for all soil backfills evaluated 

using results from 30% to 70% of the pipe length provided a better uniform pipe axial 

distribution that can be used to determine the pipe seismic performance. 
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Figure 35: Pipe axial stress along the pipe for various soil spring stiffness at boundaries 

for inelastic materials Soil (S2) backfill, excluding results near boundaries 

 

Figure 36: Pipe axial stress along the pipe for various soil spring stiffness at boundaries 

for inelastic materials Soil (S1) backfill 
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Figure 37: Pipe axial stress along the pipe for various soil spring stiffness at boundaries 

for inelastic materials Soil (S3) backfill 

 

Figure 38: Pipe axial stress along the pipe for various soil spring stiffness at boundaries 

for inelastic materials Soil (S4) backfill 
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Figure 39: Pipe axial stress along the pipe for various soil spring stiffness at boundaries 

for inelastic materials Soil (S1) backfill, excluding results near boundaries 

 

Figure 40: Pipe axial stress along the pipe for various soil spring stiffness at boundaries 

for inelastic materials Soil (S3) backfill, excluding results near boundaries 
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Figure 41: Pipe axial stress along the pipe for various soil spring stiffness at boundaries 

for inelastic materials Soil (S4) backfill, excluding results near boundaries 

3.5.1.2 Dashpot Element 

Figure 42 shows all results of the pipe axial stress along the pipe length for pipe 

embedded in Soil (S2) backfill, and Figure 43 shows the same plot excluding results near 

boundaries when using dashpot element at FE model boundaries.  Similar to results of 

using soil spring stiffness, results indicated that a uniform pipe axial distribution was not 

achieved when considering all results.  A more uniform distribution would be expected 

when excluding results near boundaries.  Table 26 shows the average pipe axial when 
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Figure 42: Pipe axial stress along the pipe for various dashpot at boundaries for 

inelastic materials Soil (S2) backfill 

 

Figure 43: Pipe axial stress along the pipe for various dashpot at boundaries for 

inelastic materials Soil (S2) backfill, excluding results near boundaries 
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Table 26: Average pipe axial stress when using soil spring stiffness and dashpot 

elements at boundaries for inelastic materials Soil (S2) backfill 

 

Soil 

Spring 

(K) 

Avg. Pipe 

Axial Stress 

(30% - 70%) 

ksi 

 

 

 

Dashpot 

(c) 

 

Avg. Pipe 

Axial Stress 

(30% - 70%) 

ksi 

 

Dashpot 

& Soil 

Spring 

(K & c) 

 

Avg. Pipe 

Axial Stress 

(30% - 70%) 

ksi 

1400 7.663 5 7.258 (5, 600) 7.435 

2000 7.795 10 7.189 (5, 800) 7.539 

3000 7.856 15 6.938 (5, 2000) 8.685 

4500 8.249 100 5.983   

6000 8.683 500 4.676   

10000 9.464 1000 4.751   

12500 10.003     

15000 9.981     

 

3.5.1.3 Dashpot Element & Soil Spring 

Similar to results seen previously, a uniform pipe axial distribution was not 

achieved when considering all results along the pipe length but would be expected when 

considering results only from 30% to 70% of the pipe length.  The average pipe axial 

stresses for the values considered were similar to results from using soil spring or using 

dashpot element at boundaries, as shown in Table 26.  Figure 44 shows all results of the 

pipe axial stress along the pipe length for pipe embedded in Soil (S2) backfill, and Figure 

45 shows the same plot excluding results near boundaries when using dashpot element 

in conjunction with soil spring at FE model boundaries. 
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Figure 44: Pipe axial stress along the pipe for various dashpot and soil spring at 

boundaries for inelastic materials Soil (S2) backfill 

 

Figure 45: Pipe axial stress along the pipe for various dashpot and soil spring at 

boundaries for inelastic materials Soil (S2) backfill, excluding results near boundaries 
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3.5.2 Pipe Seismic Performance of Various Backfill Materials 

After evaluating the effects on non-linear material behavior from FE model 

parameters, the developed FE models were utilized to determine the pipe seismic 

performance of various backfills, including Soil (S2) and CLSM (C1) thru CLSM (C3) 

backfills, for an infinitely long pipe free on both ends.  From the previous findings, only 

results in the range from 30% to 70% of the pipe length were considered.  The value for 

soil spring stiffness utilized at FE model boundaries was obtained from the study with 

elastic materials.  For pipe embedded in Soil (S2) backfill and all CLSM backfills, soil 

spring stiffness, Kopt, is equal to 1400 lb/in and 800 lb/in, respectively.  The developed 

FE model for this study also accounted for three-directional seismic wave applied 

simultaneously.  Figure 46 shows the pipe axial stress along the pipe length for buried 

pipes for various backfill materials accounting for non-linear behavior.  Table 27 shows 

the average pipe axial stresses compared to values obtained earlier from the study with 

elastic materials. 

Similar to results from elastic materials, pipes embedded in CLSM backfills 

experienced lower pipe axial stresses compared to the soil backfill.  Also, the pipe axial 

stresses decreased with increasing stiffness (Young’s modulus) of the backfill materials.  

For soil backfill, when accounting for non-linear material behavior, the pipe axial stress 

was lower compared to elastic materials.  This could have been the result of soil backfill 

material undergone plastic deformations.  The material plastic deformation may have 

created more separation between the soil backfill and the pipe allowing the pipe to freely 

deform more than elastic materials, which resulted in a lower pipe axial stress. 
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Figure 46: Pipe axial stress along the pipe for various backfill materials considering 

non-linear material behavior 

Table 27: Summary of average pipe axial stress for various backfills considering non-

linear material behavior 

Description 

Elastic Materials 
Inelastic 

Materials 

Subject to 

1-Dir. 

Seismic 

Wave 

Subject to 

3-Dir. 

Seismic 

Wave 

Subject to 

3-Dir. 

Seismic 

Wave 

FE model with Soil (S2) backfill 
49.69 

[7.206] 

60.94 

[8.838] 

52.83 

[7.663] 

FE model with CLSM (C1) backfill 
31.26 

[4.533] 
--- 

32.41 

[4.70] 

FE model with CLSM (C2) backfill 
26.79 

[3.886] 
--- 

23.74 

[3.443] 

FE model with CLSM (C3) backfill 
19.85 

[2.879] 

15.12 

[2.198] 

17.13 

[2.484] 
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For CLSM backfills, results when accounting for non-linear material behavior were not 

inclusive.  This may be due to the fact that CLSM backfills evaluated in this study are 

much stiffer compared to soil backfill and may have not undergone plastic deformations.  

It was also observed that for all backfill material, soil and CLSM, steel pipe remained in 

elastic range as determined by the pipe axial stress that was well below material yield 

strength.  As shown in Table 27, the changes in pipe axial stress for pipes embedded in 

CLSM backfills from elastic to inelastic materials were minimal.  It was concluded that 

the pipe axial stress would be affected from non-linear material behavior if the material 

would extend into inelastic range and would result in lower pipe axial stress.  Therefore, 

the analysis considering only elastic materials would still be conservative. 
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CHAPTER 4 

BURIED PIPELINES SUBJECT TO REVERSE-SLIP FAULT RUPTURE 

4.1 Introduction 

This chapter focuses on seismic performance of pipelines embedded in CLSM 

when subjected to permanent ground deformations caused by a reverse-slip fault rupture.  

This study utilized a 3D finite element model to compare the seismic performance of 

pipelines embedded in CLSM to the performance of pipelines embedded in compacted 

soils. 

4.2 Research Methodology 

As stated earlier, pipelines are more vulnerable to reverse fault due to local 

buckling based on a study by [18].  Under reverse-slip fault rupture, buried pipelines are 

subjected to shear and bending, primarily in compression, and can significantly deform 

causing high stresses and strains beyond the elastic range of pipe material.  This study 

evaluates the seismic performance of pipes embedded in CLSM backfill using a 3D finite 

element approach considering soil-pipe interactions, material nonlinearity, large 

deformations, and local failures.  In 2016, Jalali et al. [23] carried out a full-scale 

laboratory testing of steel pipes buried in a sand split-box subjected to a reverse faulting 

and also used these experimental results to compare with 3D FE model analyzes. 

This study first developed a 3D FE model with model parameters matching [23], 

including model dimensions, steel pipe diameter and thickness, pipe and soil backfill 

properties, boundary conditions, and total applied fault movement.  The maximum pipe 

longitudinal strain, the maximum pipe deformation, and the pipe deformation shape 
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obtained from the FE model were compared to the experimental results reported by [23].  

After validating the developed FE model, it was further used to assess the seismic 

performance of steel pipes backfilled with CLSM. 

Model results, including pipe longitudinal strain, the amount of fault movement 

causing pipe failure, and the pipe failure location were used to evaluate and compare the 

seismic performance of pipes.  Effects of different model parameters on the pipe seismic 

performance are evaluated.  These parameters include; 1) various soil and CLSM backfill 

material properties, 2) pipe diameter-to-thickness ratios, and 3) backfill-pipe friction 

coefficients.  Another model parameter evaluated in this study was the CLSM trench 

continuity through the fault plane.  Depending on the strength of the CLSM mixture used 

to backfill a pipe, the CLSM backfill can be modeled as one continuous component 

through the fault plane or as two components separated by the fault plane.  The effect of 

this model parameter on the pipe seismic performance was discussed. 

4.2.1 3D Finite Element Model 

Similar to the previous study outlined in Chapter 3, ABAQUS software was used 

to develop a 3D FE model that mainly consists of three components; 1) a steel pipeline, 

2) a backfill trench, and 3) surrounding in-situ soil.  All components were modeled using 

eight-node reduced-integration brick elements (C3D8R).  For backfill trench and in-situ 

soil, a larger mesh sizes, with the maximum size of 2D (where D is the pipe outside 

diameter), were defined to minimize computational run-time.  A smaller mesh size was 

defined in some areas to improve model mesh quality.  For steel pipe, a smaller mesh 

size, equal to approximately 0.5D, was specified along the entire pipe length for 
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improved accuracy of results.  Friction contact with various friction coefficients was 

utilized on all interfaces including soil-pipe, CLSM-pipe, soil-CLSM, and soil-soil at the 

fault plane.  Figure 47 shows an example of the developed FE model consisting of all 

model components. 

 

Figure 47: Developed 3D FE model for pipe subject to seismic fault rupture 

FE model parameters that were used in this study are listed below: 

 Total soil mass dimensions: 1700 mm [66.93 in.] x 1800 mm [70.87 in.] x 8000 

mm [314.96 in.], (width x height x length), with a fault angle of 61° in relation to 

the horizontal plane as shown in Figure 47. 
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Figure 48: 3D FE model dimensions for pipe subject to seismic fault rupture 

 Steel pipeline: API-5L Grade B with a 168.3 mm [6.625 in.] pipe outside diameter, 

4.4 mm [0.173 in.] pipe thickness, 8000 mm [314.96 in.] length, and a pipe 

embedment depth of 1000 mm [39.37 in.] to the centerline of the pipe from the top 

of the backfill surface.  Steel pipeline was modeled in ABAQUS with an elastic-

plastic material behavior. 

 Backfill trench dimensions:  trench width of 500 mm [19.69 in.] and trench depth 

of 1200 mm [47.24 in.]. 

 Boundary conditions:  pinned boundary condition restraining displacement in all 

directions was used at the bottom plane to simulate bedrock condition.  Roller 

boundary condition restraining displacement only in the direction normal to the 

plane was used at all other planes (front, side, and back). 
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 Load applications:  after application of gravitational forces, reverse fault simulation 

in the FE model was performed by moving the hanging wall block in the total 

amount of 600 mm [23.62 in.] along the fault plane, as shown in Figure 48. 

All the FE model parameters matched the experimental work by [23] except the 

backfill trench dimensions since there was not a backfill trench in that study.  The 

experimental work used pipe end-clamps at both ends of a sand split-box.  Tie constraints 

were used in our FE model at both pipe ends between the steel pipe and the surrounding 

soil elements to match the end conditions of the experimental work. 

Table 28 shows the material properties of the soil and different CLSM mixtures 

used in this study.  The properties of the soil (S1) matched the soil used in the 

experimental work by [23].  Material properties of three CLSM mixtures, C1 thru C3, 

were based on air-entrained CLSM mixtures reported in the Technical Bulletin 1104 

document by GCP Applied Technologies for CLSM mixtures containing DaraFill [46].  

Material properties of C4 are based on a mixture reported by Shah in the literature [4].  

CLSM mixtures, C5 thru C8, were generated by modifying certain properties of mixtures 

C2 thru C5. 
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Table 28: Material properties of soil and CLSM used in the FE model for pipe subject 

to seismic fault rupture [4, 23, 46] 

ID 
Material 

Description 

Unit 

Weight 

(γ) 

kg/m3 

[lbf/ft3] 

Young’s 

Modulus 

(E) 

MPa 

[kip/in2] 

Poisson 

Ratio 

(υ) 

Friction 

Angle 

(ϕ) 

 

Cohesion 

(c) 

MPa 

[lbf/in2] 

Shear 

Strength 

(τ) 

MPa 

[lbf/in2] 

Soil 

(S1) 

Well graded 

sand (SW) 

1907 

[120.1] 

8.4 

[1.22] 
0.30 33.5 

0.005 

[0.73] 

0.016 

[2.32] 

CLSM 

(C1) 

DaraFill CLSM 

Mix 1 

1636 

[102.1] 

21 

[3.05] 
0.30* 39.3 

0.043 

[6.24] 

0.055 

[7.98] 

CLSM 

(C2) 

DaraFill CLSM 

Mix 2 

1586 

[99.0] 

21 

[3.05] 
0.30* 36.4 

0.047 

[6.82] 

0.058 

[8.41] 

CLSM 

(C3) 

DaraFill CLSM 

Mix 3 

2083 

[130.0] 

25* 

[3.63] * 
0.30* 39.4 

0.058 

[8.41] 

0.073 

[10.59] 

CLSM 

(C4) 

CLSM 

Mix ID – S3 

1776 

[110.9] 

689.5 

[100] 
0.13 47.4 

0.098 

[14.21] 

0.115 

[16.68] 

CLSM 

(C5) 

DaraFill CLSM 

Mix 1 

1636 

[102.1] 

21 

[3.05] 
0.30* 39.3 

0.030* 

[4.35]* 

0.042* 

[6.09]* 

CLSM 

(C6) 

DaraFill CLSM 

Mix 1 

1636 

[102.1] 

50* 

[7.25]* 
0.30* 39.3 

0.043 

[6.24] 

0.055 

[7.98] 

CLSM 

(C7) 

DaraFill CLSM 

Mix 1 

1636 

[102.1] 

75* 

[10.88]* 
0.30* 39.3 

0.043 

[6.24] 

0.055 

[7.98] 

CLSM 

(C8) 

CLSM 

Mix ID – S3 

1776 

[110.9] 

100* 

[14.5]* 
0.13 47.4 

0.098 

[14.21] 

0.115 

[16.68] 

    * denoted modified material properties 

4.2.2 Effect of CLSM Trench Continuity through the Fault Plane 

Based on several 3D FEA of buried pipelines under seismic fault rupture, soil is 

typically modeled as two components separated by a fault plane simulating permanent 

ground deformation [21, 23, 47, 48].  Based on the mixture designs, CLSM mechanical 
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properties could be somewhere between loosely compacted soils and concrete.  High 

strength CLSM mixtures may behave similar to concrete, which may crack but may not 

separate under loads, especially under small fault rupture events.  With no separation at 

fault plane, CLSM trench could potentially protect pipelines from fault loads better than 

conventional soil backfill since CLSM trench and pipe would behave as a combined 

section. 

The effect of CLSM trench continuity through fault plane on the pipe seismic 

performance was evaluated using two FE models.  The two models are identical in terms 

of model dimensions, CLSM backfill material properties, and friction coefficient values 

at all interfaces.  The only difference between the two models is how the CLSM trench 

was modeled at the fault plane.  In the first model, the CLSM trench was modeled as one 

continuous component through the fault plane.  In the second model, two CLSM trench 

components were modeled that are separated by a fault plane.  Figure 49 shows the two 

configurations of the developed FE models for this investigation.  Friction contact was 

utilized at the fault plane interface for soil-soil or CLSM-CLSM, providing some shear 

resistance to fault loads but still allowing ground (or CLSM trench) separation under 

fault rupture.  For each developed FE model, three CLSM mixtures (C1 thru C3) were 

evaluated on the seismic performance affected by this model parameter. 



96 

 

Figure 49: Effect of CLSM trench continuity through the fault plane 

4.2.3 Effect of CLSM-Pipe Friction Coefficient 

All interfaces were modeled with friction contact coupling with a hard contact 

feature that allows for a separation after the two surfaces have come into contact but 

prevents one component from penetrating into the other component.  There are four 

friction interfaces in all developed FE models; 1) CLSM-pipe, 2) soil-CLSM, 3) soil-soil 

at the fault plane, and 4) CLSM-CLSM at the fault plane, as shown in Figure 50.  The 

experimental work that evaluated a steel pipe under reverse slip fault reported the friction 

coefficient at the soil-pipe interface to be 0.41.[23]  Due to the cementitious content of 

CLSM, the friction coefficient, f, at the CLSM-pipe interface was modeled to be higher 

than 0.41.  Three friction coefficient values, including 0.55, 0.65, and 0.75, were used at 

the CLSM-soil interface.  The friction coefficient for CLSM-CLSM interface at the fault 

plane was set to be the same as the CLSM-pipe interface.  The friction coefficient at soil-

CLSM and soil-soil interface at the fault plane were set to be 0.53 and 0.30, respectively. 
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Figure 50: Friction interfaces at various locations 

4.2.4 Effect of Backfill Material Shear Strength 

A seismic fault rupture often results in large ground deformations and is expected 

to cause deformations beyond the elastic range of backfill materials.  An elastic-perfectly 

plastic Mohr-Coulomb behavior was used to account for material nonlinearity, as 

expressed by Eq. (1).  The developed FE model was used to evaluate the effect of backfill 

material shear strength, τ, on the seismic performance of embedded steel pipe, including 

soil (S1) and five CLSM mixtures (C1 thru C5).  The normal stress (σ) at the pipe crown 

was computed based on the backfill material unit weight (γ) and the pipe embedment 

depth.  The backfill material shear strength values were computed using Eq. (1) and the 

material properties listed in Table 28. 

4.2.5 Effect of Backfill Material Young’s Modulus 

The Young’s modulus of the backfill is another parameter required for the Mohr-

Coulomb constitutive material model.  The Young’s modulus value is independent from 

the material shear strength.  The soil (S1) and the four CLSM mixtures (C1, C6 thru C8) 
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were used to evaluate the effect of Young’s Modulus on the seismic performance of 

pipes. 

4.2.6 Effect of Pipe D/t Ratio 

The outside diameter to thickness ratio, D/t, of the pipe was 38.3.  The effect of 

changing the D/t ratio was also evaluated using the FE model.  The pipe outside diameter 

was kept constant and the pipe thickness was changed to 3 mm [0.118 in.], 6.5 mm [0.256 

in.], and 8 mm [0.315 in.] resulting in three different pipe D/t ratios of 56.1, 25.9, and 

21.0, respectively.  The pipe seismic performance was evaluated for soil (S1) compared 

to CLSM mixtures (C1). 

4.3 Results and Discussion 

4.3.1 FE Model Validation using Experimental Results 

Figure 51 shows soil and pipe deformations obtained using the developed FE 

model for a pipe embedded in soil (S1) after 0.6 m [23.62 in.] applied fault movement.  

All model parameters including the soil material properties were matched to the 

experimental work reported by [23]. 
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Figure 51: Soil and pipe deformation for pipe embedded in soil backfill after fault 

movement 

The observed soil upheaval at the surface of the hanging wall is consistent with the 

results of the experimental work.  The pipe exhibited an S-shape deformation with 

unsymmetrical pipe buckling locations with respect to the fault plane, again consistent 

with the reported experimental results.  Although the experimental work did not measure 

the maximum pipe deformation, the authors used an FE model to report the maximum 

pipe deformation to be 0.74 m [29.13 in.].   The FE model created by the authors of the 

experimental work used a shear band preventing model discontinuity at the fault plane.  

On the contrary, our FE model uses friction interfaces at the fault plane providing 

resistance but allowing a true separation between the two soil components.  The 

maximum pipe deformation obtained from our FE model was 0.93 m [36.61 in.], which 

is still comparable to the FE model results of the authors of the experimental work. 

Figure 52 shows pipe longitudinal strains measured at the pipe crown along the 

pipe length in the experimental work and strain values obtained using our FE model. 
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Figure 52: FE model validation with experimental work [23] 

The maximum pipe longitudinal strain reported from Jalali et al.’s FE model is also 

shown in Figure 52.  In the foot wall (left quadrant), the maximum pipe longitudinal 

strain from the experiment, experimental work’s FE model, and our FE model are -7.8%, 

-8.7%, and -9.7%, respectively.  Negative values indicate compressive strain and positive 

values indicate tensile strain.  The location of the maximum pipe longitudinal strain is 

also the location of pipe buckling away from the fault plane.  The pipe buckling locations 

in the foot wall from the experiment, experimental work’s FE model, and our FE model 

are 0.70 m [27.56 in.], 0.60 m [23.62 in.], and 0.72 m [28.35 in.], respectively.  In the 

hanging wall (right quadrant), strains at the pipe crown obtained from our FE model did 

not match with the reported experimental results as well as they did in the foot wall.  

However, it should be noted that the pipe longitudinal strain was much lower in the 
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hanging wall compared to the foot wall and strains did not reach the ultimate pipe strain 

and therefore would not govern the pipe design.  In addition, the maximum pipe 

longitudinal strain may be beyond the pipe failure point that is normally used for a pipe 

design, but it is still comparable to the experimental data.  More importantly, the results 

were utilized to evaluate the pipe seismic performance from different backfills rather 

than to provide a design guideline of the buried pipe. 

Overall, the soil upheaval at the surface, the maximum pipe deformation and 

deformation shape, pipe longitudinal strain, and pipe buckling locations predicted by our 

FE model were similar to the experimental results reported in Jalali et al.’s study.  

Therefore, the developed model was further used to compare the seismic performance of 

pipes backfilled with soils and performance of pipes backfilled with different CLSM 

mixtures. 

4.3.2 Effect of CLSM Trench Continuity through the Fault Plane 

The effect of CLSM trench continuity through the fault plane was evaluated using 

CLSM mixtures C1, C2, and C3.  Figure 53 shows the pipe longitudinal strain obtained 

at the crown along the pipe length after 0.6 m [23.62 in.] applied fault movement for 

mixtures C1 and C3.  Results indicated that modelling the CLSM trench as one 

continuous trench or as two trench components separated by the fault plane did not have 

a significant effect on the obtained maximum strain values neither in the foot wall nor in 

the hanging wall.  Modeling the CLSM trench as one continuous trench caused a shift of 

the pipe buckling locations in the same direction of the fault movement but the distance 

between the two buckling locations remained constant for the same CLSM mixture.  
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Results obtained from CLSM mixture C2 were the same as C1 and C3.  The horizontal 

shift of buckling locations was the same for all three CLSM mixtures, approximately 

0.48 m [18.90 in.] in the foot wall and 0.4 m [15.75 in.] in the hanging wall.  Because 

the CLSM trench continuity in the model did not affect the maximum strain value but 

only shifted the location by a constant amount, it was decided to model the trench as two 

separate components similar to the model used for soil backfill material. 

 

Figure 53: Effect of CLSM trench continuity on pipe longitudinal strain 

4.3.3 Effect of CLSM-Pipe Friction Coefficient 

Results in Chapter 3 evaluating seismic performance of pipes embedded in 

CLSM and subjected to seismic wave propagation reported that the pipe axial stresses 

increased with increasing friction coefficient at CLSM-pipe interface.  Therefore, the 

effect of friction coefficient at the CLSM-pipe interface was also evaluated in this study 
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when pipes are subjected to reverse slip fault movements.  Figure 54 shows the pipe 

longitudinal strain obtained at the crown along the pipe length for a pipe embedded in 

CLSM mixture C1 after 0.6 m [23.62 in.] applied fault movement using three different 

friction coefficient values (f = 0.55, 0.65, and 0.75). 

 

Figure 54: Pipe longitudinal strain for a study on CLSM-pipe friction coefficient 

Results showed that for all friction coefficients, the longitudinal strain, buckling 

locations in the foot wall and the hanging wall, and the distance between the two 

buckling locations were nearly identical.  The same friction coefficients were also 

evaluated in CLSM mixtures C2 and C3 and results exhibited the same trend.  Therefore, 

it was concluded that CLSM-pipe friction coefficient had a negligible effect on the pipe 

seismic performance when subjected to seismic fault rupture. 
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4.3.4 Effect of Backfill Material Shear Strength 

After validation of the developed FE model with experimental work, it was used 

to compare seismic performance of pipes backfilled with soils and CLSM mixtures.  Soil 

and CLSM elements were modeled using elastic-perfectly plastic Mohr-Coulomb 

material model with different shear strength values.  The amount of fault movement to 

cause the initial pipe failure was determined for soil and CLSM mixtures.  The pipe is 

considered to have a better seismic performance when a larger fault movement is 

required to fail the pipe.  The pipe failure was defined when any segment of the pipe 

reaches the ultimate pipe strain of 4% as specified in the stress-strain curve of the steel 

pipe.  The ultimate pipe strain of 4% is consistent with the ASCE recommendation in 

Engineering Practice No. 119 [49], which recommends less than 5% for seismic pipeline 

design.  Table 28 shows the calculated shear strength, τ, values for soil (S1) and CLSM 

mixtures (C1 to C5) using Eq. (1).  Figure 55 shows the relation between the backfill 

material shear strength on a logarithmic scale and the amount of fault movement causing 

the pipe failure.  Results clearly showed that as the backfill material shear strength 

increased, the pipe could tolerate a smaller fault movement before reaching the pipe 

failure.  This is due to the increase of system stiffness provided by a CLSM trench 

surrounding the pipe.  This behavior is similar to a building system under seismic loads 

where a stiffer system would draw higher loads compared to a more flexible system. 
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Figure 55: Relation between backfill material shear strength and fault movement at 

pipe failure 

Figure 56 shows the longitudinal strain measured at pipe crown along the pipe 

length for pipes backfilled with soil (S1) and three CLSM mixtures (C1, C2, and C3).  

Similar to results shown in Figure 55, the maximum pipe longitudinal strain increased 

with increasing backfill shear strength.  The locations of the maximum longitudinal 

strain moved closer to the fault plane both in the foot wall and hanging wall as the 

backfill material shear strength increased.  Both figures show that the performance of 

pipes backfilled with CLSM mixtures was worse in terms of observed maximum 

longitudinal strain and the pipe strain values increased with increasing shear strength of 

the CLSM mixture. 
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Figure 56: Pipe longitudinal strain for pipe with soil and CLSM backfills 

4.3.5 Effect of Backfill Material Young’s Modulus 

The effect of the backfill material Young’s modulus, E, on the seismic 

performance of the pipe was also evaluated based on the amount of fault movements 

required to cause pipe failure. Figure 57 shows the relation between the backfill 

material’s E and the amount of fault movement causing the pipe failure for a pipe 

embedded in soil (S1) and the CLSM mixtures (C1, C6, C7, and C8).  Soil (S1) has a 

lower E value compared to all the evaluated CLSM mixtures.  Similar to shear strength 

values, the amount of fault movement to cause pipe failure decreased with increasing E 

values.  It should be noted that the E value of the backfill material is independent of its 

shear strength and therefore both of these variables were evaluated.  Evaluation of E 

values also indicated that the seismic performance of the steel pipe backfilled with soil 
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and exposed to the reverse slip fault was better compared to the pipes backfilled with 

CLSM mixtures evaluated in this study. 

 

Figure 57: Relation between backfill material E and fault movement at pipe failure 

4.3.6 Effect of Pipe D/t Ratio 

Figure 58 shows the relation between the pipe outside diameter to thickness ratio, 

D/t, and the amount of fault movement to cause pipe failure for soil (S1) and CLSM 

mixture (C1).  The steel pipe used in the FE model had a pipe D/t ratio of 38.3, and at 

this D/t value the fault movement to cause pipe failure in CLSM (C1) was smaller 

compared to the fault movement in soil (S1).  Similar to earlier results, this indicated a 

better pipe seismic performance of pipes backfilled with soils due to higher stiffness of 

the CLSM backfill. 
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Figure 58: Relation between pipe D/t ratio and fault movement at pipe failure 

One measure a designer can use to improve the seismic performance of the pipe 

is to increase the pipe wall thickness.  Three different D/t ratios were evaluated for 

CLSM backfills by changing the wall thickness of the pipe while keeping the outside 

diameter constant.  As shown in Figure 58, decreasing the D/t ratio improved the seismic 

performance of the steel pipe backfilled with CLSM by increasing the necessary fault 

movement to cause a pipe failure.  Increasing the pipe thickness from 4.4 mm [0.173 in.] 

to 6.5 mm [0.256 in.] changed the D/t ratio from 38.3 to 25.9 and changed the fault 

movement to cause failure from 77.7 mm [3.06 in.] to 88.4 mm [3.48 in.].  The fault 

movement required to cause a pipe failure in soil (S1) was 84.1 mm [3.31 in.].  These 

results indicate that pipes embedded in CLSM mixtures can have a seismic performance 

as well as or better than pipes backfilled with soils with simple changes in the design.  
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Increasing the pipe wall thickness would increase the material cost but would make the 

advantages of using CLSM available to contractors and owners.  These advantages 

include better safety during construction, lower cost of construction, and improved 

construction speed.[6] 
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CHAPTER 5 

SUMMARY 

5.1 Research Summary 

One of the two main objectives of this research was to provide recommendations 

on 3D FE modeling parameters and their effects on model results for buried pipelined 

embedded in soil and CLSM backfills subject to seismic loads.  Several FE model 

parameters were evaluated including soil-pipe interaction, boundary condition, FE 

model dimensions and scale factors, various friction coefficients at interfaces, 

relationship between soil spring and material Young’s modulus, the effect of three-

directional seismic wave, pipe end condition, and the effect of material nonlinearity.  The 

other research objective was to evaluate the use of CLSM mixtures to backfill steel 

pipelines for earthquake resistance compared to conventional compacted soils.  The 

performance of buried pipes embedded in various soil and CLSM backfills were 

analyzed under seismic wave propagation as well as seismic reverse fault rupture. 

5.2 Summary of Research Findings 

5.2.1 Buried Pipelined Subject to Seismic Wave Propagation 

The study in Chapter 3 evaluated the seismic performance of steel pipe embedded 

in CLSM backfill subject to seismic wave propagation compared to compacted soil 

backfill.  The study was performed in two phases, 1) with all materials considered in 

elastic range and 2) with all materials considered in inelastic range. 
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5.2.1.1 Research Findings with Elastic Materials 

The study started with the evaluation of the existing ASCE guidelines for 

designing pipelines when subjected to seismic wave propagation.  Then, a parametric 

study on various FE model parameters was conducted to evaluate their effects on FE 

model results.  After evaluating the effects of different FE model parameters, the FE 

model parameters were set to obtain a similar pipe axial stress as predicted by the ASCE 

guidelines for pipes buried in soils.  Next, the developed FE model was utilized to 

evaluate various FE model parameters as well as the pipe seismic performance of pipes 

embedded in CLSM backfills compared to soil backfills.  Analysis of results indicated: 

 Pipe axial stress prediction from the developed FE model matched well with results 

computed from the ASCE guidelines. 

 FE models using tie constraint for soil-pipe interaction resulted in much higher 

pipe axial stress along the pipe, approximately 10-15 times, than FE models using 

friction interface.  Friction interface should be used for more realistic results. 

 To achieve a uniform pipe axial stress distribution along the pipe, soil spring 

support should be used at FE model boundaries rather than roller support. 

 FE model width does not have a significant impact to FE model results.  A 

minimum FE model width of 20D was recommended to minimize computational 

run-time. 

 The peak axial stress at mid-pipe location increased as the FE model depth 

increased and started to be constant after a certain model depth.  Modeling with too 
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shallow of FE model depth could under estimate the peak axial stress.  A minimum 

FE model depth of 35D was suggested. 

 For soil backfills, the peak axial stress at mid-pipe location first increased with 

increasing FE model length and decreased after it reached the critical FE model 

length.  The critical FE model length decreased as the soil-pipe friction coefficient 

increased.  In addition, the maximum pipe axial stress at the critical length 

increased as the friction coefficient increased.  Therefore, a model should be 

created with a sufficient FE model length based on soil-pipe friction coefficient to 

capture the peak axial stress that a pipeline could experience under seismic loads. 

 Similar to soil backfills, for CLSM backfills, the pipe axial stress initially increased 

as the FE model length increased and it remained constant after reaching the critical 

model length.  The maximum pipe axial stress increased with increasing CLSM-

pipe friction coefficient.  However, the critical FE model length did not vary with 

the CLSM-pipe friction coefficient.  For the evaluated CLSM backfills a minimum 

model length of 200D is recommended to have a complete transfer of loads 

resulting in a uniform axial stress along the pipe. 

 Friction coefficients of both interfaces, CLSM-pipe (f1) and CLSM-soil (f2), 

affected the pipe axial stress.  The pipe axial stress increases as CLSM-soil friction 

coefficient (f2) increases for the same CLSM-pipe friction coefficient (f1).  

Similarly, the pipe axial stress increases as CLSM-pipe friction coefficient (f1) 

increases for the same CLSM-soil friction coefficient (f2). 
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 Soil springs should be used at FE model boundary planes to obtain uniform axial 

stress distribution along the pipe for both soil and CLSM backfills.  In case of soil 

backfill, there is an optimum soil spring stiffness value related to the soil Young’s 

modulus to minimize stress variation.  For the evaluated CLSM backfills in this 

study a soil spring stiffness of 140.2 kN/m [800 lb/in] was recommended. 

 Increasing or decreasing the model dimensions by a scale factor increased or 

decreased the observed axial stresses by a similar factor as long as the dimension 

ratios were kept constant. 

 Under the same seismic wave propagation, pipes embedded in the evaluated CLSM 

backfills exhibited as much as 2.5 times lower in pipe axial stresses compared to 

pipes embedded in soils.  The pipe axial stress decreased as the strength of backfill 

materials increased. 

 Embedded pipes subject to seismic wave propagation are more likely to fail in pipe 

crushing rather than bending failure due to much higher axial stresses compared to 

bending stresses. 

 Under the same seismic load conditions, lower pipe axial stresses in CLSM backfill 

would allow engineers to use a smaller pipe diameter or a thinner pipe wall 

thickness providing a cost saving to a project.  However, it should be noted that 

pipe crushing under seismic wave propagation is not the only failure mode 

typically considered for seismic design of buried pipelines.  It should also be noted 

that the results are valid for the CLSM mixtures similar to the ones evaluated in 

this study and could not be applied for any CLSM mixture. 
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 For the evaluated soil and CLSM backfill materials in this study, pipes embedded 

in soils or CLSM may experience 5 to 7 times higher axial stresses at a rigid 

connection compared to the free end of the pipe.  However, the maximum axial 

stress at the rigid end was significantly lower for pipes embedded in a stiff CLSM 

mixture compared to a pipe embedded in a soil backfill. 

5.2.1.2 Research Findings with Inelastic Materials 

The study started the parametric study on various FE model parameters to 

determine their effects on a uniform pipe axial stress distribution along the pipe.  Then, 

the developed FE model was utilized to evaluate the pipe seismic performance of pipes 

embedded in CLSM backfills compared to soil backfills.  Analysis of results indicated: 

 Unlike FE models with elastic materials, the use of soil spring stiffness, dashpot 

element, or dashpot element with soil spring at FE model boundaries did not 

provide a uniform pipe axial stress distribution along the pipe. 

 Recommendations obtained from the study with elastic materials still applied that 

soil spring should be used at FE model boundaries with the optimal soil spring 

stiffness (Kopt) based on material Young’s modulus. 

 For a better uniform pipe axial stress distribution, results near boundaries should 

be excluded due to material plastic deformation.  In this study, results from 30% to 

70% of the pipe length were utilized. 

 Similar to results from the study of elastic materials, pipes embedded in CLSM 

backfills experienced as much as 3 times lower in pipe axial stress compared to 

pipes embedded in soil. 
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 For soil backfill, non-linear material behavior resulted in the lower pipe axial 

stress.  For CLSM backfill, results were not inclusive, which could have been 

because CLSM materials did not extend into plastic range under seismic loads in 

this study.  Therefore, an elastic analysis would still be conservative for a pipe 

design. 

5.2.2 Buried Pipelined Subject to Reverse-Slip Fault Rupture 

This study in Chapter 4 evaluated the seismic performance of steel pipes 

embedded in CLSM backfill and subjected to a reverse-slip fault and compared their 

performance to pipes embedded in compacted soil backfill.  A 3D FE model was used to 

perform the evaluations and comparisons.  The developed FE model was first validated 

by modeling an experimental work reported in the literature and comparing the predicted 

results with the results of the experimental work.[23]  It should be noted that although 

the evaluated materials represent a wide range of commonly used CLSM mixtures and 

allow to make general conclusions based on material properties, specific results are only 

valid for the specific soil and CLSM mixtures evaluated in this study and may be 

different for different soils and differently designed CLSM mixtures.  Evaluation of 

certain model parameters and the comparison of seismic performance of pipes resulted 

in the following conclusions: 

 Under reverse-slip fault rupture in soil backfill, the steel pipe exhibited an S-shape 

deformation with unsymmetrical pipe buckling locations with respect to the fault 

plane similar to the observations in the experimental work.  The soil upheaval at 

the surface, maximum pipe deformation, pipe longitudinal strain, and buckling 
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location matched the experimental observations in the foot wall where the pipe 

failure occurred. 

 Modelling the CLSM trench continuously through the fault plane did not change 

the maximum pipe longitudinal strain neither in the foot wall nor in the hanging 

wall.  It only caused a shift in the location of the maximum pipe longitudinal strain 

in the direction of the fault movement.  A seismic fault rupture often causes a true 

ground separation; therefore, it is more realistic to model the CLSM trench as two 

FE model components separated by the fault plane. 

 CLSM-pipe interface friction coefficient had no impact on the seismic performance 

of the pipe embedded in CLSM backfill regardless of CLSM backfill material 

strength. 

 As the backfill material shear strength and Young’s modulus increased, the 

maximum pipe longitudinal strain increased and the fault movement to cause initial 

pipe failure decreased.  This indicated that a steel pipe embedded in a soil backfill 

which will typically have a lower shear strength and lower Young’s modulus may 

have a better seismic performance compared to steel pipes backfilled with CLSM.  

This assumes that the soil is properly compacted all around the steel pipe similar 

to the case of CLSM backfill. 

 By increasing the pipe thickness (or decreasing the pipe D/t ratio), the seismic 

performance of the pipe embedded in CLSM backfill can be improved to allow the 

use of CLSM backfill with all its inherent advantages in zones prone to reverse-

slip faults.  
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5.3 Conclusions 

Seismic resistance of pipelines is a very important topic in terms of public safety 

and economic impact.  This study analyzed steel buried pipelines embedded in CLSM 

backfills compared to compacted soil backfill when subjected to seismic wave 

propagation and reverse-slip fault rupture.  Several FE model parameters, such as soil-

pipe interaction, boundary condition, FE model dimensions, friction coefficients at 

interfaces, material nonlinearity, etc., and their effects on the results were discussed in 

great details. 

Under seismic wave propagation, results clearly indicated that steel pipes 

embedded in CLSM had a better seismic performance compared to soil backfills as 

indicated by a lower pipe axial stress.  A better pipe seismic performance would allow 

engineers to use a smaller pipe diameter or a thinner pipe wall thickness providing a cost 

saving to a project.  On the contrary, under reverse-slip fault rupture, results showed that 

steel pipes embedded in CLSM had a lower seismic performance compared to soil 

backfills due to the increase in system stiffness from CLSM trench surrounding the pipe.  

One measure that the study suggested was to increase the pipe wall thickness.  Although 

this option would increase the material cost, it would make the advantages of using 

CLSM available to contractors and owners. 

In conclusion, with a proper design buried steel pipe with CLSM backfill with 

all its inherent advantages can perform as well as or better than soils in seismic prone 

areas.  The improvement in pipe earthquake resistant could prevent loss to human life as 

well as reduce economic impact. 
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5.4 Future Research 

Although CLSM has been increasingly utilized as a pipe backfill material due to 

its inherent benefits compared to conventional soil backfill, the study of its use 

particularly in seismic prone areas has not been done.  This research provides a better 

understandings of the pipe seismic performance with CLSM backfill in several design 

aspects, but there are some additional studies that could be conducted to provide more 

insights of its application in seismic prone areas including: 

 Under seismic wave propagation, buried pipes are more likely to fail in pipe 

crushing.  Crushing in steel pipe may not control a design due to its ductility.  Other 

materials, such as concrete pipe, that may be more sensitive to pipe crushing could 

be evaluated. 

 It was assumed in this study that steel pipe is continuous with no joints.  Sections 

of pipes embedded in CLSM considering joint details could be analyzed under 

seismic loads. 

 The Mohr-Coulomb constitutive model was used for all CLSM mixtures evaluated 

in this study.  For high strength CLSM mixtures, it may behave similar to concrete, 

and some other material constitutive models may be better represented, e.g. 

Concrete Damaged Plasticity (CDP). 

 Under seismic fault rupture, the ultimate tensile was utilized to define pipe failure 

limit.  Different criteria, e.g. local buckling strain, could be used to determine its 

effect on results. 
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 Full-scale laboratory testing for pipes embedded in CLSM backfills could be 

performed for additional result verifications. 

 A more commonly used or a wider range of CLSM mixtures could be evaluated to 

establish a recommended guideline. 

 Future research could extend to different pipe configurations, e.g. pipes with bends 

embedded in CLSM.  
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